KR20030090983A - Red-emitting phosphor for vacuum ultraviolet and a preparation method thereof - Google Patents

Red-emitting phosphor for vacuum ultraviolet and a preparation method thereof Download PDF

Info

Publication number
KR20030090983A
KR20030090983A KR1020020028890A KR20020028890A KR20030090983A KR 20030090983 A KR20030090983 A KR 20030090983A KR 1020020028890 A KR1020020028890 A KR 1020020028890A KR 20020028890 A KR20020028890 A KR 20020028890A KR 20030090983 A KR20030090983 A KR 20030090983A
Authority
KR
South Korea
Prior art keywords
phosphor
rare earth
earth metal
gadolinium
yttrium
Prior art date
Application number
KR1020020028890A
Other languages
Korean (ko)
Other versions
KR100451671B1 (en
Inventor
강윤찬
김은정
박희동
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR10-2002-0028890A priority Critical patent/KR100451671B1/en
Publication of KR20030090983A publication Critical patent/KR20030090983A/en
Application granted granted Critical
Publication of KR100451671B1 publication Critical patent/KR100451671B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions

Abstract

PURPOSE: A red fluorescent substance for VUV(Vacuum UltraViolet), its preparation method and a plasma display panel or light emitting lamp containing the fluorescent substance are provided, to obtain a fluorescent substance having a high absorption peak at a range of VUV and an excellent emission luminance. CONSTITUTION: The red fluorescent substance is represented by (Y1-a-b-cGdaEubMc)2O3, wherein M is a rare earth metal selected from the group consisting of Dy, Sm, Nd, Tm, Pr and Sc; and 0<=a<1, 0.005<=b<=0.2, and 0.00001<=c<=0.1. The method comprises the steps of dissolving a yttrium compound, a gadolinium compound, a metal compound of a rare earth metal selected from the group consisting of Dy, Sm, Nd, Tm, Pr and Sc, citric acid and ethylene glycol in a solvent to prepare a precursor solution; drying and heating the precursor solution at 300-1,500 deg.C with spraying the solution by an aerosol generator to prepare a fluorescent substance powder; and heating the fluorescent substance powder at 800-1,500 deg.C for 1-5 hours.

Description

진공자외선용 적색 형광체 및 그의 제조방법{RED-EMITTING PHOSPHOR FOR VACUUM ULTRAVIOLET AND A PREPARATION METHOD THEREOF}RED-EMITTING PHOSPHOR FOR VACUUM ULTRAVIOLET AND A PREPARATION METHOD THEREOF}

본 발명은 플라즈마 디스플레이 패널(plasma display panel; PDP)용 적색 형광체 및 그의 제조방법에 관한 것으로, 보다 구체적으로 (YGd)2O3:Eu 형광체에 활성제로서 희토류 원소를 첨가하여 제조된, 진공자외선에서의 발광 특성이 우수한 플라즈마 디스플레이 패널용 적색 형광체 및 그의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a red phosphor for a plasma display panel (PDP) and a method of manufacturing the same, and more specifically, to a (YGd) 2 O 3 : Eu phosphor, which is prepared by adding a rare earth element as an activator in a vacuum ultraviolet ray. The red fluorescent substance for plasma display panels excellent in the luminescent characteristic of this invention, and its manufacturing method is provided.

(YGd)2O3:Eu 형광체는 램프용 형광물질로 사용되고 진공자외선용 적색 형광체로는 (YGd)BO3:Eu이 많이 사용되고 있으나, 이러한 (YGd)BO3:Eu 형광체는 진공자외선하에서 고휘도를 가지는 반면, 색좌표 및 잔광시간 등에 문제점이 있어, 대한민국 특허출원 제2001-17535호에는 플라즈마 디스플레이용으로서 (YGd)2O3:Eu와 (YGd)BO3:Eu를 혼합한 형광체를 사용하고 있다. 또한, (YGd)2O3:Eu 형광체는 254 nm 이상의 자외선 하에서는 좋은 발광 세기를 가지나 진공자외선 하에서는 발광 휘도가 낮기 때문에 진공자외선 하에서 발광 휘도를 증가시킬 필요가 있다.(YGd) 2 O 3 : Eu phosphor is used as a fluorescent material for lamps, and (YGd) BO 3 : Eu is often used as a red phosphor for vacuum ultraviolet rays, but (YGd) BO 3 : Eu phosphor has high luminance under vacuum ultraviolet rays. On the other hand, there are problems with color coordinates and afterglow time, and Korean Patent Application No. 2001-17535 uses a phosphor mixed with (YGd) 2 O 3 : Eu and (YGd) BO 3 : Eu for plasma display. In addition, since the (YGd) 2 O 3 : Eu phosphor has good light emission intensity under ultraviolet rays of 254 nm or more, but low light emission luminance under vacuum ultraviolet rays, it is necessary to increase the light emission luminance under vacuum ultraviolet rays.

한편, 분무열분해법은 구형의 분말 제조가 가능하기 때문에 형광체 분말의 제조방법으로서 활발히 연구되고 있다. 그러나, 형광체 분말들이 우수한 발광 특성을 나타내기 위해서는 비표면적이 작고 표면 결함이 적어야 하는데, 종래의 분무열분해법에 의해 제조된 형광체 분말들은 액적의 건조 및 열분해 공정을 거치면서속이 빈 다공성 형태를 띄기 때문에 이러한 조건들을 만족하지 못한다. 특히, 대량 생산 체제의 분무열분해 공정에서는 다공성 분말의 수득이 더욱 심각한 문제로 발생한다.On the other hand, spray pyrolysis has been actively studied as a method for producing phosphor powder because spherical powder can be produced. However, in order for the phosphor powders to exhibit excellent luminescence properties, the specific surface area and the surface defects should be small. Since the phosphor powders prepared by the conventional spray pyrolysis method have a hollow porous form during the drying and pyrolysis of droplets, These conditions are not met. In particular, in the pyrolysis process of mass production, the obtaining of the porous powder is a more serious problem.

이러한 문제점을 해결하기 위하여, 본 발명자들은 진공자외선에서 (YGd)2O3:Eu 형광체의 발광 휘도를 증가시키기 위해 지속적으로 연구한 결과, (YGd)2O3:Eu 형광체에 제2의 도핑물질로서 희토류 금속을 첨가하고, 분무 용액 제조시 구연산 및 에틸렌글리콜 용액을 함께 첨가함으로써, 진공자외선에서의 발광 특성이 월등히 개선된 이트륨 가돌리늄계 형광체를 개발하기에 이른 것이다.In order to solve this problem, the present inventors have continuously studied to increase the emission luminance of (YGd) 2 O 3 : Eu phosphor in vacuum ultraviolet light, the second doping material in (YGd) 2 O 3 : Eu phosphor By adding a rare earth metal and adding citric acid and an ethylene glycol solution together in preparing a spray solution, it is possible to develop an yttrium gadolinium-based phosphor having a significantly improved luminescence property in vacuum ultraviolet rays.

이에 따라, 본 발명의 목적은 (YGd)2O3:Eu 형광체에 제2의 활성제로 디스프로슘(Dy), 사마륨(Sm), 툴륨(Tm), 네오디뮴(Nd), 프라세오디뮴(Pr) 또는 스칸듐(Sc)과 같은 희토류 금속을 첨가함으로써, 발광 특성이 우수한 진공 자외선용 적색 형광체를 제공하는 것이다.Accordingly, an object of the present invention is to provide dysprosium (Dy), samarium (Sm), thulium (Tm), neodymium (Nd), praseodymium (Pr), or scandium (YGd) 2 O 3 : Eu phosphor as a second activator. By adding a rare earth metal such as Sc), it is to provide a red phosphor for vacuum ultraviolet rays with excellent luminescence properties.

본 발명의 다른 목적은 분무열분해법을 이용한 형광체 제조방법에 있어서 분무 용액 제조시 구연산 및 에틸렌글리콜 용액을 첨가함으로써 내부에 고분자 물질을 포함하는 적색 형광체의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a red phosphor containing a polymer material therein by adding citric acid and ethylene glycol solution in the preparation of the spray in the method of producing a phosphor using spray pyrolysis.

도 1은 통상의 분무열분해 공정 장치의 모식도이고,1 is a schematic diagram of a conventional spray pyrolysis process apparatus,

도 2는 본 발명의 실시예 1에 따른, 구연산 및 에틸렌글리콜을 첨가하여 제조된 (Y0.38Gd0.57Dy0.0004)2O3:Eu0.05형광체 분말의 전자현미경 사진이고;FIG. 2 is an electron micrograph of (Y 0.38 Gd 0.57 Dy 0.0004 ) 2 O 3 : Eu 0.05 phosphor powder prepared by adding citric acid and ethylene glycol according to Example 1 of the present invention; FIG.

도 3은 본 발명의 비교예 1에 따른, 구연산 및 에틸렌글리콜을 첨가하여 제조된(YGd)2O3:Eu 형광체 분말의 전자현미경 사진이고;3 is an electron micrograph of (YGd) 2 O 3 : E phosphor powder prepared by adding citric acid and ethylene glycol according to Comparative Example 1 of the present invention;

도 4는 본 발명의 비교예 2에 따른, 구연산 및 에틸렌글리콜이 첨가되지 않은 (YGd)2O3:Eu 형광체 분말의 전자 현미경 사진이고,4 is an electron micrograph of (YGd) 2 O 3 : E phosphor powder without citric acid and ethylene glycol added according to Comparative Example 2 of the present invention,

도 5는 본 발명의 실시예 1 및 2에서 제조된 이트륨 가돌리늄계 적색형광체와 비교예 1 및 3에서 각각 제조된 형광체 분말의 진공자외선 영역에서의 발광 스펙트럼이고;5 is an emission spectrum in the vacuum ultraviolet region of the yttrium gadolinium-based red phosphor prepared in Examples 1 and 2 of the present invention and the phosphor powders prepared in Comparative Examples 1 and 3, respectively;

도 6은 본 발명의 실시예 3 및 4에 따른, 고분자 물질을 첨가하여 얻어진 형광체의 진공자외선 영역에서의 발광 스펙트럼이다.6 is a light emission spectrum in a vacuum ultraviolet region of phosphors obtained by adding a polymer material according to Examples 3 and 4 of the present invention.

상기 목적을 달성하기 위하여, 본 발명에서는 하기 화학식 1로 표시되는 진공 자외선용 이트륨 가돌리늄계 적색 형광체 및 이의 제조방법을 제공한다:In order to achieve the above object, the present invention provides a yttrium gadolinium-based red phosphor for vacuum ultraviolet rays represented by the following formula (1) and a method of manufacturing the same:

화학식 1Formula 1

(Y1-a-b-cGdaEubMc)2O3 (Y 1-abc Gd a Eu b M c ) 2 O 3

상기 식에서, M은 Dy, Sm, Nd, Tm, Pr 및 Sc 중에서 선택된 희토류 금속이고, 0≤a<1, 0.005≤b≤0.2, 0.00001≤c≤0.1 이다.In the above formula, M is a rare earth metal selected from Dy, Sm, Nd, Tm, Pr, and Sc, and 0 ≦ a <1, 0.005 ≦ b ≦ 0.2, 0.00001 ≦ c ≦ 0.1.

이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 상기 화학식 1로 표시되는 진공 자외선용 이트륨 가돌리늄계 적색 형광체는 이트륨(Y) 화합물; 가돌리늄(Gd) 화합물; 유로피움(Eu) 화합물; 및 디스프로슘(dysprosium; Dy), 사마륨(samarium; Sm), 네오디뮴(neodymium; Nd), 툴륨(thulium; Tm), 프라세오디뮴(praseodymium; Pr) 및 스칸듐(scandium; Sc) 중에서 선택된 희토류 금속의 화합물과 함께 구연산 및 에틸렌글리콜을 각각 용매에 용해시킨 후, 생성된 전구체 혼합 용액을 액적 발생 장치를 이용하여 미세 액적으로 분무하면서 반응기 온도 300 내지 1500℃에서 건조 및 열처리하여 형광체 분말을 합성하고, 합성된 형광체 분말을 800 내지 1500℃에서 1 내지 5 시간 동안 열처리함으로써 제조될 수 있다.The yttrium gadolinium-based red phosphor for vacuum ultraviolet rays represented by Chemical Formula 1 according to the present invention is an yttrium (Y) compound; Gadolinium (Gd) compounds; Europium (Eu) compounds; And a rare earth metal compound selected from dysprosium (Dy), samarium (Sm), neodymium (Nd), thulium (Tm), praseodymium (Pr), and scandium (Sc). After dissolving citric acid and ethylene glycol in a solvent, the resulting precursor mixture solution was sprayed into fine droplets using a droplet generating apparatus, followed by drying and heat treatment at a reactor temperature of 300 to 1500 ° C. to synthesize phosphor powder, and synthesized phosphor powder. It can be prepared by heat treatment at 800 to 1500 ℃ for 1 to 5 hours.

<형광체 입자 전구체 용액의 조제><Preparation of phosphor particle precursor solution>

본 발명의 형광체 입자를 제조하기 위한 전구체 용액의 제조공정에 있어서,형광체 분말의 모체로서 이트륨 화합물, 가돌리늄 화합물 또는 유로피움 화합물이 사용되며, 상기 모체를 도핑하기 위한 활성제로서 Dy, Sm, Nd, Tm, Pr 및 Sc 중에서 선택된 희토류 금속 화합물이 사용된다.In the production process of the precursor solution for producing the phosphor particles of the present invention, an yttrium compound, a gadolinium compound or a europium compound is used as a matrix of the phosphor powder, and Dy, Sm, Nd, Tm as an activator for doping the matrix. Rare earth metal compounds selected from Pr and Sc are used.

상기 전구체 물질들은 물, 알코올 또는 약산에 용해시켜 사용되며, 쉽게 용해되도록 질산염, 초산염, 염화물, 수화물, 산화물 또는 탄산염의 형태가 바람직하며, 사용량은 화학식 1의 조건을 만족하도록 적절히 조절될 수 있다.The precursor materials are used by dissolving in water, alcohol or weak acid, and are preferably in the form of nitrate, acetate, chloride, hydrate, oxide or carbonate so that they are easily dissolved, and the amount of the precursor material may be appropriately adjusted to satisfy the condition of Chemical Formula 1.

본 발명에서는 생성된 액적내에 고분자 물질을 생성시키기 위해 서로 에스테르화 반응을 일으킬 수 있는 구연산 및 에틸렌글리콜을 첨가함을 특징으로 하며, 이들은 각각 용매, 예를 들면 증류수에 용해시킨 용액을 상기 전구체 물질들의 혼합 용액에 함께 혼합되어 사용된다.The present invention is characterized in that citric acid and ethylene glycol, which can cause an esterification reaction, are added to produce a polymer material in the resulting droplets, which are each dissolved in a solvent such as distilled water. It is used mixed with the mixed solution.

형광체 모체로서의 이트륨 화합물, 가돌리늄 화합물 또는 유로피움 화합물; 활성제로서 Dy, Sm, Nd, Tm, Pr 및 Sc 중에서 선택된 희토류 금속 화합물; 및 구연산 및 에틸렌 용액을 포함하는 상기 전구체 용액의 총 농도는 0.02 내지 2M의 범위가 바람직하며, 이 농도에 따라 형광체 입자의 크기가 결정된다. 상기 농도가 0.02M 미만인 경우에는 형광체 분말의 생산성이 저하되고, 2M 이상인 경우에는 분무하기가 어렵다. 또한, 생성된 형광체의 발광 휘도를 증가시키기 위해, 일반적인 형광체 합성 공정에서 사용되는 통상의 융제를 상기 분무 용액에 첨가할 수 있으며, 대표적인 예로는 알칼리 금속의 염화물, 탄산염 또는 인산염이 있다.Yttrium compound, gadolinium compound, or europium compound as a phosphor matrix; Rare earth metal compounds selected from among Dy, Sm, Nd, Tm, Pr and Sc as active agents; And the total concentration of the precursor solution including citric acid and ethylene solution is preferably in the range of 0.02 to 2M, the size of the phosphor particles is determined according to this concentration. When the said concentration is less than 0.02 M, productivity of fluorescent substance powder falls, and when it is 2 M or more, it is difficult to spray. In addition, in order to increase the luminescence brightness of the resulting phosphors, conventional fluxes used in common phosphor synthesis processes can be added to the spray solution, for example, chlorides, carbonates or phosphates of alkali metals.

구연산 및 에틸렌글리콜을 부가하지 않고 이트륨 화합물, 가돌리늄 화합물, 유로피움 화합물 및 희토류 금속 화합물로만 구성되며 분무열분해 공정에 의해 제조된 종래의 형광체 분말들은, 속이 빈 다공성 형태를 가지므로 연속되는 고온의 열처리 공정에서 구형의 형상이 깨지기 쉬운 단점을 가진다. 이와는 달리, 본원발명의 방법에 따라 전구체 혼합용액에 구연산 및 에틸렌글리콜 용액을 첨가하여 제조하는 경우에는 수득된 분말들이 속이 채워진 형태를 가지므로 연속되는 고온의 열처리 후에도 구형의 형상을 유지할 수 있으며, 형광체의 표면 형태가 좋아지고 우수한 발광휘도를 가질 수 있다.Conventional phosphor powders composed only of yttrium compound, gadolinium compound, europium compound and rare earth metal compound without addition of citric acid and ethylene glycol, and prepared by spray pyrolysis process, have a hollow porous form and thus have a continuous high temperature heat treatment process. The disadvantage is that the spherical shape is fragile. On the contrary, when the citric acid and the ethylene glycol solution is added to the precursor mixture solution according to the present invention, the obtained powders have a filled shape, so that the spherical shape can be maintained even after continuous high temperature heat treatment. The surface shape of the is better and can have an excellent light emission luminance.

이때 구연산과 에틸렌글리콜의 첨가량, 그리고 활성제 금속(M)의 혼합비가 적색 형광체 분말의 형태 조절 및 발광 휘도에 있어 매우 중요하며, 본 발명에 있어서는 고온의 열처리 공정 후에도 구형의 형상을 유지하면서 최적의 발광 특성을 나타내는 구연산, 에틸렌글리콜 그리고 활성제 금속(M)의 적절한 첨가량과 혼합비를 구하였다. 즉, 분무용액 제조시 첨가되는 상기 구연산 및 에틸렌글리콜 용액의 바람직한 농도는 0.01 내지 5M이며, 이들 각각의 농도가 0.01M 보다 낮은 경우에는 속인 꽉 찬 형태의 구형 형광체 입자를 형성하기 어렵고, 5M 보다 높은 경우에는 분무 용액의 점도가 높아져 분무가 어려워진다.At this time, the addition amount of citric acid and ethylene glycol and the mixing ratio of the activator metal (M) are very important for the shape control of the red phosphor powder and the luminescence brightness. In the present invention, optimal luminescence is maintained while maintaining the spherical shape even after a high temperature heat treatment process. Appropriate addition amounts and mixing ratios of citric acid, ethylene glycol and activator metal (M) exhibiting characteristics were determined. That is, the preferred concentrations of the citric acid and ethylene glycol solution added in the preparation of the spray solution is 0.01 to 5M, when each of these concentrations is lower than 0.01M it is difficult to form a solid spherical phosphor particles, which is higher than 5M In this case, the viscosity of the spray solution becomes high, making spraying difficult.

도 1은 분무열분해 공정 장치의 모식도이다. 상기 분무열분해 공정 장치는 초음파 액적 발생기(1), 액적의 건조 및 열분해를 위한 관형 반응기(2), 입자 회수를 위한 필터(3) 등으로 구성된다. 초음파 액적 발생기(1)에 의해 생성되는 수 마이크론 크기의 액적들은 운반기체에 의해 반응기(2) 내부로 운반되고, 건조 및 열분해 과정을 거쳐 구형의 전구체 분말이 수득된다.1 is a schematic view of a spray pyrolysis process apparatus. The spray pyrolysis processing apparatus includes an ultrasonic droplet generator 1, a tubular reactor 2 for drying and pyrolyzing droplets, a filter 3 for particle recovery, and the like. Droplets of several micron size produced by the ultrasonic droplet generator 1 are transported into the reactor 2 by a carrier gas, and spherical precursor powder is obtained by drying and pyrolysis.

<액적의 분무><Spray of droplets>

상기에서 수득된 전구체 용액은 분무장치를 이용하여 액적으로 분무되며, 상기 액적의 직경은 0.1∼100 ㎛ 범위를 가지는 것이 바람직하다. 액적의 직경이 0.1㎛ 미만인 경우에는 생성되는 형광체 입자의 크기가 너무 작고, 100㎛ 보다 큰 경우에는 형광체 입자의 크기가 너무 크다.The precursor solution obtained above is sprayed onto the droplets using a spray apparatus, and the diameter of the droplets preferably ranges from 0.1 to 100 µm. If the diameter of the droplet is less than 0.1 mu m, the size of the resulting phosphor particles is too small, and if larger than 100 mu m, the size of the phosphor particles is too large.

상기 분무장치로는 초음파 분무장치, 공기노즐 분무장치, 초음파노즐 분무장치, 필터 팽창 액적 발생장치(filter expansion aerosol generator, FEAG), 정전 분무장치 등이 사용될 수 있다. 상기 초음파 분무장치와 FEAG는 고농도에서 서브(sub) 마이크론 크기의 미세한 형광체 분말의 제조가 가능하고, 공기노즐과 초음파노즐은 마이크론에서 서브마이크론 크기의 입자들을 대량으로 생산할 수 있다. 또한, 생성된 형광체 분말의 형태를 조절하기 위해서는 수 마이크론 크기의 미세 액적을 발생시킬 수 있는 초음파 액적 발생장치가 보다 적합하다.The spray apparatus may be an ultrasonic spray apparatus, an air nozzle spray apparatus, an ultrasonic nozzle spray apparatus, a filter expansion aerosol generator (FEAG), an electrostatic spray apparatus, or the like. The ultrasonic nebulizer and the FEAG can produce fine phosphor powder having a sub-micron size at a high concentration, and the air nozzle and the ultrasonic nozzle can produce a large amount of submicron-sized particles at the micron. In addition, to control the shape of the resulting phosphor powder, an ultrasonic droplet generator capable of generating fine droplets of several microns in size is more suitable.

<형광체 분말의 생성><Production of Phosphor Powder>

상기 액적 발생장치로부터 생성된 미세 액적은 고온의 관형 반응기에서 형광체 입자의 전구 물질로 전환된다. 이때, 반응 전기로의 온도는 전구체 물질들을 건조시킬 수 있는 범위인 200 내지 1500℃가 바람직하다. 이렇게 건조 열처리된 형광체 입자는 충분한 결정 성장 및 구형의 형상을 유지할 수 있도록 2차 열처리될 수 있으며, 이때 열처리 온도는 800 내지 1500℃, 바람직하게는 900 내지 1250℃에서 1 내지 5시간 동안 수행되는 것이 바람직하다.Fine droplets generated from the droplet generator are converted into precursors of phosphor particles in a hot tubular reactor. At this time, the temperature of the reaction furnace is preferably 200 to 1500 ℃ range that can dry the precursor materials. The phosphor particles thus dry-heat-treated may be subjected to secondary heat treatment to maintain sufficient crystal growth and spherical shape, wherein the heat treatment temperature is performed at 800 to 1500 ° C, preferably at 900 to 1250 ° C for 1 to 5 hours. desirable.

본 발명의 방법에 따라, 이트륨 가돌리늄계 형광체에 활성제로서 Dy, Sm, Nd, Tm, Pr 또는 Sc와 같은 희토류 금속을 첨가하고 전구체 용액 제조시에 에틸렌글리콜과 구연산을 함께 첨가함으로써 제조된 본 발명의 (Y1-a-b-cGdaEubMc)2O3적색 형광체는 고온의 열처리 공정에서도 안정하여 구형의 형상을 유지할 수 있고, 진공자외선 하에서 우수한 발광 휘도를 나타내며, 특히 PDP용 디스플레이의 고발광 적색 형광체로서 적합하다.According to the method of the present invention, a rare earth metal such as Dy, Sm, Nd, Tm, Pr or Sc is added to the yttrium gadolinium-based phosphor as an activator and ethylene glycol and citric acid are added together to prepare a precursor solution. The (Y 1-abc Gd a Eu b M c ) 2 O 3 red phosphor is stable even in a high temperature heat treatment process to maintain a spherical shape, and exhibits excellent luminescence brightness under vacuum ultraviolet rays, and particularly high emission red color of a PDP display. It is suitable as a phosphor.

본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.The invention can be better understood by the following examples, which are intended for the purpose of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.

실시예Example

본 발명에서는 액적 발생장치에서 액적 발생 부위인 진동자를 30개 이상 나란히 연결하고, 이러한 액적 발생장치들을 병렬로 연결하여 사용하였다. 이에 따라, 시간당 수십ℓ의 액적을 발생시킬 수 있으며, 분무열분해법에 의한 형광체 분말의 상업적 대량생산이 가능하다. 또한 종래의 초음파 액적 발생장치들은 진동자와 용액이 직접 접촉되는 반면, 본 발명에서는 용액과 진동자간의 접촉을 막기 위해 고분자 필름, 예를 들면 폴리아세탈 필름 차단막을 이용하였으며, 구체적으로, 전구체 용액을 담기 위한 용기를 유리나 아크릴로 제작하고 그 밑면에 폴리아세탈 필름을 부착하였다. 이러한 고분자 필름은 액적의 분무가 잘 수행되도록 하며 초음파의 진동에 매우 안정하여 반영구적으로 사용될 수 있다.In the present invention, at least 30 vibrators, which are droplet generation sites, are connected side by side in the droplet generator, and these droplet generators are connected in parallel. Accordingly, it is possible to generate dozens of droplets per hour, and commercial mass production of phosphor powder by spray pyrolysis is possible. In addition, while the conventional ultrasonic droplet generator is in direct contact with the vibrator and the solution, in the present invention, a polymer film, for example, a polyacetal film blocking film is used to prevent contact between the solution and the vibrator, specifically, to contain the precursor solution The vessel was made of glass or acrylic and a polyacetal film was attached to the bottom thereof. Such a polymer film can be used to semi-permanently because the spray of the droplets is performed well and is very stable to the vibration of the ultrasonic wave.

실시예 1: (Y0.38Gd0.57Dy0.0004)2O3:Eu0.05형광체의 제조Example 1 Preparation of (Y 0.38 Gd 0.57 Dy 0.0004 ) 2 O 3 : Eu 0.05 Phosphor

원료물질로서, 이트륨(Y), 가돌리늄(Gd), 디스프로슘(Dy) 및 유로피움(Eu) 각각의 질산염에 구연산과 에틸렌글리콜 용액을 각각 0.2M 씩 균일하게 혼합하여 농도가 0.5M이 되도록 분무 용액을 제조하였다. 이때, 전구체 용액의 총 농도가 0.5M이 되도록, 증류수 100㎖에 이트리움 질산염 7.28g, 가돌리늄 질산염 12.86g, 디스프로슘 질산염 0.008g, 유로피움 질산염 0.88g, 구연산 4.20g 및 에틸렌글리콜 1.24g을 각각 용해시킨 후 혼합하였다.As a raw material, a spray solution is prepared by uniformly mixing citric acid and ethylene glycol solution in 0.2M each of nitrates of yttrium (Y), gadolinium (Gd), dysprosium (Dy) and europium (Eu), so that the concentration is 0.5M. Was prepared. At this time, 7.28 g of yttrium nitrate, 12.86 g of gadolinium nitrate, 0.008 g of dysprosium nitrate, 0.88 g of citrate nitrate, 4.20 g of citric acid and 1.24 g of ethylene glycol were dissolved in 100 ml of distilled water so that the total concentration of the precursor solution was 0.5 M. And then mixed.

생성 용액을 초음파 액적 발생장치에 넣고 1∼10 마이크론 정도의 미세한 액적으로 발생시켰다. 발생된 액적들을 반응기 온도 800℃에서 건조 및 열분해시켜 미세한 분말로 변환시키고, 이렇게 수득된 형광체 입자를 알루미나 보트에 넣고 공기를 45ℓ/min으로 흘려주면서 공기 분위기하에서 1150℃에서 3시간 동안 열처리 한 후 디스프로슘(Dy)의 도핑량이 0.0004인 형광체 입자를 제조하였다. 이 입자의 전자현미경 사진을 도 2에 나타내었다.The resulting solution was placed in an ultrasonic droplet generating device and generated as droplets of about 1 to 10 microns. The resulting droplets were dried and pyrolyzed at a reactor temperature of 800 ° C. to be converted into fine powders. The phosphor particles thus obtained were placed in an alumina boat and heat-treated at 1150 ° C. for 3 hours while flowing air at 45 L / min, followed by dysprosium. Phosphor particles having a doping amount of (Dy) of 0.0004 were prepared. An electron micrograph of this particle is shown in FIG. 2.

비교예 1: (Y0.38Gd0.57)2O3:Eu0.05형광체의 제조Comparative Example 1: Preparation of (Y 0.38 Gd 0.57 ) 2 O 3 : Eu 0.05 phosphor

원료물질로서, 디스프로슘(Dy)을 사용하지 않은 것을 제외하고는, 실시예 1 과 동일한 방법에 의해 표제 화합물을 제조하였으며, 이 입자의 전자현미경 사진을 도 3에 도시하였다.The title compound was prepared in the same manner as in Example 1, except that Dysprosium (Dy) was not used as a starting material, and an electron micrograph of the particle is shown in FIG. 3.

비교예 2: (Y0.38Gd0.57)2O3:Eu0.05형광체의 제조Comparative Example 2: Preparation of (Y 0.38 Gd 0.57 ) 2 O 3 : Eu 0.05 phosphor

분무 용액 제조시 구연산 및 에틸렌글리콜을 첨가하지 않은 것을 제외하고는, 비교예 1과 동일한 방법으로 표제 화합물을 제조하였으며, 이 입자의 전자현미경 사진을 도 4에 도시하였다.The title compound was prepared in the same manner as in Comparative Example 1, except that citric acid and ethylene glycol were not added when preparing the spray solution, and an electron micrograph of the particles is shown in FIG. 4.

도 2, 도 3 및 도 4으로부터, 활성제로서 희토류 금속을 도핑하고, 분무 용액 제조시 구연산 및 에틸렌글리콜을 첨가하여 제조된 본 발명의 형광체(실시예 1)는 열처리 후에도 구형의 형태를 그대로 유지할 수 있다. 도 3에 도시된, 희토류 금속을 도핑하지 않고 전구체 용액 제조시 고분자를 첨가한 형광체(비교예 1)도 전반적으로 구형의 형상을 가지나, 본 발명의 형광체(실시예 1)가 구형의 형상이 훨씬 완벽함을 알 수 있다. 또한, 비교예 1의 형광체와 동일한 조성을 가지나 구연산 및 에틸렌글리콜을 첨가하지 않아 고분자를 함유하지 않은 형광체(비교예 2)는 속이 비거나 깨진 형태를 가진다.2, 3 and 4, the phosphor of the present invention (Example 1) prepared by doping the rare earth metal as an activator and adding citric acid and ethylene glycol in the preparation of the spray solution can maintain the spherical shape even after heat treatment. have. The phosphor (Comparative Example 1) to which the polymer is added when preparing the precursor solution without doping the rare earth metal shown in FIG. 3 also has a generally spherical shape, but the phosphor of the present invention (Example 1) has a much more spherical shape. You can see perfection. In addition, phosphors having the same composition as the phosphor of Comparative Example 1 but not containing a polymer due to the addition of citric acid and ethylene glycol (Comparative Example 2) have a hollow or broken form.

비교예 3: (Y0.38Gd0.57)2O3:Eu0.05형광체의 제조Comparative Example 3: Preparation of (Y 0.38 Gd 0.57 ) 2 O 3 : Eu 0.05 phosphor

분무 용액 제조시, 구연산 및 에틸렌글리콜 수용액을 첨가하지 않은 것을 제외하고는, 실시예 1과 동일한 방법에 의해 표제 화합물을 제조하였다.In preparing the spray solution, the title compound was prepared in the same manner as in Example 1, except that citric acid and an aqueous solution of ethylene glycol were not added.

실시예 2: (Y0.38Gd0.57Sm0.0004)2O3:Eu0.05형광체의 제조Example 2 Preparation of (Y 0.38 Gd 0.57 Sm 0.0004 ) 2 O 3 : Eu 0.05 Phosphor

활성제 성분으로서 디스프로슘(Dy) 대신에 사마륨(Sm)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 의해 표제 화합물을 제조하였다.The title compound was prepared in the same manner as in Example 1, except that samarium (Sm) was used instead of dysprosium (Dy) as the active ingredient.

실시예 3: (Y0.38Gd0.57Nd0.0004)2O3:Eu0.05형광체의 제조Example 3: Preparation of (Y 0.38 Gd 0.57 Nd 0.0004 ) 2 O 3 : Eu 0.05 phosphor

활성제 성분으로서 디스프로슘(Dy) 대신에 네오디뮴(Nd)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 의해 표제 화합물을 제조하였다.The title compound was prepared in the same manner as in Example 1, except that neodymium (Nd) was used instead of dysprosium (Dy) as the active ingredient.

실시예 4: (Y0.38Gd0.57Tm0.0004)2O3:Eu0.05형광체 분말의 제조Example 4 Preparation of (Y 0.38 Gd 0.57 Tm 0.0004 ) 2 O 3 : Eu 0.05 Phosphor Powder

활성제 성분으로서 디스프로슘(Dy) 대신에 툴륨(Tm)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 의해 표제 화합물을 제조하였다.The title compound was prepared in the same manner as in Example 1, except that thulium (Tm) was used instead of dysprosium (Dy) as the active ingredient.

실시예 5: (Y0.38Gd0.57Pr0.0004)2O3:Eu0.05형광체의 제조Example 5: Preparation of (Y 0.38 Gd 0.57 Pr 0.0004 ) 2 O 3 : Eu 0.05 phosphor

활성제 성분으로서 디스프로슘(Dy) 대신에 프라세오디뮴(Pr)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 의해 표제 화합물을 제조하였다.The title compound was prepared in the same manner as in Example 1, except that praseodymium (Pr) was used instead of dysprosium (Dy) as the active ingredient.

실시예 6: (Y0.38Gd0.57Sc0.0004)2O3:Eu0.05형광체의 제조Example 6: Preparation of (Y 0.38 Gd 0.57 Sc 0.0004 ) 2 O 3 : Eu 0.05 phosphor

활성제 성분으로서 디스프로슘(Dy) 대신에 스칸듐(Sc)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 의해 표제 화합물을 제조하였다.The title compound was prepared in the same manner as in Example 1, except that scandium (Sc) was used instead of dysprosium (Dy) as the active ingredient.

시험예 1: 발광 특성Test Example 1: Luminescent Properties

실시예 및 비교예에서 제조한 형광물질들을 이용하여, 파장이 500 내지 700nm인 진공 자외선 영역하에서의 발광 스펙트럼을 각각 도 5 및 도 6에 나타내었다.Using the fluorescent materials prepared in Examples and Comparative Examples, the emission spectra under the vacuum ultraviolet region having a wavelength of 500 to 700 nm are shown in FIGS. 5 and 6, respectively.

상기 실시예 1 내지 4에서 각각 수득된 형광체들이 최적의 발광 휘도를 나타내는 부활제 성분들의 도핑 농도는 각각 디스프로슘(Dy) 0.0001M, 사마륨(Sm) 0.0008M, 네오디뮴(Nd) 0.0001M, 툴륨(Tm) 0.002M 이었다.The doping concentrations of the activator components of the phosphors obtained in Examples 1 to 4, respectively, exhibiting optimal emission luminances were 0.0001M of dysprosium (Dy), 0.0008M of samarium (Sm), 0.0001M of neodymium (Nd), and thulium (Tm), respectively. ) 0.002M.

도 5의 발광 스펙트럼에서, 부활제 성분인 디스프로슘(Dy) 및 사마륨(Sm)을 도핑하고, 분무 용액 제조시 구연산 및 에틸렌글리콜을 첨가하여 고분자를 포함하는 형광체(실시예 1 및 2)는 부활제 성분이 도핑되지 않은 형광체(비교예 1)에 비해 휘도가 50% 이상 증가하였음을 알 수 있다. 그리고 부활제 성분은 포함하나 고분자를 포함하지 않는 형광체(비교예 3)에 비해 발광휘도는 25% 정도 증가하였다. 이는 고분자 성분이 포함된 형광체 분말들은 내부가 충진되고 치밀한 구조를 가지므로 형광체의 발광 강도를 저하시키는 표면의 결함들이 많이 감소했기 때문이며, 이러한 고휘도의 구형 형광체 분말들은 실제로 디스플레이 또는 램프에 적용될 경우 보다 더 우수한 특성을 나타낸다.In the emission spectrum of FIG. 5, the phosphors containing polymers (Examples 1 and 2) were doped with doping agent dysprosium (Dy) and samarium (Sm), and citric acid and ethylene glycol were added to prepare a spray solution. It can be seen that the luminance is increased by 50% or more compared with the phosphor that is not doped with the component (Comparative Example 1). In addition, the luminescence brightness was increased by 25% compared to the phosphor containing the activator but not containing the polymer (Comparative Example 3). This is because the phosphor powders containing the polymer component are filled inside and have a dense structure, so that defects on the surface which reduce the emission intensity of the phosphors are reduced a lot, and such high brightness spherical phosphor powders are more effective than when actually applied to a display or a lamp. Excellent properties.

도 6에 도시된 바와 같이, 원료물질로서 활성제 성분인 네오디뮴(Nd) 및 툴륨(Tm)을 첨가한 경우(실시예 3 및 4)에는 첨가하지 않은 경우(비교예 1)에 비해 발광세기가 각각 47% 및 53% 증가하였다. 활성제 도핑 물질로서 Pr 및 Sc을 첨가한 경우(실시예 5 및 6)에도, 첨가하지 않은 경우에 비해 진공자외선 하에서 발광 세기가 각각 17% 정도 증가하였으나, Dy, Sm, Nd 및 Tm를 첨가한 경우 만큼 증가하지는 않았다. As shown in FIG. 6, the luminescence intensity of each of the active ingredients neodymium (Nd) and thulium (Tm) was added (Examples 3 and 4) as compared with those without addition (Comparative Example 1), respectively. 47% and 53% increase. Even when Pr and Sc were added as active agent doping materials (Examples 5 and 6), the luminescence intensity increased by about 17% under vacuum ultraviolet rays, respectively, compared with the case without addition, but when Dy, Sm, Nd, and Tm were added. It did not increase as much.

상술한 바와 같이, 본 발명의 이트륨 가돌리늄계 적색 형광체는 활성물질로서 디스프로슘(Dy), 사마륨(Sm), 네오디뮴(Nd), 툴륨(Tm), 프라세오디뮴(Pr) 또는 스칸듐(Sc)이 첨가됨으로써 진공 자외선 영역에서 높은 흡수 피크를 나타내고, 특히 내부에 고분자 물질을 포함함으로써 고온의 열처리 공정에서도 안정하여 구형의 형상을 유지할 수 있어, 종래의 적색 형광체에 비해 월등히 우수한 발광휘도를 가지기 때문에 PDP용 디스플레이의 고효율 적색 형광물질로 적용될 수 있다.As described above, the yttrium gadolinium-based red phosphor of the present invention is vacuum by adding dysprosium (Dy), samarium (Sm), neodymium (Nd), thulium (Tm), praseodymium (Pr) or scandium (Sc) as active materials. It exhibits high absorption peak in the ultraviolet region, and in particular, by including a polymer material therein, it is stable even in a high temperature heat treatment process and maintains a spherical shape, and has a much superior luminous luminance compared to a conventional red phosphor. It can be applied as a red phosphor.

Claims (8)

하기 화학식 1의 적색 발광 형광체:Red light emitting phosphor of formula (I): 화학식 1Formula 1 (Y1-a-b-cGdaEubMc)2O3 (Y 1-abc Gd a Eu b M c ) 2 O 3 상기 식에서, M은 Dy, Sm, Nd, Tm, Pr 및 Sc 중에서 선택된 희토류 금속이고, 0≤a<1, 0.005≤b≤0.2, 0.00001≤c≤0.1 이다.In the above formula, M is a rare earth metal selected from Dy, Sm, Nd, Tm, Pr, and Sc, and 0 ≦ a <1, 0.005 ≦ b ≦ 0.2, 0.00001 ≦ c ≦ 0.1. 이트륨(Y) 화합물; 가돌리늄(Gd) 화합물; 유로피움(Eu) 화합물; 디스프로슘(Dy), 사마륨(Sm), 네오디뮴(Nd), 툴륨(Tm), 프라세오디뮴(Pr) 및 스칸듐(Sc) 중에서 선택된 희토류 금속 화합물; 및 구연산과 에틸렌글리콜을 용매에 용해시킨 후, 생성된 전구체 혼합 용액을 액적 발생 장치를 이용하여 미세 액적으로 분무하면서 반응기 온도 300 내지 1500℃에서 건조 및 열처리하여 형광체 분말을 합성하고, 합성된 형광체 분말을 800 내지 1500℃에서 1 내지 5 시간 동안 열처리하는 것을 포함하는, 하기 화학식 1의 진공 자외선용 이트륨 가돌리늄계 적색 발광 형광체의 제조방법:Yttrium (Y) compounds; Gadolinium (Gd) compounds; Europium (Eu) compounds; Rare earth metal compounds selected from dysprosium (Dy), samarium (Sm), neodymium (Nd), thulium (Tm), praseodymium (Pr), and scandium (Sc); And dissolving citric acid and ethylene glycol in a solvent, and then spraying the resulting precursor mixed solution into fine droplets using a droplet generating apparatus to dry and heat treatment at a reactor temperature of 300 to 1500 ° C. to synthesize phosphor powder, and synthesized phosphor powder. Method for producing a yttrium gadolinium-based red light emitting phosphor for vacuum ultraviolet rays of the formula (1) comprising the heat treatment for 1 to 5 hours at 800 to 1500 ℃: 화학식 1Formula 1 (Y1-a-b-cGdaEubMc)2O3 (Y 1-abc Gd a Eu b M c ) 2 O 3 상기 식에서, M은 Dy, Sm, Nd, Tm, Pr 및 Sc 중에서 선택된 희토류 금속이고,0≤a<1, 0.005≤b≤0.2, 0.00001≤c≤0.1 이다.Wherein M is a rare earth metal selected from Dy, Sm, Nd, Tm, Pr and Sc, and 0 ≦ a <1, 0.005 ≦ b ≦ 0.2, 0.00001 ≦ c ≦ 0.1. 제2항에 있어서,The method of claim 2, 이트륨, 가돌리늄, 유로피움 또는 희토류 금속 화합물이 각각의 질산염, 초산염, 염화물, 산화물 또는 탄산염임을 특징으로 하는 방법.The yttrium, gadolinium, europium or rare earth metal compound is the respective nitrate, acetate, chloride, oxide or carbonate. 제2항에 있어서,The method of claim 2, 전구체 혼합 용액의 총 농도가 0.02 내지 2M임을 특징으로 하는 방법.Characterized in that the total concentration of the precursor mixed solution is from 0.02 to 2M. 제2항에 있어서,The method of claim 2, 구연산 및 에틸렌글리콜 용액의 농도가 각각 0.01 내지 0.5M임을 특징으로 하는 방법.The concentration of citric acid and ethylene glycol solution is 0.01 to 0.5M respectively. 제2항에 있어서,The method of claim 2, 미세 액적의 직경이 0.1 내지 100㎛임을 특징으로 하는 방법.The diameter of the fine droplets is characterized in that 0.1 to 100㎛. 제2항에 있어서,The method of claim 2, 액적 발생 장치가 초음파, 공기노즐, 초음파노즐, 정전 분무장치 및 필터팽창 액적 발생 장치로 이루어진 군중에서 선택된 것임을 특징으로 하는 방법.And wherein the droplet generating device is selected from the group consisting of an ultrasonic wave, an air nozzle, an ultrasonic nozzle, an electrostatic spraying device, and a filter expanding droplet generating device. 제1항의 이트륨 가돌리늄계 적색 형광체를 발광층에 포함하는, 플라즈마 디스플레이 또는 발광 램프.A plasma display or a light emitting lamp comprising the yttrium gadolinium-based red phosphor of claim 1 in a light emitting layer.
KR10-2002-0028890A 2002-05-24 2002-05-24 Red-emitting phosphor for vacuum ultraviolet and a preparation method thereof KR100451671B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0028890A KR100451671B1 (en) 2002-05-24 2002-05-24 Red-emitting phosphor for vacuum ultraviolet and a preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0028890A KR100451671B1 (en) 2002-05-24 2002-05-24 Red-emitting phosphor for vacuum ultraviolet and a preparation method thereof

Publications (2)

Publication Number Publication Date
KR20030090983A true KR20030090983A (en) 2003-12-01
KR100451671B1 KR100451671B1 (en) 2004-10-08

Family

ID=32384250

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0028890A KR100451671B1 (en) 2002-05-24 2002-05-24 Red-emitting phosphor for vacuum ultraviolet and a preparation method thereof

Country Status (1)

Country Link
KR (1) KR100451671B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152587A (en) * 2019-03-18 2020-09-24 一般財団法人ファインセラミックスセンター Method of producing ceramic powder, ceramic powder, and method of producing ceramic dense body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313783A (en) * 1988-06-14 1989-12-19 Philips Kk Measuring circuit for capacity of battery
JP2002256262A (en) * 2001-03-02 2002-09-11 Kasei Optonix Co Ltd Rare earth oxide fluorescent substance for vacuum ultraviolet light excitation, fluorescent substance paste composition and vacuum ultraviolet light excitation light-emitting device
KR100419859B1 (en) * 2001-03-23 2004-02-25 한국화학연구원 Preparation method of red phosphor particles with spherical shape
KR100481618B1 (en) * 2002-04-22 2005-04-08 한국화학연구원 Preparation method of a nano-size red phosphor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152587A (en) * 2019-03-18 2020-09-24 一般財団法人ファインセラミックスセンター Method of producing ceramic powder, ceramic powder, and method of producing ceramic dense body

Also Published As

Publication number Publication date
KR100451671B1 (en) 2004-10-08

Similar Documents

Publication Publication Date Title
US6660186B2 (en) Method of making blue emitting aluminate phosphor for VUV excited light emitting device
KR100458126B1 (en) Green-emitting phosphor for long wavelength ultraviolet and a preparation method thereof
KR20030051345A (en) Method for producing silicate phosphor
KR101109123B1 (en) Synthetic method of red emitting gallate phosphors with high color purity
KR100481618B1 (en) Preparation method of a nano-size red phosphor
KR100451671B1 (en) Red-emitting phosphor for vacuum ultraviolet and a preparation method thereof
KR20010038293A (en) Process for Preparing Oxidized Phosphor Particles by Spray Pyrolysis Employing Flux
US20090075082A1 (en) Method for preparing nanophosphor from metal hydroxy carbonate and nanophosphor prepared by the method
KR100785089B1 (en) The blue phosphor of cacium strontium magnesium silicate and preparation method thereof
JP2000336353A (en) Production of fluorescent aluminate
KR100419859B1 (en) Preparation method of red phosphor particles with spherical shape
KR100390775B1 (en) Preparation of red phosphor particles for PDP by spray pyrolysis
KR100492521B1 (en) An improved method for preparing aluminate phosphor particles
KR100398060B1 (en) Process for preparing of blue emitting phosphor particles by optimizing the precursor materials using spray pyrolysis
KR20020084502A (en) Preparation method of blue and green emitting aluminate phosphor particles
KR100469214B1 (en) Spherical green phosphor particles with short decay time and method for preparing same
JP2004256763A (en) Method for producing phosphor
KR100394078B1 (en) Preparation method of halophosphate type phosphor particles by spray pyrolysis
KR100496046B1 (en) Silicate phosphor and a preparation method thereof
KR100309706B1 (en) Process for Preparing Aluminate Phosphor Particles by Spray Pyrolysis
JP4373670B2 (en) Method for manufacturing vacuum ultraviolet-excited luminescent material and method for manufacturing plasma display panel
DE60207906T2 (en) fluorescent
KR100486964B1 (en) Process for preparing blue phosphors for plasma display panel having improved thermal degradation characteristics
KR100376277B1 (en) Process for Preparing (YxGd1-x)2O3:Eu Phosphor Particles with monoclinic and cubic phases by Flame Spray Pyrolysis
KR100496051B1 (en) Europium activated yttrium gadolinium borate phosphors and a preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130625

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee