KR20030089287A - Semiconductor Coplanar Transmission Device for the Generation and Detection of Ultrafast Electrical Signals - Google Patents

Semiconductor Coplanar Transmission Device for the Generation and Detection of Ultrafast Electrical Signals Download PDF

Info

Publication number
KR20030089287A
KR20030089287A KR1020020027439A KR20020027439A KR20030089287A KR 20030089287 A KR20030089287 A KR 20030089287A KR 1020020027439 A KR1020020027439 A KR 1020020027439A KR 20020027439 A KR20020027439 A KR 20020027439A KR 20030089287 A KR20030089287 A KR 20030089287A
Authority
KR
South Korea
Prior art keywords
layer
compound semiconductor
semiconductor
gaas
semiconductor layer
Prior art date
Application number
KR1020020027439A
Other languages
Korean (ko)
Other versions
KR100490021B1 (en
Inventor
조신호
Original Assignee
조신호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조신호 filed Critical 조신호
Priority to KR10-2002-0027439A priority Critical patent/KR100490021B1/en
Publication of KR20030089287A publication Critical patent/KR20030089287A/en
Application granted granted Critical
Publication of KR100490021B1 publication Critical patent/KR100490021B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE: A semiconductor co-planer type transmission apparatus for generating and detecting ultrafast electric pulse is provided to be capable of easily handling the apparatus and improving the stability of the microwave electric pulse without a high concentration ion implanting process. CONSTITUTION: A semiconductor co-planer type transmission apparatus is provided with a semi-insulating compound semiconductor substrate(1), a compound semiconductor layer(2) deposited on the substrate at the temperature of 200-300 °C, an N+ GaAs layer(3) and an ohmic contact Ni/Ge/Au layer(4) sequentially deposited on the compound semiconductor layer, and a Ti/Au layer(6) selectively deposited at the upper portion of the resultant structure. Preferably, the compound semiconductor layer is made of a GaAs, InP, and CdTe layer.

Description

극초단의 전기펄스를 발생 및 검출하는 반도체 코플레이너 전송 장치 {Semiconductor Coplanar Transmission Device for the Generation and Detection of Ultrafast Electrical Signals}Semiconductor Coplanar Transmission Device for the Generation and Detection of Ultrafast Electrical Signals

본 발명은 극초단 (10-12 ∼ 10-15 sec)의 전기 신호를 발생 및 검출하는 반도체 전송 장치에 관한 것으로, 보다 상세하게는 두 개의 평행한 전송 선로로 구성되는 코플레이너 구조에서 전기 펄스를 발생 및 검출하는 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor transmission device for generating and detecting ultra-short (10-12 to 10-15 sec) electrical signals, and more particularly to electrical pulses in a coplanar structure consisting of two parallel transmission lines. It relates to a device for generating and detecting.

최근에 급속히 발달되고 있는 초고속 정보통신의 기술로 인하여 초고속 현상, 초미세 구조와 극미량 성분의 분석에 적합한 극초단 펄스에 대한 필요성이 요구되고 있다. 특히, 통신과 컴퓨터 시스템에 응용되는 멀티플렉서, 디멀티플렉서, 클럭, 데이터 발생기, 고전자이동도 트랜지스터 (HEMT), 이종접합 쌍극성 트랜지스터 (HBT)와 같은 소자의 속도는 수백 GHz 영역으로 확장되고 있고, 물질을 원자나 분자 수준에서 조작하고 제어하는 나노기술의 개발로 인하여 나노물질의 반응과 움직임을 정확하게 측정하고 차세대 산업용 극미세장치 (MEMS)를 개발하기 위해서는 새로운 영역의 전자파가 필요하다. 종래에는 이용 가능한 광원과 재료의 제한성 때문에 극초단의 펄스가 제공되지 못하였다. 이러한 이유로 인해 그 동안 초고속 반도체 소자와 밀리미터파 집적회로의 경우에 산란 변수 (scattering parameter) 값의 측정은 마이크로파 영역에서 측정을 기초로 하여 소신호 모델의 외삽 (extrapolation)으로 계산하기 때문에 상당한 오차와 신뢰성의 문제를 발생하였다. 이에 대한 해결책으로, 최근 개발된 동기잠금 (mode-lock) 레이저와 광전도 물질을 사용하는 테라헬쯔의 분해능을 갖는 광원을 개발하려는 노력이 시도되고 있다.Recently, due to the rapid development of ultra-high speed information and communication technology, there is a need for ultra-short pulses suitable for the analysis of ultra-high phenomena, ultra-fine structures and trace components. In particular, the speeds of devices such as multiplexers, demultiplexers, clocks, data generators, high mobility mobility transistors (HEMTs), heterojunction bipolar transistors (HBTs) in communications and computer systems are expanding to hundreds of GHz. Due to the development of nanotechnology that manipulates and controls at the atomic or molecular level, new fields of electromagnetic waves are needed to accurately measure the reaction and movement of nanomaterials and to develop next-generation industrial ultrafine devices (MEMS). Conventional pulses have not been provided due to the limitations of the available light sources and materials. For this reason, in the case of ultrafast semiconductor devices and millimeter wave integrated circuits, the measurement of the scattering parameter value is calculated by extrapolation of the small signal model based on the measurement in the microwave region, so that significant error and reliability A problem occurred. As a solution to this, efforts have been made to develop a terraheltz resolution light source using a recently developed mode-lock laser and photoconductive material.

