KR200328409Y1 - Adsorption Tower with Direct Hot Air Jet to Activated Carbon Bed Type Desorbe - Google Patents
Adsorption Tower with Direct Hot Air Jet to Activated Carbon Bed Type Desorbe Download PDFInfo
- Publication number
- KR200328409Y1 KR200328409Y1 KR20-2003-0020361U KR20030020361U KR200328409Y1 KR 200328409 Y1 KR200328409 Y1 KR 200328409Y1 KR 20030020361 U KR20030020361 U KR 20030020361U KR 200328409 Y1 KR200328409 Y1 KR 200328409Y1
- Authority
- KR
- South Korea
- Prior art keywords
- hot air
- desorption
- activated carbon
- pipe
- heat
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0407—Constructional details of adsorbing systems
- B01D53/0438—Cooling or heating systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8668—Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/96—Regeneration, reactivation or recycling of reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/708—Volatile organic compounds V.O.C.'s
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Treating Waste Gases (AREA)
Abstract
본 고안은 열풍으로 탈착하는 장치를 가진 흡착탑에 적용하기 위해 고안된 것으로 종전에는 도 2에 나타낸 바와 같이 탈착열풍을 유입구(602)로 넣고 탈착 후 열풍과 탈착 VOC는 탈착열풍 배출구(603)으로 나가는 단순 구조로 이루어져 있어 탈착하는 동안 본체를 통한 열손실이 커서 이론적인 탈착열량의 3배나 소요되는 문제점이 있었다.The present invention is designed to be applied to an adsorption tower having a device for desorbing with hot air. Previously, as shown in FIG. 2, the desorption hot air is introduced into the inlet 602, and after desorption, the hot air and the desorbing VOC go out to the desorption hot air outlet 603. Because of the structure, the heat loss through the main body during the desorption was large, there was a problem that takes three times the theoretical desorption heat.
이에 본 고안은 도 4에 나타낸 바와 같이 활성탄층 양끝에 여러개의 작은 구멍을 뚫은 격자형 파이프를 설치하여 한 쪽 파이프에서 활성탄으로 탈착열풍을 직접 분사시켜 탈착하고 반대편 파이프에서 탈착열풍과 탈착 VOC를 흡인하여 탈착효과를 극대화 한 방식이다.Therefore, the present invention provides a grid-like pipe with several small holes at both ends of the activated carbon layer, as shown in FIG. 4, by directly injecting desorption hot air from the one pipe into the activated carbon, and desorbing the desorption hot air and the desorbing VOC from the opposite pipe. By maximizing the desorption effect.
본 고안에 대해 좀더 구체적으로 나타내면 도 3과 도 4에서 작업시에는 흡착탑 입. 출구 댐퍼(102,103)를 열고 배기팬(2)을 가동하여 흡착탑(1)안에 충전된 활성탄(101)으로 VOC를 통과시켜 흡착 고정 시킨 후 운휴시 활성탄에 흡착 고정된 VOC를 탈착재생하게 되는 데 탈착은 흡착탑 입. 출구 댐퍼(102,103)를 닫고 배기팬(2)이 정지된 상태에서 탈착열풍 개폐 밸브(601)를 열고 탈착 열풍팬(4)과 히터(501)를 가동하여 열풍을 흡착탑내 활성탄 끝에 설치된 탈착열풍분사파이프(604)로 유입시켜 여러개의 탈착열풍분사구멍(606)으로 열풍을 불어 넣어 활성탄을 가열 탈착하고 탈착한 열풍 및 탈착시 발생한 VOC는 반대편에 있는 탈착열풍흡입파이프(605)의 여러개의 탈착열풍흡입구멍(608)으로 흡입하여 다시 열풍팬(4)을 거쳐 촉매연소장치(5)로 들어가 히터(501)에 의해 가열된 후 촉매층(502)을 통과하면서 촉매 분해되고 분해열에 의해 더욱 가열된 고온 열풍은 탈착열풍분사파이프(604)로 들어가는 순환 구조로 이루어져 있다.More specifically, the present invention is shown in the adsorption tower when working in Figures 3 and 4. Open the outlet dampers (102, 103) and operate the exhaust fan (2) to pass the VOCs through the activated carbon 101 charged in the adsorption tower (1) to fix the adsorption, and then desorbs and regenerates the VOCs adsorbed and fixed to the activated carbon during operation. Silver adsorption tower mouth. Desorption hot air spraying installed at the end of activated carbon in the adsorption tower by closing the outlet dampers 102 and 103 and opening the desorption hot air open / close valve 601 while the exhaust fan 2 is stopped and operating the desorption hot air fan 4 and the heater 501. The hot air that is introduced into the pipe 604 and blows hot air through a plurality of desorption hot air spray holes 606 to heat and desorb the activated carbon, and the desorption hot air of the desorption hot air suction pipe 605 on the opposite side are generated. The high temperature sucked into the suction hole 608 and then passed through the hot air fan 4 to the catalytic combustion device 5 and heated by the heater 501 and then catalytically decomposed while passing through the catalyst layer 502 and further heated by decomposition heat The hot air has a circulation structure that enters the desorption hot air spray pipe 604.
이로써 종래 방식의 탈착열량보다 훨씬 적은 열량으로 탈착이 가능하도록 하여 열풍으로 탈착방식을 채택한 모든 흡착탑에 적용하므로써 적은 열량의 경제적인 탈착을 유지할 수 있도록 한 방식이다.As a result, the desorption can be performed with much less heat than the conventional desorption heat amount, so that it can be applied to all adsorption towers adopting the desorption method with hot air, thereby maintaining economical desorption of less heat.
Description
페인트 도장 부스 및 건조로 시설 등 여러 시설에서 배기되는 배기가스 중에는 톨루엔, 자일렌 등과 같은 휘발성 유기화합물가스(Volertile Organic Compound: 이하 VOC로 명명)가 함유된 채로 대기 중에 배출되므로써 대기오염을 야기하고 있다.Exhaust gases emitted from various facilities, such as paint booths and drying furnace facilities, contain volatile organic compounds (VOCs) such as toluene and xylene, which are emitted into the atmosphere, causing air pollution. .
이러한 VOC로 인한 대기오염 방지를 위해 여러 방식의 정화시설이 사용되고 있으나 대부분 가장 경제성이 있고 효율이 우수한 도 1에 나타낸 활성탄 흡착방식을 사용하고 있다.In order to prevent air pollution due to such VOCs, various types of purification facilities are used, but most of them use the activated carbon adsorption method shown in FIG.
그런데 활성탄은 VOC를 일정량 흡착하게 되면 포화상태가 되어 더 이상 흡착할 수 없는 특성 때문에 일정 기간마다 교체해주거나 최근에는 도 2에 나타낸 바와 같이 활성탄 교체에 따른 과대한 운전비를 방지하기 위해 열풍을 이용하여 탈착 재생 후 다시 흡착 사용하는 방식을 채택하고 있다.However, the activated carbon is desaturated by adsorbing a certain amount of VOC, so that it can not be adsorbed anymore, so it can be replaced at regular intervals or recently, as shown in FIG. 2, by using hot air to prevent excessive operating costs due to the replacement of activated carbon. Adsorption is used after regeneration.
예를들면 도장 부스의 경우 도장 작업시에는 활성탄 흡착탑에 흡착시킨 후 작업이 끝난 운휴시 소형팬과 히터로 열풍을 만들어 활성탄층에 넣어 가열하여 탈착하며 이때 발생되는 VOC는 촉매분해 제거하는 방식을 개발사용하고 있다.For example, in the case of painting booth, it is adsorbed in activated carbon adsorption tower during painting work, and during operation, the small fan and heater are used to make hot air and put it in activated carbon layer for heating and desorption. I use it.
그러나 이러한 방식으로 탈착하여보니 탈착열량의 상당부분이 본체 케이싱 등으로의 열손실로 실제 VOC 탈착에 필요한 이론적 열량보다 2-3배의 열량이 소요되는 사실을 발견하였으며 결과적으로 이는 탈착시간의 증가와 히터 용량의 대용량화 및 과대한 탈착열량으로 인한 동력비가 증가하는 결과를 초래하였고 아울러 탈착시 열손실을 줄이기 위해 흡착탑 본체를 보온하는 등 설비비 증가의 원인이 되고 있다.However, when desorption was carried out in this manner, it was found that a large part of the heat of desorption consumed 2-3 times more than the theoretical heat required for actual VOC desorption due to heat loss to the body casing. The power cost is increased due to the large capacity of the heater and the excessive heat of desorption, and it is also the cause of the increase of the equipment cost, such as the heat retention of the main body of the adsorption tower to reduce the heat loss during the desorption.
이에 본 고안은 탈착구조를 개선하여 탈착효율을 극대화함으로써 적은 탈착열량으로 충분한 탈착이 이루어질 수 있도록 고안되었다.Therefore, the present invention was designed to maximize the desorption efficiency by improving the desorption structure so that sufficient desorption can be achieved with a low desorption heat amount.
본 고안의 시스템을 설명하기 위해 사전 지식으로 활성탄 흡착방식과 자동차 도장부스 운전 방식에 대해 설명한다면 다음과 같다.In order to explain the system of the present invention, the activated carbon adsorption method and the car painting booth driving method are explained as follows.
(1) 활성탄 흡착(1) activated carbon adsorption
활성탄은 많은 미세공과 넓은 표면적을 가지고 있어 벤젠, 톨루엔, 자일렌가스와 같이 분자량이 큰 VOC가 활성탄층을 통과하게 되면 미세공으로 유기가스분자가 반데르발스힘에 의해 유입되며 이 부위에서 포화 증기압이상의 고농도가 유지되므로써 응축된 상태로 흡착된다. 이러한 흡착특성은 VOC가 계속 흡착되어 포화상태가 되면 더 이상 흡착할 수 없는 제한적인 특성을 가지게 됨을 의미하며 이는 흡착탑내 투입된 활성탄이 모두 포화상태가 되면 더 이상 VOC를 제거해 줄 수 없기 때문에 새로운 활성탄으로 교체해주거나 탈착하여 재사용하여야 함을 의미한다.Activated carbon has many fine pores and a large surface area. When VOCs with high molecular weight such as benzene, toluene, and xylene gas pass through the activated carbon layer, organic gas molecules are introduced into the micropores by van der Waals forces. It is adsorbed in a condensed state by maintaining a high concentration. This adsorption characteristic means that the VOC is continuously adsorbed and has a limited characteristic that can not be adsorbed anymore. This means that the activated carbon introduced into the adsorption column is no longer able to remove the VOC when the activated carbon is saturated. It must be replaced or removed and reused.
활성탄의 탈착 재사용을 위한 탈착공정은 100℃이상의 열풍을 가하면 되는데 그 이유는 액상으로 활성탄 표면에 흡착되어있는 VOC가 비점 이상의 열풍이 가해져 증발 탈착되므로써 활성탄 미세공이 원래 상태로 복구되기 때문이다.The desorption process for desorption and reuse of activated carbon may be performed by applying hot air of 100 ° C. or higher because the VOC adsorbed on the surface of the activated carbon in the liquid phase is heated by evaporation and desorption by boiling hot air above the boiling point to restore the activated carbon micropores to their original state.
(2) VOC 처리방식별 개요(2) Outline of VOC treatment method
(가) 비탈착식 흡착방식(도 1 방식)(A) Non-removable adsorption method (Fig. 1 method)
제 1도에 나타난 바와 같이 가장 간단한 방식으로 단순한 용기에 활성탄을 충전한 후 이곳으로 VOC를 통과시켜 흡착 제거하는 방식으로 구조가 간단하고 일반적으로 설비비가 저렴하여 가장 많이 사용되는 방식이다.As shown in FIG. 1, the activated carbon is charged in a simple container in the simplest manner, and then the adsorption is removed by passing the VOC there.
그러나 이 방식은 탈착 재생장치가 없는 단순한 장치여서 VOC의 계속적인 흡착으로 포화상태가 되면 활성탄을 교체해 줘야하기 때문에 활성탄 교체비용이 과다한 문제점이 있다.However, since this method is a simple device without a desorption regeneration device, the activated carbon replacement cost is excessive because the activated carbon needs to be replaced when saturated by continuous adsorption of VOC.
1년에 약 5000ℓ의 페인트가 사용될 경우 용제증발량은 2500 ∼ 3000kg이므로 이 때 소요되는 활성탄양은 8500 ∼ 10000kg이고 이로 인한 교체 비용은 12,750,000 ∼ 15,000,000원 정도 소요된다.When about 5000 liters of paint is used per year, the evaporation amount of solvent is 2500 ~ 3000kg, so the amount of activated carbon is 8500 ~ 10000kg and the replacement cost is about 12,750,000 ~ 15,000,000 won.
(나) 소용량 촉매연소장치형 탈착방식(도 2 방식)(B) Small capacity catalytic combustion device type desorption method (Fig. 2 method)
본 방식은 작업시 충전된 활성탄으로 VOC를 통과시켜 흡착 제거한 후 운휴시 활성탄을 탈착재생하게 되는 데 탈착은 도 2에서 흡착탑 입. 출구 댐퍼(102,103)를 닫고 배기팬(2)이 정지된 상태에서 탈착열풍 개폐 밸브(601)를 열고 탈착 열풍팬(4)과 히터(501)를 가동하여 열풍을 흡착탑으로 유입시켜 활성탄을 가열 탈착하며 탈착시 발생한 VOC는 다시 히터에 의해 가열된 후 촉매층을 통과하면서 촉매 분해되는 순환 구조로 이루어져 있다.The present method is to desorb and regenerate activated carbon during operation after adsorbing and removing VOC through activated carbon charged during operation. With the outlet dampers 102 and 103 closed and the exhaust fan 2 stopped, the desorption hot air open / close valve 601 is opened and the desorption hot air fan 4 and the heater 501 are operated to introduce hot air into the adsorption tower to heat and desorb the activated carbon. In addition, the VOC generated during desorption is composed of a circulation structure in which the catalyst is decomposed while being heated by a heater again and then passed through the catalyst layer.
이때 히터 후단에 위치한 자동 온도 제어기(503)에서 설정된 온도(예:300℃)에 의해 히터 열량을 제어하여 항시 촉매분해가 가능한 온도를 유지하여 준다.At this time, by controlling the amount of heat of the heater by the temperature (for example, 300 ℃) set in the automatic temperature controller 503 located at the rear of the heater to maintain a temperature capable of catalytic decomposition at all times.
참고로 탈착장치로 사용하는 촉매연소장치에 기술하면 다음과 같다. 촉매는 백금, 파라듐등으로 이루어진 물질로 자기 자신은 직접 반응에 참여하지 않고 다만반응물질의 활성화 에너지를 낮춰 반응을 촉진시켜 VOC의 연소산화온도 600 ∼ 800℃보다 훨씬 낮은 150 ∼350℃에서 연소산화가 가능하게 해줘 에너지 절감을 가능하게 하여 주는 물질이다. 촉매연소방식은 이러한 촉매를 사용하는 방식으로 연소분해가 가능한 150 ~ 350℃로 승온시켜 촉매층을 통과시켜 연소분해하여 제거시키는 방식으로 반응식은 아래와 같다.For reference, the catalytic combustion device used as the desorption device is as follows. The catalyst is composed of platinum, palladium, etc. It does not participate directly in the reaction itself, but lowers the activation energy of the reactants to promote the reaction, so it is burned at 150 ~ 350 ℃ much lower than the combustion oxidation temperature of VOC 600 ~ 800 ℃ It is a substance that enables oxidation and saves energy. Catalytic combustion is a method using such a catalyst is heated to 150 ~ 350 ℃ capable of combustion decomposition by passing through the catalyst layer to remove the combustion by the reaction scheme is as follows.
상기 반응식에서 보듯이 촉매층에서 VOC 분해시 자체 산화열에 의해 가스온도가 상승하며 상승정도는 VOC농도에 비례하는데 촉매층 유입 온도가 250℃정도에 이르르면 자체 분해열로 촉매층을 통과하는 동안 가스온도 상승으로 분해 효율이 높아져 95%이상 고효율 처리가 가능하다.As shown in the above reaction, when decomposing VOC in the catalyst layer, the gas temperature rises due to self-oxidation heat, and the degree of increase is proportional to the VOC concentration. Higher efficiency enables more than 95% high efficiency processing.
본 고안은 종전 열풍 탈착방식보다 훨씬 적은 탈착열량으로 충분한 탈착이 가능하도록 개선한 것으로 적은 탈착 공급열로 충분한 활성탄 탈착을 달성하기 위해 고안되었으며 이러한 목적을 달성하기 위해 기술적 과제로 탈착열풍의 활성탄 가열방식 변경으로 탈착효율을 극대화 하여 적은 열량으로도 충분한 탈착이 이루어지도록 개선하였다.The present invention is an improvement to enable sufficient desorption with much less desorption heat amount than the conventional hot air desorption method, and is designed to achieve sufficient desorption of activated carbon with a small desorption supply heat. Modifications were made to maximize the desorption efficiency and to achieve sufficient desorption with less heat.
즉 종전에는 탈착열풍을 흡착탑에 부착된 탈착열풍 유입구(603)로 넣어주고 활성탄을 가열한 후 탈착열풍 배출구(602)로 나오는 방식을 사용하였으나 본 고안은 활성탄 양단에 여러개의 열풍분사구멍을 가진 탈착열풍분사파이프(604)와 탈착열풍흡입파이프(605)붙여 열풍을 활성탄에 붙여 직접 분사하고 흡입하므로써 열손실이 거의 없이 탈착되도록 하였다.In other words, in the past, the desorption hot air was introduced into the desorption hot air inlet 603 attached to the adsorption tower, and the activated carbon was heated to the desorption hot air outlet 602. However, the present invention has a desorption having multiple hot air jet holes at both ends of the activated carbon. The hot air spray pipe 604 and the desorption hot air suction pipe 605 are attached to the activated carbon to directly inject and inhale the hot air to remove and desorb with little heat loss.
도 1은 비탈착식 흡착탑의 흐름도1 is a flow chart of a non-removable adsorption tower
도 2는 탈착열풍에 의한 탈착방식을 가진 흡착탑의 흐름도2 is a flow chart of the adsorption tower having a desorption method by desorption hot air
도 3은 활성탄층 직접열풍분사식 탈착방식을 가진 흡착탑의 흐름도Figure 3 is a flow chart of the adsorption tower having a direct carbon wind desorption method activated activated bed
도 4는 활성탄층 직접열풍분사식 탈착열풍 공급 파이프 상세도Figure 4 is a detailed view of the activated carbon bed direct hot air injection type desorption hot air supply pipe
*도면중 주요 부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
1...흡착탑 101...활성탄1.Adsorption tower 101 ... Activated carbon
102...흡착탑 입구 개폐 댐퍼 103...흡착탑 출구 개폐 댐퍼102.Adsorption tower entrance opening and closing damper 103 ... Suction tower exit opening and closing damper
104...활성탄 지지망 2... 배기팬104 ... Activated Carbon Support Network 2 ... Exhaust Fan
3... 연돌 4... 탈착열풍팬3 ... stack 4 ... detachable hot air fan
5... 소형 촉매연소장치 501...히터5 ... small catalytic combustion unit 501 ... heater
502...촉매 503...자동온도제어기502 Catalyst 503 Thermostat
6... 탈착열풍관 601...탈착열풍개폐밸브6.Removable hot air duct 601 ... Removable hot air open / close valve
602...탈착열풍유입구 603...탈착열풍배출구602 Desorption hot air outlet 603 Desorption hot air outlet
604...탈착열풍분사파이프 605...탈착열풍흡입파이프604 Desorption Hot Air Suction Pipe 605 Desorption Hot Air Suction Pipe
606...탈착열풍분사구멍 607...탈착열풍흡입구멍606 Desorption Hot Air Suction Hole 607 Desorption Hot Air Suction Hole
본 고안은 도 3에 나타낸 바와 같이 활성탄 양끝에 탈착열풍분사파이프(604)와 탈착열풍흡입파이프(605)를 도 4에 나타낸 상세도와 같이 설치하여 파이프에 뚫려 있는 여러개의 작은 분사구멍(606)과 흡입구멍(607)을 통해 탈착열풍을 직접 활성탄에 골고루 넣어 주므로써 탈착효과를 높힌 것이다.The present invention provides a plurality of small injection holes 606 which are drilled in a pipe by installing a desorption hot air spray pipe 604 and a desorption hot air suction pipe 605 on both ends of the activated carbon as shown in FIG. Desorption effect is increased by putting the desorption hot air evenly directly into the activated carbon through the suction hole (607).
이하, 도 3과 도 4를 참조하여 본 고안의 목적을 달성하기 위한 기술적 구성을 상세하게 설명하면 다음과 같다.Hereinafter, with reference to Figures 3 and 4 will be described in detail the technical configuration for achieving the object of the present invention.
도 3에서 작업시에는 흡착탑 입. 출구 댐퍼(102,103)를 열고 배기팬(2)을 가동하여 흡착탑(1)안에 충전된 활성탄(101)으로 VOC를 통과시켜 흡착 고정 시킨 후 운휴시 활성탄에 흡착 고정된 VOC를 탈착재생하게 되는 데 탈착은 흡착탑 입. 출구 댐퍼(102,103)를 닫고 배기팬(2)이 정지된 상태에서 탈착열풍 개폐 밸브(601)를 열고 탈착 열풍팬(4)과 히터(501)를 가동하여 열풍을 흡착탑내 활성탄 끝에 설치된 탈착열풍분사파이프(604)로 유입시켜 여러개의 탈착열풍분사구멍(606)으로 열풍을 불어 넣어 활성탄을 가열 탈착하고 탈착한 열풍 및 탈착시 발생한 VOC는 반대편에 있는 탈착열풍흡입파이프(605)의 여러개의 탈착열풍흡입구멍(608)으로 흡입하여 다시 열풍팬(4)을 거쳐 촉매연소장치(5)로 들어가 히터(501)에 의해 가열된 후 촉매층(502)을 통과하면서 촉매 분해되고 분해열에 의해 더욱 가열된 고온 열풍은 탈착열풍분사파이프(604)로 들어가는 순환 구조로 이루어져 있다.When working in Figure 3 the adsorption tower. Open the outlet dampers (102, 103) and operate the exhaust fan (2) to pass the VOCs through the activated carbon 101 charged in the adsorption tower (1) to fix the adsorption, and then desorbs and regenerates the VOCs adsorbed and fixed to the activated carbon during operation. Silver adsorption tower mouth. Desorption hot air spraying installed at the end of activated carbon in the adsorption tower by closing the outlet dampers 102 and 103 and opening the desorption hot air open / close valve 601 while the exhaust fan 2 is stopped and operating the desorption hot air fan 4 and the heater 501. The hot air that is introduced into the pipe 604 and blows hot air through a plurality of desorption hot air spray holes 606 to heat and desorb the activated carbon, and the desorption hot air of the desorption hot air suction pipe 605 on the opposite side are generated. The high temperature sucked into the suction hole 608 and then passed through the hot air fan 4 to the catalytic combustion device 5 and heated by the heater 501 and then catalytically decomposed while passing through the catalyst layer 502 and further heated by decomposition heat The hot air has a circulation structure that enters the desorption hot air spray pipe 604.
여기에서 촉매연소장치(5)에서 고효율 분해 가능한 온도를 유지해 주기 위해 히터 후단에 위치한 자동 온도 제어기(503)에서 설정된 온도(예:300℃)에 의해 히터 열량을 제어하여 항시 고효율 촉매분해가 가능한 온도를 유지하여 준다.In order to maintain the high efficiency decomposable temperature in the catalytic combustion device (5), the temperature at which the high-efficiency catalytic decomposition is always possible by controlling the heat of the heater by the temperature (for example, 300 ° C.) set by the automatic temperature controller 503 located at the rear of the heater. Keep it.
본 고안의 작용에 대해 다시 구체적으로 설명하면If the concrete description of the operation of the present invention
활성탄 탈착에 소요되는 탈착열량은 크게 미세공에 응축 흡착되어 있는 VOC를 탈착시키기 위해 VOC를 증발시키는데 소요되는 열량과 탈착열량의 가열시 활성탄으로 빼앗기는 열량 즉 활성탄 가열에 소요되는 열량 그리고 케이싱등으로 빠져나가는 열손실로 나눌 수 있는데 실제 경험적으로 몰 때 기존의 도 2방식에서는 첫 번째 것은 탈착열량의 5% 정도이고 두 번째가 약 30%, 세 번째가 약 65% 소요되는 것이 확인되었다.The heat of desorption required for desorption of activated carbon is largely dissipated by the amount of heat consumed by evaporating VOC to desorb VOC condensed and adsorbed in micropores and the heat deprived of activated carbon when heating desorption heat, that is, the amount of heat required for activated carbon heating and casing. It can be divided into outgoing heat loss. In practice, in the conventional method of FIG. 2, the first one was about 5% of the desorption heat, the second was about 30%, and the third was about 65%.
이처럼 세 번째가 큰 것은 통상 탈착시간이 10시간 이상으로 길고 열풍이 흡착탑 통으로 들어가 케이싱에 직접 접촉되어 있어 케이싱으로의 열전달로 손실되는 양이 많기 때문이다.This third is large because the desorption time is usually longer than 10 hours and hot air enters the adsorption column tube and is in direct contact with the casing, so that the amount of heat loss to the casing is large.
그러므로 적은 탈착열량으로 탈착이 이루어지기 위해서는 첫 번째 소요되는 탈착열량인 VOC 증발에 소요되는 열량과 두 번째인 활성탄 가열에 소요되는 열량은 줄일 수 없으므로 세 번째인 열손실을 최소화할 필요가 있다.Therefore, in order to desorption with a small amount of heat of desorption, the amount of heat required for evaporation of VOC, which is the first heat of desorption, and the amount of heat required for heating activated carbon, cannot be reduced.
세 번째인 열손실을 최소화하기 위해 도 4에 나타낸 바와 같이 탈착열풍 가열이 여러개의 구멍을 격자형 파이프를 활성탄층 양끝에 붙여 설치하여 열풍이 여러개의 구멍을 통해 활성탄에 골고루 분사시키고 가열시킨 열풍과 탈착으로 발생된VOC는 반대편에 있는 흡입파이프에 있는 여러개의 구멍으로 고르게 흡입되어 열풍이 활성탄 가열에 효과적으로 되어 있을 뿐만 아니라 유입되는 열풍이 종전에 케이싱에 채우면서 유입되어 열풍이 케이싱에 접촉되는 것과 달리 케이싱과 분리되어 있어 케이싱을 통해 손실되는 열손실을 최소화 하도록 구성되어 있다.In order to minimize the third heat loss, as shown in FIG. 4, the desorption hot air heating is installed by attaching a plurality of holes to both ends of the activated carbon layer with a lattice pipe, and the hot air is evenly sprayed on the activated carbon through the multiple holes and heated. The VOC generated by the desorption is evenly sucked into several holes in the suction pipe on the opposite side, so that the hot air is not only effective for heating the activated carbon, but also the hot air is introduced while filling the casing before the hot air is in contact with the casing. Separated from the casing is configured to minimize the heat loss lost through the casing.
이처럼 탈착효과를 높이기 위해 설치 된 활성탄 양끝에 있는 격자형 열풍 파이프는 탈착효과를 높이는 역할뿐만 아니라 부스적으로 활성탄 지지망(102)을 지지해 주는 지지대 역할도 수행하게 된다.The grid-shaped hot air pipes on both ends of the activated carbon installed to increase the desorption effect as well as the role of supporting the activated carbon support network 102 as a booth to enhance the desorption effect.
고안의 효과를 설명하기 위해 수치적으로 설명하면 다음과 같다.To explain the effect of the invention numerically as follows.
예를들면 도 3 방식에서 VOC 흡착량 100 kg 충전된 활성탄양이 1000 kg 일 경우 소요되는 탈착열량은 VOC 흡착량 100 kg X 증발열량 100 kcal/kg = 10000 kcal , 활성탄 가열열량은 활성탄양 1000 kg X 비열 0.4 kcal/kg-℃ X 승온 온도 약 150 ℃ = 60000 kcal 이며 열손실 열량은 경험적으로 몰 때 약 130000 kcal로 총 200000 kcal 소요된다.For example, in the method of FIG. 3, the amount of desorption heat required when 100 kg of activated carbon charged in 100 kg of VOC adsorption amount is 100 kg X adsorption heat of 100 kg x evaporation heat 100 kcal / kg = 10000 kcal, and activated carbon heating amount is 1000 kg of activated carbon X specific heat 0.4 kcal / kg- ℃ X heating temperature is about 150 ℃ = 60000 kcal and heat loss calories empirically driving about 130000 kcal, totaling 200000 kcal.
탈착열량 공급을 20kw 히터로 공급할 경우 약 10시간 소요된다.It takes about 10 hours to supply the desorption heat supply to a 20kw heater.
본 고안인 도 3과 도 4를 적용하였을 경우 열손실이 약 1/5정도로 현격하게 줄어들어 총 100000 kcal가 소요되므로써 전체적인 탈착열량이 반으로 줄어드는 효과를 얻을 수 있으며 이로 인한 동력비 절감과 탈착시간이 감소하여 설비 가동 효과를 높힐 수 있다.When the present invention is applied to Figures 3 and 4, the heat loss is significantly reduced to about 1/5, which requires a total of 100000 kcal, so that the overall desorption heat amount can be reduced by half, thereby reducing power costs and desorption time. It can increase the operation efficiency of the equipment.
이외에 부수적으로 열풍파이프가 활성탄 지지대 역할도 같이 하는 효과를 얻을 수 있다.Incidentally, the hot air pipe also serves as an activated carbon support.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20-2003-0020361U KR200328409Y1 (en) | 2003-06-26 | 2003-06-26 | Adsorption Tower with Direct Hot Air Jet to Activated Carbon Bed Type Desorbe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20-2003-0020361U KR200328409Y1 (en) | 2003-06-26 | 2003-06-26 | Adsorption Tower with Direct Hot Air Jet to Activated Carbon Bed Type Desorbe |
Publications (1)
Publication Number | Publication Date |
---|---|
KR200328409Y1 true KR200328409Y1 (en) | 2003-09-29 |
Family
ID=49338798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20-2003-0020361U KR200328409Y1 (en) | 2003-06-26 | 2003-06-26 | Adsorption Tower with Direct Hot Air Jet to Activated Carbon Bed Type Desorbe |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR200328409Y1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100683196B1 (en) * | 2006-03-10 | 2007-02-16 | 하병길 | Vocs and odor removal apparatus |
KR101410561B1 (en) | 2012-11-21 | 2014-06-20 | 문두찬 | Hot air desorbing type reactivator of waste carbon |
CN112337451A (en) * | 2019-08-09 | 2021-02-09 | 上海电缆研究所有限公司 | Activation device for vacuum adsorption material |
-
2003
- 2003-06-26 KR KR20-2003-0020361U patent/KR200328409Y1/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100683196B1 (en) * | 2006-03-10 | 2007-02-16 | 하병길 | Vocs and odor removal apparatus |
KR101410561B1 (en) | 2012-11-21 | 2014-06-20 | 문두찬 | Hot air desorbing type reactivator of waste carbon |
CN112337451A (en) * | 2019-08-09 | 2021-02-09 | 上海电缆研究所有限公司 | Activation device for vacuum adsorption material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100603810B1 (en) | Apparatus for removing v.o.cs in painting equipment | |
KR101719540B1 (en) | Indoor Concentrated and Combustion System of VOC with Catalyst Oxidation device and Energy Recycling Means | |
KR100723871B1 (en) | Apparatus for Cleaning the volatile organic compounds in the painting process | |
KR100490140B1 (en) | Apparatus for processing V.O.Cs installed with painting equipment | |
KR100690441B1 (en) | Concentrated Catalytic Oxidizing System of Volatile Organic Compounds, and Concentrating Bank Therefor | |
KR100784409B1 (en) | Concentrated Catalytic Oxidizing System of Volatile Organic Compounds, and Method Therefor | |
KR100665254B1 (en) | Catalystic Combustion System of Concentration by Adsorption and Desorption by Counter-flow Heating Air | |
WO2018062968A1 (en) | Indoor concentration and combustion system having electric combustor and energy recycling means | |
JP2013079782A (en) | Drying/baking furnace for coated article | |
KR102325207B1 (en) | Vehicle body painting booth with efficient treatment of volatile organic compounds | |
KR20110074335A (en) | Concentration control type device for adsorbing and desorbing activated-carbon | |
KR200328409Y1 (en) | Adsorption Tower with Direct Hot Air Jet to Activated Carbon Bed Type Desorbe | |
KR100426973B1 (en) | One Tower Adsorb. Desorb Type Adsorption Tower | |
US20070178578A1 (en) | Biofiltration system for treating airborne volatile organic compounds | |
KR200337918Y1 (en) | Adsorption Tower with Direct Hot Air Jet at Activated Carbon Bed Inside Type Desorber | |
KR20180056357A (en) | A device for removing harmful substances with a structure for treating harmful substances using a catalyst | |
KR20020083413A (en) | VOC omitted | |
KR100561253B1 (en) | A system for catalytic oxidation of vocs | |
KR200284130Y1 (en) | Adsorption Tower with Multi Gradual Supply & Hot Air Jet in Activated Carbon Bed Type Desorber | |
KR200259453Y1 (en) | Circulation & Flow Control Type Catalyst Oxidation Desorber | |
CN210125299U (en) | Organic waste gas concentration catalytic treatment system | |
JP2005125206A (en) | Recovery treatment device for high-concentration malodor and volatile organic compound | |
KR200207663Y1 (en) | One tower adsorb desorb type adsorption tower | |
KR200247358Y1 (en) | A revival system for filltering system of an automobile painting system | |
KR100830271B1 (en) | Volatile organic compounds treatment apparatus for painting equipment of a dockyard |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REGI | Registration of establishment | ||
T201 | Request for technology evaluation of utility model | ||
T701 | Written decision to grant on technology evaluation | ||
LAPS | Lapse due to unpaid annual fee |