테라헬쯔 광원이란? 주파수 영역이 0.1∼10 THz (1 THz=4.1 meV)인 전자파를 칭한다. 이러한 테라헬쯔 영역의 전자파 개발은 고주파 반도체, 초전도체 소자와 집적회로로 구성된 하이브리드 형태의 시스템과 이미지를 분석하는데 아주 중요하다. 이것은 시스템에 입사하는 테라헬쯔 전자파의 반사 및 투과 계수를 측정함으로써 가능하다. 또한, 고온초전도체의 경우에 전자쌍과 빛의 상호작용으로 인하여 발생되는 전자쌍 파괴 메카니즘이 빛에 의한 포논 가열 (heating) 현상으로 기인하는지 혹은 비평형 상태를 유발하는 양자역학적 현상인지를 규명하는데 테라헬쯔 전자파가 요청된다.What is a terahertz light source? The electromagnetic wave whose frequency range is 0.1-10 THz (1 THz = 4.1 meV) is called. The development of electromagnetic waves in the terahertz area is very important for analyzing images and hybrid systems composed of high frequency semiconductors, superconductor elements and integrated circuits. This is possible by measuring the reflection and transmission coefficients of terahertz electromagnetic waves incident on the system. In the case of high-temperature superconductors, the terahertz electromagnetic wave is used to determine whether the electron-pair destruction mechanism generated by the electron-pair interaction with light is due to phonon heating caused by light or quantum mechanical phenomenon that causes an unbalanced state. Is requested.

극초단의 전기펄스를 발생시키는 종래의 기술로는, 도 1에서 보는 바와 같이, 독일의 파울러스 등 [IEEE Journal of Quantum Electronics,22, 108 (1986)]은 PTEE 세라믹 기판 상부에 InP을 증착하여 발생부와 검출부에 각각 갭 1과 갭 2를 형성시킨 마이크로스트립 형태의 공명기를 제작하였다. 이 때 중앙 선로의 길이는 100 ㎛, 중앙 선로와 가장자리 선로 사이의 간격은 30 ㎛ 이다. 파장이 817 nm인 반도체 레이저를 공명기에 조사하여 밴드폭이 290 ps인 전기펄스를 발생시켰다. 이러한 마이크로스트립 형태의 공명기를 제작하여 발생되는 전기펄스는 공명기 구조와 관련된 시상수 (time constant)로 인하여 밴드 폭이 증가할 뿐만 아니라 펄스 재현성에 문제가 있다. 속도가 빠른 전기 신호는 소자의 크기를 감소시킴으로써 발생시킬 수 있다. 그러나, 마이크로스트립 형태의 전송 선로의 경우에는 크기를 축소시키면 바람직한 임피던스 값을 유지하기 위하여 기판의 두께도 얇게 만들어야 한다. 특히, 이러한 얇은 기판 (∼1 mil) 상부에 상당히 긴 전송 선로 (∼1 cm)를 제조하기는 용이하지 않다. 이러한 점을 개선하기 위하여 에피 성장하는 동안에 광전도 물질에 금 (Au)과 같은 높은 전도성 물질을 접지 평면에 주입하여 실제적인 기판 두께를 2∼3 ㎛로 만들고, 전하 운반자의 재결합 시간을 단축하기 위하여 불순물을 고농도로 이온 주입한다. 그러나, 이러한 방법으로 제작한 소자도 실질적으로 특성을 분석하기 위하여 시료 고정대에 장착할 때 취급하기가 상당히 어렵고 부서지기 쉬운 단점이 있다.As a conventional technique for generating an ultra-short electric pulse, as shown in FIG. 1, German Paulus et al. [IEEE Journal of Quantum Electronics, 22 , 108 (1986)] deposited InP on a PTEE ceramic substrate A microstrip resonator was formed in which a gap 1 and a gap 2 were formed in the generator and the detector, respectively. At this time, the length of the center line is 100 μm, and the distance between the center line and the edge line is 30 μm. A semiconductor laser with a wavelength of 817 nm was irradiated with a resonator to generate an electric pulse having a bandwidth of 290 ps. The electric pulse generated by fabricating such a microstrip type resonator not only increases the band width due to the time constant associated with the resonator structure but also has a problem in pulse reproducibility. Fast electrical signals can be generated by reducing the size of the device. However, in the case of the microstrip type transmission line, the size should be reduced to make the substrate thin in order to maintain the desired impedance value. In particular, it is not easy to manufacture a fairly long transmission line (~ 1 cm) on top of this thin substrate (~ 1 mil). To improve this point, during epi growth, high conductivity materials such as gold (Au) are implanted into the ground plane during epitaxial growth to achieve a practical substrate thickness of 2 to 3 µm and shorten the recombination time of the charge carriers. Impurities are implanted at high concentrations. However, the device fabricated in this way also has a disadvantage in that it is very difficult to handle and brittle when mounted on the sample holder for practically characterizing.

본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로서, 취급하기가 용이하며 고농도 이온 주입 공정이 필요하지 않고, 안정한 극초단의 전기 신호를 발생 및 검출하는 반도체 코플레이너 구조의 전송 장치를 제조하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and is easy to handle, does not require a high concentration ion implantation process, and manufactures a transmission device of a semiconductor coplanar structure that generates and detects stable ultra-short electrical signals. For the purpose of

이러한 목적을 달성하기 위하여 본 발명은 전송 선로의 임피던스 값이 기판 두께에 비교적 덜 민감하여 그 크기를 상당히 감소시킬 수 있는 코플레이너 구조의 전송 선로를 제안한다. 특히, 코플레이너 구조의 장점은 극초단의 전기 펄스를 발생하기 위하여 여기 빔 (excitation beam)을 전하를 띤 두 평행 선로에서 용이하게 이동하면서 조사 (illumination)할 수 있어서 전기 펄스가 발생하는 위치에서 일어날 수 있는 기생의 (parasitic) 캐패시턴스를 현저히 감소시킬 수 있다.In order to achieve this object, the present invention proposes a transmission line of a coplanar structure in which the impedance value of the transmission line is relatively less sensitive to the thickness of the substrate and can significantly reduce its size. In particular, the advantage of the coplanar structure is that the excitation beam can be easily moved and irradiated on two charged parallel lines to generate an extremely short electrical pulse, so that the position of the electrical pulse is generated. It can significantly reduce the parasitic capacitance that can occur.

제 1 도는 종래의 광전송 장치의 평면도.1 is a plan view of a conventional optical transmission device.

제 2 도는 본 발명의 실시예에 따른 반도체 코플레이너 전송 장치의 제조 공정을 단계별로 나타낸 단면도.2 is a cross-sectional view showing step by step a manufacturing process of a semiconductor coplanar transmission device according to an embodiment of the present invention.

제 3 도는 본 발명에서 극초단의 전기 펄스를 검출하기 위하여 사용되는 빔을 포함하는 반도체 코플레이너 전송 장치의 평면도.3 is a plan view of a semiconductor coplanar transmission device including a beam used for detecting ultra-short electrical pulses in the present invention.

* 도면의 주요 부분에 대한 부호의 설명** Explanation of symbols for main parts of the drawing

1 - 반절연 화합물 반도체층3 - n+-GaAs 층1-Semi-insulating compound semiconductor layer 3-n + -GaAs layer

4 - Ni/Ge/Au 층5 - 포토레지스트4-Ni / Ge / Au Layer 5-Photoresist

6 - Ti/Au 층6-Ti / Au layer

본 발명의 반도체 코플레이너 전송 장치는 분자선 에피 성장법 (Molecular Beam Epitaxy: MBE)을 사용하여 200 ∼ 300℃ 정도로 낮은 기판 온도에서 GaAs를 성장시킨 LT (Low Temperature)-GaAs 층으로 제작된다. LT-GaAs는 전체적으로 결정 구조를 유지하면서 고밀도의 점 결함 (point defects)을 제공하므로 고전압의 전기 펄스를 발생시킬 수 있다. 이하, 본 발명의 바람직한 실시예를 첨부된 도면에 의거하여 상세히 설명한다.The semiconductor coplanar transmission device of the present invention is made of a low temperature (LT) -GaAs layer in which GaAs are grown at a substrate temperature as low as 200 to 300 ° C. using a molecular beam epitaxy (MBE). LT-GaAs provides high-density point defects while maintaining the crystal structure as a whole, resulting in high voltage electric pulses. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2(a)는 MBE 방법을 사용하여 200 ∼ 300℃에서 직경 3 인치, 두께 25 mil을 갖는 반절연 (semi-insulating) GaAs 기판 (1) 상부에 두께가 1 ∼ 5 ㎛ 되는 GaAs 층 (2)을 형성시킨 LT-GaAs 층을 나타낸 것이다. 이렇게 성장된 LT-GaAs층은 일반적으로 580℃에서 성장되는 GaAs 층과는 현저히 다른 특성을 보인다. 저항값이 훨씬 크며, 광여기 발광을 나타내지 않는다. 상기의 LT-GaAs 층을 성장시킨 다음에, 도 2(b)와 같이, 기판의 온도를 580℃로 상승시키고, 20 ∼ 100 nm 두께의 n+-GaAs 층 (3)을 증착하였다. 이 층은 LT-GaAs 층과의 오믹 접촉을 용이하게 만들기 위하여 성장되었다. 그 다음 단계로, 도 2(c)에서는 오믹 접촉을 형성하기 위하여 두께 100 ∼ 300 nm인 Ni/Ge/Au의 다층 금속층 (4)을 형성시켰다.FIG. 2 (a) shows a GaAs layer having a thickness of 1 to 5 μm on top of a semi-insulating GaAs substrate 1 having a diameter of 3 inches and a thickness of 25 mils at 200 to 300 ° C. using the MBE method. ) To form an LT-GaAs layer. The LT-GaAs layer thus grown shows significantly different characteristics from the GaAs layer grown at 580 ° C. The resistance value is much larger and does not show photoexcitation light emission. After growing the LT-GaAs layer, as shown in FIG. 2 (b), the temperature of the substrate was raised to 580 ° C., and an n + -GaAs layer 3 having a thickness of 20 to 100 nm was deposited. This layer was grown to facilitate ohmic contact with the LT-GaAs layer. In the next step, in Fig. 2 (c), a multilayer metal layer 4 of Ni / Ge / Au having a thickness of 100 to 300 nm was formed to form an ohmic contact.

도 2(d)와 같이, 포토레지스트 스피너 (spinner)의 속도를 6,000 rpm으로 고정한 상태에서 30초 동안 회전시켜 상기의 Ni/Ge/Au 층 (4) 위에 두께 5 ∼ 10 ㎛의 포토레지스트층 (5)을 형성시키고, 약 70 ℃에서 15 ∼ 20분 동안 오븐에서 건조시킨다. 도 2(e)에서는 포토레지스트가 덮인 기판을 마스크 얼라이너 (mask aligner)를 사용하여 마스크를 통하여 노출시킨다. 포토레지스트의 두 영역 (5)을 제외한 부분을 모두 식각한다. 도 2(f)에서는 (e) 단계에서 식각된 두 영역의 포토레지스트 (5)를 제외한 나머지 영역에 두께 2 ∼ 10 ㎛의 Ti/Au 층 (6)을 형성한다. 상기의 Ti/Au 층은 전송 선로에서 전도성 손실을 최소화하기 위해 필요하다. 도 2(g)에서는 두 영역의 포토레지스트를 아세톤으로 린수 처리하여 벗겨내고, 상기의 포토레지스트 층 하부에 위치하고 있는 Ni/Ge/Au 층 (4)은 100 ㎖의 이온화되지 않은 물에 10 g의 요오드와 20 g의 KI를 섞어서 만든 혼합 용액으로 식각하며, n+-GaAs 층 (3)은 NH4OH:H2O2:H2O 알칼리 용액으로 30초 동안 식각하여 제거한다.As shown in Fig. 2 (d), the photoresist spinner is rotated for 30 seconds while the speed of the photoresist spinner is fixed at 6,000 rpm to form a photoresist layer having a thickness of 5 to 10 탆 on the Ni / Ge / Au layer 4 ( 5) is formed and dried in an oven at about 70 ° C. for 15-20 minutes. In FIG. 2E, the photoresist-covered substrate is exposed through a mask using a mask aligner. All portions except the two regions 5 of the photoresist are etched. In FIG. 2 (f), a Ti / Au layer 6 having a thickness of 2 to 10 μm is formed in the remaining regions except for the photoresist 5 of the two regions etched in the step (e). The Ti / Au layer is needed to minimize the conduction losses in the transmission line. In Fig. 2 (g), the photoresist of two regions is rinsed off with acetone, and the Ni / Ge / Au layer 4 located under the photoresist layer is 10 g of 100 g of unionized water. The mixture is etched with a mixed solution of iodine and 20 g of KI, and the n + -GaAs layer (3) is removed by etching with NH4OH: H2O2: H2O alkaline solution for 30 seconds.

도 3는 도 2의 단계별 제조 공정을 실시하여 제작된 반도체 코플레이너 전송 장치의 평면도를 보여주고 있다. 평행한 두 코플레이너 전송 선로의 폭은 두께 400 ∼ 700 ㎛를 갖는 LT-GaAs 기판 위에 91 Ω의 임피던스를 갖도록 설계되었다. 두 평행한 코플레이너 전송 선로 사이의 간격이 10 ∼ 50 ㎛ 일 때 펄스의 폭이 8 ps ∼ 451 fs인 극초단의 전기 펄스가 발생되었다. 공급되는 바이어스 전압에 의해 전하를 띤 두 평행한 전송 선로 사이의 반도체 갭에 발생 빔을 조사하면 전자와 정공의 쌍이 발생하여 갭에서 전기 전도도의 변화를 일으킨다. 이 때 발생되는 전기 펄스의 주기는 발생 빔으로 인한 전하 운반자의 수명, 레이저 펄스의 주기와 간격의 정전 용량에 의해 결정된다. 전송 선로에 발생한 전기 펄스는 검출 빔을 다시 가장자리 전송 선로와 중앙 전송 선로 사이의 반도체 갭에 조사함으로써 잠금 증폭기를 사용하여 검출할 수 있다.3 is a plan view illustrating a semiconductor coplanar transmission device manufactured by performing the manufacturing process of FIG. 2. The width of the two coplanar transmission lines in parallel was designed to have an impedance of 91 Ω on the LT-GaAs substrate with a thickness of 400-700 μm. When the spacing between two parallel coplanar transmission lines was 10-50 μm, an ultra-short electric pulse with a pulse width of 8 ps-451 fs was generated. Irradiation of the generated beam into the semiconductor gap between two parallel transmission lines charged by the supplied bias voltage produces a pair of electrons and holes, which causes a change in electrical conductivity in the gap. The period of the electric pulse generated at this time is determined by the lifetime of the charge carriers due to the generated beam, and the capacitance of the period and interval of the laser pulse. The electrical pulse generated in the transmission line can be detected using the lock amplifier by irradiating the detection beam back to the semiconductor gap between the edge transmission line and the central transmission line.

상기의 발생된 전기 펄스를 사용하면 분자나 원자 크기를 제어하고 조작하 수 있으며, 종래에 불가능했던 초미세 분해능으로 초고속 반도체 소자, 레이저 분광학, 테라비트급 정보저장 기술, 초정밀 측정 기술, 고화질 디스플레이 소자에 사용되는 고휘도 발광체의 초고속 발광 특성, 의료용 치료 및 진단 기술의 개발이 가능하므로 경제적인 파급효과는 상당할 것이다. 또한, 두께에 민감하지 않아 취급하기가 용이하고, 고농도 이온 주입의 공정이 필요하지 않아 안정한 극초단의 전기신호를 발생 및 검출할 수 있다.The generated electric pulses can be used to control and manipulate molecules or atomic sizes, and can be used for ultra-fast semiconductor devices, laser spectroscopy, terabit information storage technology, ultra-precision measurement technology, and high-definition display devices with ultra-fine resolutions that were not possible before. The economical ripple effect will be significant as it is possible to develop ultrafast luminous properties, medical treatment and diagnostic techniques of the high brightness emitters used. In addition, since it is not sensitive to thickness, it is easy to handle, and since a high concentration ion implantation process is not required, a stable ultra-short electric signal can be generated and detected.

한편, 본 발명은 상술한 특정의 바람직한 발명에 한정되지 아니하며, 특허 청구의 범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능할 것이다.On the other hand, the present invention is not limited to the above-described specific preferred invention, any person having ordinary skill in the art to which the invention belongs without departing from the gist of the invention claimed in the claims. It will be possible.

Claims (5)

반절연 화합물반도체 기판 (1) 위에 200 ∼ 300℃의 저온에서 증착한 소정의 두께를 갖는 화합물 반도체 층 (2)과, 상기의 화합물 반도체 층 위에 증착한 소정의 두께를 갖는 n+-GaAs 층 (3) 및 오믹접촉 Ni/Ge/Au 층 (4)과, 상기의 오믹접촉층 위에 포토레지스트층 (5)을 형성하고, 두 영역을 제외한 나머지 포토레지스트 층을 식각하고, 나머지 영역에 소정의 두께를 갖는 Ti/Au 층 (6)을 증착하고, 상기의 두 영역의 포토레지스트 층과 Ni/Ge/Au 층을 제거하고 형성한 코플레이너 형태의 전송 선로를 갖는 것을 특징으로 하는 반도체 전송 장치.A compound semiconductor layer 2 having a predetermined thickness deposited on the semi-insulating compound semiconductor substrate 1 at a low temperature of 200 to 300 ° C, and an n + -GaAs layer having a predetermined thickness deposited on the compound semiconductor layer ( 3) and the ohmic contact Ni / Ge / Au layer 4 and the photoresist layer 5 are formed on the ohmic contact layer, and the remaining photoresist layers except the two regions are etched, and a predetermined thickness is applied to the remaining regions. And a coplanar transmission line formed by depositing a Ti / Au layer (6) having a photoresist layer and removing the photoresist layer and the Ni / Ge / Au layer in the two regions. 제 1 항에 있어서, 화합물 반도체 층은 GaAs, InP, CdTe 층이다.The compound semiconductor layer of claim 1, wherein the compound semiconductor layer is a GaAs, InP, CdTe layer. 제 1 항에 있어서, 화합물 반도체 층의 두께는 1 ∼ 5 ㎛ 이다.The thickness of the compound semiconductor layer is 1 to 5 mu m. 제 1 항에 있어서, n+-GaAs의 두께는 20 ∼ 100 nm 이고, 도핑 농도는 1017∼ 1018cm-3이다.The thickness of n + -GaAs is 20 to 100 nm, and the doping concentration is 10 17 to 10 18 cm -3 . 제 1 항에 있어서, 코플레이너 형태의 전송 선로는 두 개의 서로 평행한 전송 선로와 하나의 가장자리 전송 선로로 구성되며, 두 평행한 전송 선로의 폭은 20∼ 60 ㎛ 이고, 두 전송 선로 사이의 간격은 10 ∼ 50 ㎛ 이다.The transmission line of claim 1, wherein the coplanar transmission line is composed of two parallel transmission lines and one edge transmission line, and the widths of the two parallel transmission lines are 20 to 60 占 퐉, and between the two transmission lines. The space | interval is 10-50 micrometers.
KR10-2002-0027439A 2002-05-17 2002-05-17 Semiconductor Coplanar Transmission Device for the Generation and Detection of Ultrafast Electrical Signals KR100490021B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0027439A KR100490021B1 (en) 2002-05-17 2002-05-17 Semiconductor Coplanar Transmission Device for the Generation and Detection of Ultrafast Electrical Signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0027439A KR100490021B1 (en) 2002-05-17 2002-05-17 Semiconductor Coplanar Transmission Device for the Generation and Detection of Ultrafast Electrical Signals

Publications (2)

Publication Number Publication Date
KR20030089287A true KR20030089287A (en) 2003-11-21
KR100490021B1 KR100490021B1 (en) 2005-05-17

Family

ID=32383326

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0027439A KR100490021B1 (en) 2002-05-17 2002-05-17 Semiconductor Coplanar Transmission Device for the Generation and Detection of Ultrafast Electrical Signals

Country Status (1)

Country Link
KR (1) KR100490021B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647421B1 (en) * 2005-04-22 2006-11-23 (주)한성티앤아이 Sprinkler of agricultural multipurpose

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332918A (en) * 1988-02-19 1994-07-26 Massachusetts Institute Of Technology Ultra-high-speed photoconductive devices using semi-insulating layers
US5411914A (en) * 1988-02-19 1995-05-02 Massachusetts Institute Of Technology III-V based integrated circuits having low temperature growth buffer or passivation layers
US5187449A (en) * 1989-12-15 1993-02-16 Ibm Corporation Coplanar transmission line millimeter radiation source
KR930011425A (en) * 1991-11-29 1993-06-24 정용문 Reset signal generation circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647421B1 (en) * 2005-04-22 2006-11-23 (주)한성티앤아이 Sprinkler of agricultural multipurpose

Also Published As

Publication number Publication date
KR100490021B1 (en) 2005-05-17

Similar Documents

Publication Publication Date Title
Ye et al. Giant microwave photoresistance of two-dimensional electron gas
KR930011425B1 (en) Electrooptic apparatus for the measurement of ultrashort electrical signals
Pfeifer et al. Optoelectronic on-chip characterization of ultrafast electric devices: Measurement techniques and applications
Kim et al. Photoconductive sampling probe with 2.3‐ps temporal resolution and 4‐μV sensitivity
EP2551920B1 (en) Semiconductor device for optoelectronic switching
Hung et al. Millimeter-wave monolithic integrated circuit characterization by a picosecond optoelectronic technique
KR100490021B1 (en) Semiconductor Coplanar Transmission Device for the Generation and Detection of Ultrafast Electrical Signals
Cybart et al. Planar YBa/sub 2/Cu/sub 3/O/sub 7-/spl delta//ion damage Josephson junctions and arrays
Horstmann et al. InP/InGaAs photodetector based on a high electron mobility transistor layer structure: Its response at 1.3 μm wavelength
KR100513963B1 (en) Method for fabrication of superconducting quantum interference devices using high-tc intrinsic josephson junctions
KR100499522B1 (en) Ultrafast Semiconductor Photoconductive Switching Device
Rüders et al. Vertical MSM photodiodes in silicon based on epitaxial Si/CoSi2/Si
Alijabbari et al. A 200 GHz GaAs Schottky-diode phase shifter integrated on a silicon-on-insulator substrate
Andrushchak Investigation of Negative Differential Resistance Phenomena in Quantum Well Heterostructures
Anderson et al. On-chip picosecond time-domain measurement of silicon bipolar transistor characteristics using integrated GaAS photoconductive devices
JPH09203769A (en) Electric waveform measuring probe and its manufacture
JPH09203770A (en) Electric waveform measuring probe and its manufacture
EP0759640A1 (en) Semiconductor superlattice oscillator and methods of manufacturing and operating the same
Kuhl Contact-free characterization of electronic and optoelectronic devices with ultrashort laser pulses
Smith Fast waveform metrology: Generation, measurement and application of sub-picosecond electrical pulses
Burke et al. Supplementary Information-Extreme sensitivity of the spin-splitting and 0. 7 anomaly to confining potential in one-dimensional nanoelectronic devices
KR950003957B1 (en) Manufacturing method of josephson device
Antreasyan et al. Gigahertz logic based on InP metal-insulator-semiconductor field-effect transistors by vapor phase epitaxy
Hendriks Transport of hot electrons in GaAs/AlGaAs heterostructures
Yagi et al. Ultrafast active transmission lines with low-k polyimide integrated with ultrafast photoconductive switches

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080508

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee