KR20030088608A - Recycled aggregate for base course material of pavement - Google Patents

Recycled aggregate for base course material of pavement Download PDF

Info

Publication number
KR20030088608A
KR20030088608A KR1020020026279A KR20020026279A KR20030088608A KR 20030088608 A KR20030088608 A KR 20030088608A KR 1020020026279 A KR1020020026279 A KR 1020020026279A KR 20020026279 A KR20020026279 A KR 20020026279A KR 20030088608 A KR20030088608 A KR 20030088608A
Authority
KR
South Korea
Prior art keywords
size
weight
recycled aggregate
aggregate
waste
Prior art date
Application number
KR1020020026279A
Other languages
Korean (ko)
Inventor
이명규
박인규
Original Assignee
유한회사 개암환경
학교법인 신동아학원
이명규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유한회사 개암환경, 학교법인 신동아학원, 이명규 filed Critical 유한회사 개암환경
Priority to KR1020020026279A priority Critical patent/KR20030088608A/en
Publication of KR20030088608A publication Critical patent/KR20030088608A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/06General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
    • B03B9/061General arrangement of separating plant, e.g. flow sheets specially adapted for refuse the refuse being industrial
    • B03B9/065General arrangement of separating plant, e.g. flow sheets specially adapted for refuse the refuse being industrial the refuse being building rubble
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Structures (AREA)

Abstract

PURPOSE: An aggregate for a roadbed material using reclaimed constructional waste is provided to obtain the physical properties needed for a roadbed and to prevent the environmental pollution. CONSTITUTION: The reclaimed aggregate for a roadbed material is characterized in that the particle diameters of the aggregate are distributed such that the percent ratio of the particles passing through a sieve of 50.8 mm size is 100%, that of the particles passing through a sieve of 38.1 mm size is 75-100%, that of the particles passing through a sieve of 19.1 mm size is 55-70%, that of the particles passing through a sieve of 9.53 mm size is 40-60%, that of the particles passing through a sieve of 4.75 mm size is 25-45%, that of the particles passing through a sieve of 2.00 mm size is 15-30%, that of the particles passing through a sieve of 0.425 mm size is 5-20% and that of the particles passing through a sieve of 0.075 mm size is up to 10%, and in that the aggregate has the bearing value of the subgrade soil of 20-40% and the resilient modulus of 1.5-5 Mpa.

Description

노반재료용 재생골재{Recycled aggregate for base course material of pavement}Recycled aggregate for base course material of pavement}

본 발명은 노반재료용 재생골재에 관한 것으로서, 더욱 상세하게는, 건설 현장에서 발생된 폐콘크리트로부터 재생골재를 생산하고, 입도 분포별 배합비를 적절하게 선정함으로써, 노반재료로서 필요한 물성을 만족시키는 노반재료용 재생골재에 관한 것이다.The present invention relates to recycled aggregates for roadbed materials, and more particularly, to produce recycled aggregates from waste concrete generated at a construction site, and to appropriately select a blending ratio for each particle size distribution, thereby satisfying required physical properties as roadbed materials. It relates to a recycled aggregate for the material.

현대 사회는 경제 성장과 국민 생활의 향상으로 인해 도시 재개발, 생활 환경 개선 및 건물의 노후화로 인한 건설폐기물의 일종인 폐콘크리트의 발생량이 급격히 증가하고 있다. 그러나, 지금까지 대부분 폐콘크리트는 재활용되지 못하고 주로 매립에 의존하여 왔으며, 이러한 매립의 경우에도 매립지 부족, 막대한 수송비 및 처리비용으로 인하여 건설현장에서 발생된 대부분의 건설폐기물이 불법매립, 투기 및 소각되는 등 부적절하게 처리되어 왔고, 결과적으로 환경파괴 및 생활 환경 오염을 가중시키고, 여러 가지 민원의 원인이 되고 있다.In modern society, the amount of waste concrete, which is a kind of construction waste due to urban redevelopment, improvement of living environment and aging of buildings is increasing rapidly due to economic growth and improvement of people's life. However, until now, most of the waste concrete has not been recycled and has been reliant on landfilling, and even in the case of landfill, most of the construction wastes generated at the construction site due to landfill shortages, huge transportation and disposal costs are illegally landfilled, dumped and incinerated. It has been dealt with improperly, resulting in increased environmental destruction and pollution of living environment and causes various complaints.

또한, 세계표준의 환경기준 설정과 그 기준에 미달되는 각종 제품 및 산업의 규제를 주요내용으로 하고 있는 그린라운드(GR)의 물결을 타고 정부의 환경관련 법적규제도 강화되고 있다. 따라서, 재건축, 재개발 사업의 활성화와 더불어 점차 가속화되는 폐콘크리트의 발생은 환경오염 방지뿐만 아니라 자원 재활용 측면에서 대책 수립이 요구되고 있으며, 나아가 건설폐기물의 재활용 효율을 향상시키는 것이 시급하다. 특히, 현재 발생하는 건설폐기물 중 약 70%가 폐콘크리트이므로, 이를재활용할 수 있다면 건설폐기물 처리 문제를 크게 해소할 수 있다.In addition, the government's environmental regulations are being strengthened through the wave of the Green Round (GR), which focuses on the establishment of environmental standards of global standards and the regulation of various products and industries that do not meet those standards. Therefore, the generation of waste concrete, which is gradually accelerated along with the reconstruction and redevelopment projects, is required to establish measures in terms of resource recycling as well as to prevent environmental pollution, and it is urgent to improve the recycling efficiency of construction wastes. In particular, since about 70% of the current construction waste generated is waste concrete, it can greatly solve the construction waste disposal problem if it can be recycled.

이러한 건설부산물을 처리하는데 단순매립에 의존하고 있는 우리나라와 달리 선진 외국의 경우에는 일찍부터 재활용의 중요성을 인식하여 이 분야에 많은 연구실적과 재활용 경험을 축적하였다. 우리나라는 최근에 들어서야 이에 대한 관심을 갖기 시작했으나, 현재까지 그 실적은 미미한 실정이다. 건설부산물은 본래 무해하고 재자원화 비율이 높은 반면, 기술기준이 그다지 높지 않기 때문에 재활용시 그 부가가치는 높다고 할 수 있다. 특히, 폐콘크리트의 재활용은 그 중에서도 부가가치가 높고 수요가 많기 때문에 이의 재생 및 활용방안에 대한 연구는 필수적이다.Unlike Korea, which relies on simple landfill to process such construction by-products, advanced foreign countries recognized the importance of recycling from early on and accumulated a lot of research and recycling experience in this field. Korea has only recently begun to pay attention to this, but the results are minimal. Construction by-products are inherently harmless and have a high rate of recycling, but their technical value is not so high. In particular, the recycling of waste concrete is particularly important because of its high added value and high demand.

폐콘크리트의 재활용을 극대화해야하는 이유로서 첫째는, 90년대 이후 대량의 건설공사 진행으로 국내 천연골재 자원의 고갈로 인한 골재의 공급부족이다. 현재의 천연골재 수요량 증가추세라면 확보된 약 40억톤의 가치매장량은 10여년분 정도에 불과하다. 특히, 국내 자연환경보호법이 발표되어 천연골재도 자원으로 보존된다는 정부 정책이 시행될 경우 골재공급 조건은 더욱 나빠질 것이다. 둘째는, 건설폐기물이 재개발 사업추진에 지장을 주고 있다는 점이다. 재개발 허가를 이미 받았다 하더라도 건설폐기물의 처리가 전제되지 않고서는 재개발 사업추진이 지연되거나 무산될 수 있다는 점에서 문제는 심각하다. 이처럼 폐콘크리트 재활용 기술개발은 재생골재의 부가가치 향상, 환경 오염 방지 및 골재 자원의 절약이라는 면에서 우리나라에 절실히 필요한 기술이다.The reason for maximizing the recycling of waste concrete is first, the supply shortage of aggregates due to the depletion of domestic natural aggregate resources due to the massive construction work since the 1990s. If the current demand for natural aggregates is on the rise, the value of about 4 billion tons of stored value is only about 10 years. In particular, if the national natural environment protection law is announced and the government policy that natural aggregate is preserved as a resource is enforced, the aggregate supply conditions will be worse. Second, construction waste is hampering redevelopment projects. Even if the redevelopment permit has already been received, the problem is serious in that the redevelopment project may be delayed or abandoned without the precondition of disposal of construction waste. As such, the development of waste concrete recycling technology is desperately needed in Korea in terms of improving the added value of recycled aggregates, preventing environmental pollution, and saving aggregate resources.

건설폐기물은 건축, 토목공사 및 건설 구조물 해체공사에서 배출되는 폐기물이며, 여기에는 토사, 폐콘크리트, 폐아스팔트콘크리트, 슬러지(오니), 나무조각,종이류, 금속류, 폐플라스틱류, 폐유리, 폐도자기류 등이 포함된다. 현행 우리나라의 법규상으로는 건설폐기물의 종류가 상세히 분류되지 않았으나, 폐기물관리법에 의하면 건설폐기물은 대부분 일반폐기물에 속하며, 폐페인트, 폐유, 석면 등 일부는 특정폐기물로 분류되고 있으며, 「자원의 절약과 재활용 촉진에 관한 법률」에 따른 재활용 대상 건설 폐기물은 지정부산물로서 토사, 폐콘크리트, 폐아스팔트콘크리트 등 3가지가 있다. 건설현장에서 발생하는 건설폐기물의 구체적인 내용을 살펴보면 하기 표 1과 같다.Construction wastes are wastes from construction, civil engineering and dismantling of construction structures, including earth and sand, waste concrete, waste asphalt concrete, sludge (sludge), wood chips, paper, metals, waste plastics, waste glass, waste ceramics. And the like. Under the current Korean law, the types of construction waste are not classified in detail, but according to the Waste Management Act, most of construction waste belongs to general waste, and some of waste such as paint, waste oil and asbestos are classified as specific waste. Construction wastes subject to recycling under the Promotion Act are three types of designated by-products: earth and sand, waste concrete, and waste asphalt concrete. Looking at the specific contents of the construction waste generated at the construction site as shown in Table 1.

도 1은 건설현장에서 발생된 폐기물 용어들의 관계를 도식화 한 것이다. 도 1에서 보는 바와 같이, 건설현장에서 발생한 폐기물 중 일부는 재활용 지정부산물로, 일부는 재활용하지 않는 지정폐기물 또는 생활폐기물로 분류될 수 있으며, 이들의 적절한 분리가 필요하다.Figure 1 illustrates the relationship between the waste terms generated at the construction site. As shown in FIG. 1, some of the waste generated at the construction site may be classified as designated designated by-products for recycling, and some may be classified as designated wastes or household wastes that do not recycle, and appropriate separation thereof is required.

한편, 미국 EPA(1998) 자료에 의하면 건설 및 해체 부산물이란 구조물의 건설, 수리, 혹은 해체 과정에서 생산되는 폐재료라고 정의하였다. 여기서 구조물이란 도로와 교량 그리고 모든 타입(주거용 혹은 비주거용)의 빌딩을 포함한다.On the other hand, according to the US EPA (1998) data, by-products of construction and dismantling are defined as waste materials produced during the construction, repair, or dismantling of structures. Structures here include roads and bridges and buildings of all types (residential or non-residential).

일반적으로 우리나라의 경우 건설폐기물은 잔토, 폐콘크리트, 폐아스팔트 콘크리트, 건설오니, 나무조각, 종이류, 금속류, 폐플라스틱류, 폐유리 및 폐도자기류 등이 혼합된 상태에서 배출되는 경우가 많다. 건설폐기물은 생활폐기물이나 제조업에서 발생하는 산업폐기물과는 달리 폐기물 발생장소가 일정하지 않고 배출량이 많으며, 폐기물 종류가 다양하다. 또한, 다양한 하청구조로 인하여 폐기물 취급자도 다양하며, 다종의 폐기물이 혼합상태에서 배출되는 경우가 많다. 따라서, 우리나라의 경우 건설폐기물의 발생현황에 대한 정확한 통계조차 확보되어 있지 않으며, 폐기물관리법에 근거하여 시, 도에서 보고하는 폐기물 통계를 토대로 매년 환경부에서 전국 폐기물의 발생 및 처리 현황을 자료로 발간하고 있다.In general, in Korea, construction wastes are often discharged in a mixed state of scum, waste concrete, waste asphalt concrete, construction sludge, wood chips, paper, metals, waste plastics, waste glass, and waste ceramics. Construction wastes, unlike domestic wastes and industrial wastes from manufacturing, are not constant in waste generation, have a large amount of emissions, and have a wide variety of wastes. In addition, due to the various subcontracting structure, there are various waste handlers, and many kinds of wastes are often discharged in a mixed state. Therefore, in Korea, even accurate statistics on the construction status of construction wastes are not secured. Based on the waste statistics reported by the cities and provinces based on the Waste Management Act, the Ministry of Environment publishes the national waste generation and disposal status as data every year. have.

하기 표 2는 <97 전국 폐기물 발생 및 처리현황>을 나타낸 것이다.Table 2 below shows <97 national waste generation and treatment status>.

97년도 우리나라에서 발생한 총 폐기물은 189,200톤/일(연간 6,960,000톤)이며, 사업장 폐기물은 93,528톤/일(49.4%), 생활폐기물은 47,895톤/일(25.3%), 건설폐기물은 47,777톤/일(25.3%)이었다. 총 폐기물 발생량은 96년대비 7.9% 증가했으며, 건설폐기물은 전년대비 68.1%증가하여 폐기물 증가의 주원인으로 분석되었다. 하지만, 건설폐기물은 재활용률이 매년 급증하는 추세로 94년도 재활용률이 8.0%에서 97년도에 76.6%로 급증한 반면, 매립처리율은 94년 90.7%에서 97년 20.4%로 감소하였다.The total waste generated in Korea in 1997 was 189,200 tons / day (6,960,000 tons per year), 93,528 tons / day (49.4%) for workplace waste, 47,895 tons / day (25.3%) for construction waste and 47,777 tons / day for construction waste. (25.3%). Total waste generation increased by 7.9% compared to the 1996 level, and construction waste increased 68.1% year-on-year, which was the main reason for the increase in waste. However, the rate of recycling of construction wastes has soared every year. In 1994, the recycling rate soared from 8.0% to 76.6% in 1997, while the landfill rate fell from 90.7% in 1994 to 20.4% in 1997.

이러한 높은 재활용률은 건설폐기물이 성토·복토재 등으로 대량 재활용 가능하였기 때문이다. 그러나, 건설폐기물은 분쇄 후 대부분 단순 도로용 성토로 사용할 뿐 부가가치를 높일 수 있는 콘크리트용 골재로써 사용 가능한 기술개발은 미비한 실정으로 재생골재를 콘크리트용 골재로 활용하기 위한 연구개발이 필요하다.This high recycling rate is due to the fact that construction wastes can be recycled in bulk, covering materials, etc. However, construction waste is mostly used as a simple road fill after crushing, and technology development that can be used as concrete aggregates to increase added value is inadequate. Therefore, research and development are needed to utilize recycled aggregates as concrete aggregates.

본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은, 건설 현장에서 발생된 폐콘크리트로부터 재생골재를 생산하고, 재생골재의 입도 분포별 배합비를 엄밀하게 설정함으로써, 노반재료로서 필요한 물성을 만족시키는 노반재료용 재생골재를 제공하는 것이다.The present invention is to solve the problems of the prior art as described above, the object of the present invention, by producing recycled aggregate from the waste concrete generated at the construction site, by setting the mixing ratio of the recycled aggregate by particle size distribution strictly, It is to provide a recycled aggregate for the roadbed material satisfying the required physical properties as the roadbed material.

도 1은 건설현장에서 발생된 폐기물 용어들의 관계를 도식화 한 것이다.Figure 1 illustrates the relationship between the waste terms generated at the construction site.

도 2는 본 발명에 사용되는 재생골재를 생산하기 위한 공정을 개략적으로 도시한 것이다.Figure 2 schematically shows a process for producing recycled aggregate used in the present invention.

도 3a 내지 도 3c는 각각 본 발명의 실시예 1 내지 실시예 3에 따라 준비된 시료의 평균적인 입도 분포별 배합비를 나타낸 것이고, 도 3d는 상기 실시예들의 평균적인 입도 분포별 배합비를 나타낸 것이다.3A to 3C show the compounding ratios of the average particle size distributions of the samples prepared according to Examples 1 to 3 of the present invention, respectively, and FIG. 3D shows the compounding ratios of the average particle size distributions of the above embodiments.

도 4는 본 발명의 실시예에 따라 준비된 재생골재에 대한 물성시험 절차를 도시한 순서도이다.Figure 4 is a flow chart showing a physical property test procedure for the recycled aggregate prepared in accordance with an embodiment of the present invention.

도 5는 본 발명에 사용되는 반복재하식 MR시험기 시스템의 구성도이다.5 is a block diagram of a repeatable load M R tester system used in the present invention.

도 6은 본 발명에 사용되는 반복재하식 MR시험기 시스템의 삼축셀과 하중 및 변위 측정위치를 도시한 것이다.Figure 6 shows the triaxial cell and load and displacement measurement position of the repeated loading M R tester system used in the present invention.

도 7은 반복재하식 MR시험에서 하중 및 변형률 관계를 도시한 것이다.Figure 7 shows the load and strain relationship in the cyclic M R test.

도 8a 내지 도 8c는 각각 본 발명의 실시예 1 내지 3에 따라 준비된 재생골재에 대한 MR시험 측정결과를 도시한 것이다.8a to 8c show the M R test results for the recycled aggregate prepared according to Examples 1 to 3 of the present invention, respectively.

상기한 바와 같은 목적을 달성하기 위하여, 본 발명에 의한 노반재료용 재생골재는, 노반재료로 사용되기 위한 재생골재로서, 상기 재생골재의 입도가, 50.8㎜의 크기체 통과중량 백분율이 100%, 38.1㎜의 크기체 통과중량 백분율이 75~100%, 25.4㎜의 크기체 통과중량 백분율이 65~80%, 19.1㎜의 크기체 통과중량 백분율이 55~70%, 9.53㎜의 크기체 통과중량 백분율이 40~60%, 4.75㎜의 크기체 통과중량 백분율이 25~45%, 2.00㎜의 크기체 통과중량 백분율이 15~30%, 0.425㎜의 크기체 통과중량 백분율이 5~20%, 0.075㎜의 크기체 통과중량이 10% 이하인 입도 분포별 배합비를 가지고, 상기 재생골재의 노상토 지지력비가 20%~40%이고, 회복탄성계수가 1.5~5MPa인 것을 특징으로 한다.In order to achieve the above object, the recycled aggregate for the roadbed material according to the present invention is a recycled aggregate for use as a roadbed material, the particle size of the recycled aggregate is 50.8mm size body weight percentage of 100%, 75-100% of the size of the passage through the size of 38.1 mm, 65-80% of the weight of the passage through the size of 25.4 mm, 55-70% of the weight of the passage of the size of the body with 19.1 mm, 55% to 70% of the passage of the body of 9.53 mm This 40-60%, the size-through weight percentage of 4.75 mm is 25-45%, the size-through weight percentage of 2.00 mm is 15-30%, the size-through weight percentage of 0.425 mm is 5-20%, 0.075mm It has a blending ratio of the particle size distribution having a transit weight of 10% or less, the subgrade soil bearing capacity ratio of the recycled aggregate is 20% to 40%, and the recovery modulus of elasticity is 1.5 to 5MPa.

또한, 본 발명에 의한 노반재료용 재생골재는, 노반재료로 사용되기 위한 재생골재로서, 상기 재생골재의 입도가, 38.1㎜의 크기체 통과중량 백분율이 100%, 25.4㎜의 크기체 통과중량 백분율이 80~100%, 19.1㎜의 크기체 통과중량 백분율이 65~90%, 9.53㎜의 크기체 통과중량 백분율이 50~75%, 4.75㎜의 크기체 통과중량 백분율이 35~65%, 2.00㎜의 크기체 통과중량 백분율이 25~50%, 0.425㎜의 크기체 통과중량 백분율이 5~30%, 0.075㎜의 크기체 통과중량이 15% 이하인 입도 분포별 배합비를 가지고, 상기 재생골재의 노상토 지지력비가 20%~40%이고, 회복탄성계수가 1.5~5MPa인 것을 특징으로 한다.In addition, the recycled aggregate for the roadbed material according to the present invention is a recycled aggregate for use as a roadbed material, the particle size of the recycled aggregate, 100% of the weight passing through the body size of 38.1mm, percentage of the weight passing through the body size of 25.4mm The 80-100%, the percentage of passage through the size body of 19.1mm is 65-90%, the percent of passage through the size of body is 50-75%, and the percent of passage of the body size of 35-65%, 2.00mm is 4.75mm It has a mixing ratio of particle size distribution of 25 to 50% of the size of the sieve through weight, 5 to 30% of the size of the passing sieve of 0.425 mm, 15% or less of the size of passing through the sieve of 0.075 mm, The bearing capacity ratio is 20% to 40%, and the recovery modulus of elasticity is 1.5 to 5 MPa.

본 발명에 의한 노반재료용 재생골재는, 노반재료로 사용되기 위한 재생골재로서, 상기 재생골재의 입도가, 25.4㎜의 크기체 통과중량 백분율이 100%, 19.1㎜의 크기체 통과중량 백분율이 80~100%, 9.53㎜의 크기체 통과중량 백분율이 60~85%, 4.75㎜의 크기체 통과중량 백분율이 45~75%, 2.00㎜의 크기체 통과중량 백분율이 30~60%, 0.425㎜의 크기체 통과중량 백분율이 15~35%, 0.075㎜의 크기체 통과중량이 15% 이하인 입도 분포별 배합비를 가지고, 상기 재생골재의 노상토 지지력비가 20%~40%이고, 회복탄성계수가 1.5~5MPa인 것을 특징으로 한다.The recycled aggregate for the roadbed material according to the present invention is a recycled aggregate for use as a roadbed material, wherein the particle size of the recycled aggregate has a size of 25.4 mm in size passing weight of 100% and 19.1 mm of size in passing weight of 80%. ~ 100%, 9.53mm size sieve weight percent 60-85%, 4.75mm size sieve weight percent 45-75%, 2.00mm size sieve weight percent 30-60%, 0.425mm size 15% to 35% sieve weight percentage, 0.075 mm size sieve weight ratio of 15% or less, having a mixing ratio by particle size distribution, subgrade soil bearing capacity ratio of the recycled aggregate is 20% to 40%, recovery elastic modulus of 1.5 ~ 5MPa It is characterized by that.

1980년대부터 미국과 유럽의 여러나라에서 재생 콘크리트 골재를 도로의 기층 및 보조기층, 콘크리트 골재로 활용하기 위한 노력이 검토되어 오고 있다. 국내 일부 도로 포장공사에도 재생 콘크리트를 사용하여 기층 및 보조기층으로 시공한 실적이 있으나, 재생 콘크리트 골재의 우수성에 비하여 시공실적은 매우 미흡한 실정이다. 이는 재생골재의 시간 변화에 따른 성능변화 시험자료 및 현장측정 자료뿐만 아니라, 노반재료로 사용되기 위하여 필요한 물리적 특성을 만족시킬 수 있는 재생골재의 입도 분포별 배합비에 대한 연구가 미비하였기 때문이다.Since the 1980s, efforts have been made to utilize recycled concrete aggregates as road bases, auxiliary bases and concrete aggregates in various countries in the US and Europe. Although some road pavement works in Korea have been used as base and auxiliary bases using recycled concrete, the construction performance is very low compared to the superiority of recycled concrete aggregate. This is due to the lack of research on the performance ratio test data and field measurement data of recycled aggregates, as well as the mixing ratios of particle size distribution of recycled aggregates that can satisfy the physical properties required for use as roadbed materials.

본 발명에서는 최적의 노반재료용 재생골재의 입도 분포별 배합비를 설정하기 위하여 다음과 같은 연구과정을 수행하였다.In the present invention, the following research process was performed to set the mixing ratio of the particle size distribution of the optimum aggregate for roadbed materials.

1) 분쇄 처리된 재생 골재의 재료적 특성(비중, 흡수율 등) 파악1) Grasp the material characteristics (specific gravity, water absorption, etc.) of the recycled aggregate

2) 기존 도로보조기층 흙재료의 입도분석 결과의 분석2) Analysis of particle size analysis results of existing road auxiliary layer soil material

3) 기존 도로보조기층재의 노상토 지지력비(CBR) 값 분석3) Analysis of Subgrade Soil Bearing Capacity (CBR) of Existing Road Auxiliaries

4) 콘크리트의 재생골재의 배합설계 실시(3회 이상)4) Mixing design of recycled aggregate of concrete (more than 3 times)

5) 각 배합성분의 다짐 및 물성, 입도 확인5) Confirmation of compaction, physical properties and particle size of each ingredient

6) 각 배합물질의 실내 CBR 값 분석6) Indoor CBR value analysis of each compound

7) 최적 배합물질의 회복탄성계수시험(Resiliant Modulus, 이하 'MR'이라 함) 시행7) Resilient Modulus Test of Optimum Compound (Resiliant Modulus, hereinafter referred to as 'M R ')

상기 과정 중 재활용 골재의 특성분석을 위하여 본 발명에서 사용한 재생 굵은골재는 전주시내에 있는 공동연구 업체인 개암환경에서 채취하였다.The recycled coarse aggregate used in the present invention for the characterization of recycled aggregates during the process was taken from the hazelnut environment of a joint research company in Jeonju city.

도 2는 상기 재생골재를 생산하기 위한 공정을 개략적으로 도시한 것이다.Figure 2 schematically shows a process for producing the recycled aggregate.

도 2에서와 같은 분쇄, 세척 및 분류과정을 통하여 생산된 굵은골재 중 재생골재의 특성분석 실험에서는, 체눈크기 30㎜의 체를 통과하고, 4번체(#4)에 남는 골재를 사용하였으며, 잔골재는 자연모래를 사용하였다. 이 때, 벽돌, 아스팔트, 유리, 인조석, 타일, 종이, 나무 등 재생 굵은골재에 유해한 불순물은 육안으로 가능한 한 제거하였다.In the characterization experiments of the recycled aggregates of coarse aggregates produced through the crushing, washing and sorting processes as shown in FIG. 2, the aggregates were passed through a sieve having a size of 30 mm and remained in No. 4 (# 4). Used natural sand. At this time, impurities harmful to the coarse aggregate such as brick, asphalt, glass, artificial stone, tile, paper, and wood were removed as much as possible with the naked eye.

일반적으로 잔골재의 비중은 보통 2.5∼2.65 정도이며, 굵은골재의 비중은보통 2.55∼2.70 정도이다. 잔골재와 굵은골재의 조립률은 각각 2.3∼3.1과 6∼8 정도이다. 상기 표 3에서 보는 바와 같이, 본 발명에서 사용된 재생 굵은골재의 비중과 흡수율은 보통 굵은골재 보다 상대적으로 높으며, 조립률은 양호한 편이다. 또한, 로스앤젤스 시험기에 의한 굵은골재의 마모감율의 한도는 40% 이하여야 하지만, 포장 콘크리트 표준시방서 4.5.5에 의하면 마모감율이 35%이상인 굵은골재라도 선정된 배합비로 만든 콘크리트에서 만족한 강도를 얻었다면 사용해도 무방하다. 또한, ASTM(American Society for Testing and Materials)의 규정 C-33 에 의하면 골재는 마모손실 백분율이 50%를 넘지 않으면 콘크리트제품에 사용될 수 있으며, 영국표준시방서(BS)(88,1201 Part 2, 1973)에 의하면 골재는 표면 마모가 45%를 넘지 않으면 사용될 수 있다고 되어있다.In general, the specific gravity of fine aggregate is usually about 2.5 to 2.65, the specific gravity of coarse aggregate is usually about 2.55 to 2.70. The assembly rate of fine aggregate and coarse aggregate is about 2.3 to 3.1 and 6 to 8, respectively. As shown in Table 3, the specific gravity and water absorption of the recycled coarse aggregate used in the present invention is relatively higher than the coarse aggregate, and the assembly rate is good. In addition, the limit of wear reduction rate of coarse aggregate by Los Angels tester should be less than 40%, but according to standard specification of pavement concrete 4.5.5, even coarse aggregate with more than 35% wear reduction ratio satisfies the strength of concrete with the selected mix ratio. If you got it, you may use it. In addition, according to ASTM C-33 of the American Society for Testing and Materials, aggregates can be used in concrete products if the wear loss percentage does not exceed 50%, and the British Standard (BS) (88,1201 Part 2, 1973). ) Aggregates can be used if the surface wear does not exceed 45%.

이하, 실시예 및 실험예를 들어 본 발명의 구성 및 발명효과를 보다 상세하게 설명한다. 아래의 실시예 및 실험예는 본 발명의 내용을 설명하나, 본 발명의 내용이 여기에 한정되지는 않는다.Hereinafter, the structure and the effect of the present invention will be described in more detail with reference to Examples and Experimental Examples. The following Examples and Experimental Examples illustrate the content of the present invention, but the content of the present invention is not limited thereto.

<실시예 1: 재생골재의 입도 배합 시험>Example 1: Particle Size Mixing Test of Recycled Aggregate

개암환경에서 생산된 재생골재를 이용하여 최대 골재 크기를 50.8㎜로 하고, 하기 표 4와 같은 입도 분포별 배합비를 갖는 재생골재를 제조하였다.Using the recycled aggregate produced in the hazelnut environment, the maximum aggregate size was 50.8 mm, and a recycled aggregate having a blending ratio according to particle size distribution was prepared as shown in Table 4 below.

<실시예 2: 재생골재의 입도 배합 시험>Example 2: Particle Size Mixing Test of Recycled Aggregate

최대 골재 크기를 38.1㎜로 하고, 하기 표 5와 같은 입도 분포별 배합비를 갖는 재생골재를 제조하였다.A maximum aggregate size was 38.1 mm, and a recycled aggregate having a blending ratio according to particle size distribution was prepared as shown in Table 5 below.

<실시예 3: 재생골재의 입도 배합 시험>Example 3: Particle Size Mixing Test of Recycled Aggregate

최대 골재 크기를 25.4㎜로 하고, 하기 표 6과 같은 입도 분포별 배합비를 갖는 재생골재를 제조하였다.A maximum aggregate size was 25.4 mm, and a recycled aggregate having a blending ratio according to particle size distribution as shown in Table 6 was prepared.

도 3a 내지 도 3c는 각각 본 발명의 실시예 1 내지 실시예 3에 따라 준비된 시료의 입도 분포별 배합비를 나타낸 것이다. 또한, 도 3d는 상기 실시예들의 평균적인 입도 분포별 배합비를 나타낸 것이다. 상기 도면에 있어서, 실시예들의 입도 분포별 배합비를 나타내는 그래프의 바깥쪽에 도시된 실선은 노반재로 사용하는 재료(흙)의 입도한계를 표시한 선이다.Figures 3a to 3c shows the mixing ratio of the particle size distribution of the samples prepared according to Examples 1 to 3 of the present invention, respectively. In addition, Figure 3d shows the mixing ratio of the average particle size distribution of the above embodiments. In the figure, the solid line shown on the outside of the graph showing the compounding ratio for each particle size distribution of the embodiments is a line indicating the particle size limit of the material (dirt) used as the roadbed.

상기와 같이 콘크리트 재생골재의 도로 보조기층 및 노상토 재료로서 요구되는 기준을 만족시키도록 배합된 실시예 1 내지 실시예 3의 재생골재에 대하여 입도시험, 비중시험 등 콘크리트의 물성시험은 물론 최적함수비를 구하기 위한 다짐시험 CBR 시험, 및 반복재하식 MR시험을 각각의 배합비율에 따라 수행하였으며, 그 절차는 도 4에 도시된 순서도와 같다.As described above, with respect to the recycled aggregates of Examples 1 to 3 blended to satisfy the standards required as the road auxiliary base layer and subgrade soil material of the concrete recycled aggregates, the physical property test such as particle size test and specific gravity test, as well as the optimum water content ratio Compaction test to obtain the CBR test, and repeated loading M R test was performed according to the respective mixing ratio, the procedure is shown in the flow chart shown in FIG.

<실험예 1: CBR 시험>Experimental Example 1 CBR Test

한국도로공사의 노반재의 품질 특성은 하기 표 7과 같다.Quality characteristics of the roadbed of the Korea Expressway Corporation are shown in Table 7.

상기 실시예 1 내지 실시예 3에 따른 입도 분포별 배합비로 준비된 재생골재의 CBR 시험 측정값은 30% - 40%로 노체나 노상재료로 활용할 수 있음을 알 수 있다. 그러나, 보조기층 재료로 사용하기 위해서는 품질 안정성과 현장 CBR시험 등 추가적인 검토를 더 수행하는 것이 바람직할 것이다.It can be seen that the CBR test measurement value of the recycled aggregate prepared in the mixing ratio according to the particle size distribution according to Examples 1 to 3 can be utilized as a furnace body or a road material as 30% -40%. However, it may be desirable to perform further reviews, such as quality stability and on-site CBR testing, for use as auxiliary base material.

<실험예 2: MR시험>Experimental Example 2: M R Test

포장체는 차량의 주행에 의해 윤하중을 반복적으로 받는다. 때문에 일반적인 역학적 특성치(탄성계수)를 포장설계에 적용하는 것보다 반복재하 조건에서 결정된 포장재료의 역학적 특성치를 적용한 포장설계 해석방법이 합리적이고 경제적이다. 이러한 포장 각층 재료들이 받는 반복적인 윤하중에 대한 응력-변형관계를 나타내는 재료의 물성치로서 회복탄성계수(MR)가 있다.The package receives the wheel load repeatedly as the vehicle travels. Therefore, rather than applying general mechanical properties (elastic modulus) to pavement design, pavement design analysis method using pavement properties determined under repeated loading condition is more reasonable and economical. There is a recovery modulus of elasticity (M R ) as a material property of the material which shows the stress-strain relationship with respect to the repeated lubrication loads received by each pavement layer.

1986년 AASHTO 개정설계법에서 포장전층의 설계두께 결정 및 포장 각층의 상대적인 두께결정을 위한 포장설계법에 AASHTO T 274시험에 준한 MR을 도입하였으며, MR은 하기 수학식 1로 정의된다.In 1986, the AASHTO revised design method introduced M R according to the AASHTO T 274 test in the pavement design method for determining the design thickness of the entire pavement layer and the relative thickness of each pavement layer, and M R is defined by Equation 1 below.

MR= σd/εRM R = σd / εR

(상기 식 중에서 σd 는 반복축차응력(kg/㎠), εR 는 축방향 회복변형률)Where σd is the repetitive axial stress (kg / cm 2) and εR is the axial recovery strain.

MR특성에 영향을 주는 요소로는, 함수비, 밀도 및 다짐특성, 동결, 융해작용, 및 입도분포를 들 수 있다. 예컨대, 시공 후 계절에 따른 함수상태의 변화로 인한 영향을 받는데, 일반적으로 함수비가 증가하면 MR값은 감소한다. 또한, 함수비는 점성, 세립토의 노상흙과 세립토 함량이 높은 기층 및 보조기층용의 입상조립토의 MR특성에 큰 영향을 미친다. 그리고, 동일한 포화도에서는 다짐도가 클수록 MR값이 커진다. 이것은 시공단계에서 포장 각층과 노상토의 다짐특성에 관련되어 있다. 한편, 계절적으로 반복되는 동결, 융해작용은 세립점성토의 MR특성에 큰 영향을 미친다. 일정한 함수비가 유지되는 상태일지라도 반복되는 동결, 융해작용에 의해 점성 세립토의 MR값은 현저하게 감소한다.Factors affecting the M R characteristics include water content, density and compaction characteristics, freezing, melting, and particle size distribution. For example, it is influenced by the change of the water content according to the season after construction. In general, as the water content increases, the M R value decreases. In addition, the water content has a great influence on the M R characteristics of the granular granules for viscous, subgrade soils of fine grained soils and high base and subbases of fine grained soils. And at the same saturation degree, M R value becomes large, so that compaction degree is large. This is related to the compaction characteristics of each pavement and subgrade soil at the construction stage. On the other hand, seasonally repeated freezing and thawing have a great influence on the M R characteristics of fine clay. Even if a constant water content is maintained, the M R value of the viscous fine grains is remarkably decreased by repeated freezing and thawing.

일반적으로는 통일분류법 등에 의해 구분되는 흙의 종류와 MR특성은 뚜렷한 상관관계가 없는 것으로 알려져 있다. 그러나 동일한 입도분포를 갖는 경우 각진입자(angularity)로 구성된 입상토의 MR값이 더 크며, 느슨한 입도분포를 갖는 재료가 밀집한 입도분포를 갖는 경우보다 MR값이 작다.In general, it is known that there is no clear correlation between soil type and M R characteristics distinguished by the unification classification method. However, if the same size having a distribution of particulate soil composed of angular particles (angularity) M R value is larger and smaller than the value R M when having a particle size of a dense material having a loose distribution of the particle size distribution.

본 실험예 2에서 사용된 반복재하식 MR시험기는 VJ-Tech(英) 및 Instron(美)제품으로서 삼축셀을 포함한 하중프레임, 구속응력 재하장치, 신호처리 및 시스템 제어장치로 구성되어 있으며, 응력 조절방식과 변형률 조정방식 모두 가능하다. 시험기 시스템의 구성은 도 5에 도시하였고, 삼축셀과 하중 및 변위 측정위치는 도 6에 도시하였다. 시험재료의 크기는 100mm 직경의 실린더 형이다.The repeated loading M R tester used in this Experimental Example 2 is a VJ-Tech (UK) and Instron (USA) product and consists of a load frame including triaxial cells, restraint stress load device, signal processing and system control device. Both stress control and strain control are possible. The configuration of the tester system is shown in FIG. 5, and the triaxial cell and the load and displacement measurement positions are shown in FIG. 6. The test material is 100 mm in diameter cylindrical.

반복재하식 MR시험기에서 축방향 변형의 측정위치를 어디로 할 것인가에 관하여는 많은 논의가 있어 왔다<Pezo,1991>. 반복재하식 MR시험법에 관한 초기의 규정인 AASHTO T294-82에서는 클램프를 이용한 내부변형 측정방식과 삼축셀 외부에 설치된 두 개의 LVDT를 사용하는 외부변형측정 방법 모두를 제시하였다.There has been much discussion about where to measure the axial strain in a repeatable M R tester (Pezo, 1991). AASHTO T294-82, the initial specification for the repeated loading M R test method, proposed both an internal strain measurement method using a clamp and an external strain measurement method using two LVDTs mounted outside the triaxial cell.

반복재하식 MR시험에서는 윤하중에 의해 포장체에 유발되는 응력상태를 모사하여 도 7(a)와 같이 0.1초간 반정현(harversine) 모양의 하중을 재하하고, 0.9초간 휴지기간(rest period)을 갖는 일정한 주기의 축차응력을 반복적으로 재하하여 도 7(b)와 같은 변형율 응답을 얻게된다. 이를 응력-변형율 관계로 나타내면 도 7(c)와 같은 결과를 획득할 수 있고, 이로부터 회복탄성계수(MR)를 결정한다.In the repeated loading M R test, the stress state induced on the package due to the lubrication load is simulated, and a load of a harversine shape is loaded for 0.1 second as shown in FIG. By repeatedly loading the sequential stress of a certain period, the strain response as shown in FIG. 7 (b) is obtained. If this is represented by the stress-strain relationship, the result as shown in FIG. 7 (c) can be obtained, and the recovery elastic modulus (M R ) is determined therefrom.

하중 파형의 차이를 무시하면 반복재하식 MR시험에서 0.1초 동안의 반정현 하중은 비틂 전단시험에서 사용하는 5㎐ 정현하중의 위 부분만 적용되는 것으로 등가적으로 고려할 수 있다. 따라서 반복재하식 MR시험이 수행되는 하중주파수는 5㎐로 가정할 수 있다.Disregarding the difference in the load waveform, the semi-sinusoidal load for 0.1 s in the cyclic M R test can be considered equivalent to the upper part of the 5 ㎐ sine load used in the torsional shear test. Therefore, the load frequency at which the repeated loading M R test is performed can be assumed to be 5 kHz.

상기와 같은 MR시험 결과, 실시예들은 2.0∼3.5MPa의 우수한 물리적 특성을 보였으며, 이 측정치는 도 8a 내지 도 8c(각각 실시예 1 내지 3)에 나타내었다. 이 때, 구속응력은 69kPa로서 일반적인 구속압을 주었다.As a result of the M R test, the examples showed excellent physical properties of 2.0 to 3.5 MPa, and these measurements are shown in FIGS. 8A to 8C (Examples 1 to 3, respectively). At this time, the restraint stress was 69 kPa, which gave a general restraint pressure.

또한, 기타 시험결과 다짐 등 충격에 의한 입도의 변화는 없었다.In addition, other test results showed no change in particle size due to impact, such as compaction.

이상에서 설명한 바와 같이, 본 발명에서는 노반재료로서 필요한 CBR 및 MR시험결과를 포함하는 물리적 특성을 만족시키는 노반재료용 재생골재의 최적 입도 분포별 배합비를 제시하였다.As described above, in the present invention, the mixing ratio of the optimum particle size distribution of the recycled aggregate for the roadbed material satisfying the physical properties including the CBR and M R test results required as the roadbed material was presented.

따라서, 본 발명에 의한 노반재료용 재생골재는, 노체, 노상재료, 보조기층재료 등 노상재료로서 활용될 수 있다.Therefore, the recycled aggregate for roadbed materials according to the present invention can be utilized as a roadbed material such as a furnace body, a roadbed material, and an auxiliary base material.

Claims (3)

노반재료로 사용되기 위한 재생골재로서,As recycled aggregate to be used as roadbed material, 상기 재생골재의 입도가, 50.8㎜의 크기체 통과중량 백분율이 100%, 38.1㎜의 크기체 통과중량 백분율이 75~100%, 25.4㎜의 크기체 통과중량 백분율이 65~80%, 19.1㎜의 크기체 통과중량 백분율이 55~70%, 9.53㎜의 크기체 통과중량 백분율이 40~60%, 4.75㎜의 크기체 통과중량 백분율이 25~45%, 2.00㎜의 크기체 통과중량 백분율이 15~30%, 0.425㎜의 크기체 통과중량 백분율이 5~20%, 0.075㎜의 크기체 통과중량이 10% 이하인 입도 분포별 배합비를 가지고,The particle size of the recycled aggregate, 100% of the size of the passage through the size of 50.8mm, 75% to 100% of the weight of the passage through the size of 38.1mm, 65-80% of the size of the passage through the size of 25.4mm, 65 to 80%, 55-70% of the size of the penetrating weight of the size, 40-60% of the size of the penetrating weight of the 9.53 mm, 25-45% of the size of the penetrating weight of the 4.75 mm, 15- of the size of the weight of the penetrating body of 15.00 mm It has a blending ratio of particle size distribution of 30%, 0.425mm sized body weight percentage of 5-20%, 0.075mm sized body weight of 10% or less, 상기 재생골재의 노상토 지지력비가 20%~40%이고, 회복탄성계수가 1.5~5MPa인 것을 특징으로 하는 노반재료용 재생골재.The subgrade soil bearing capacity ratio of the recycled aggregate is 20% to 40%, and the recycled aggregate for roadbed materials, characterized in that the recovery modulus of 1.5 ~ 5MPa. 노반재료로 사용되기 위한 재생골재로서,As recycled aggregate to be used as roadbed material, 상기 재생골재의 입도가, 38.1㎜의 크기체 통과중량 백분율이 100%, 25.4㎜의 크기체 통과중량 백분율이 80~100%, 19.1㎜의 크기체 통과중량 백분율이 65~90%, 9.53㎜의 크기체 통과중량 백분율이 50~75%, 4.75㎜의 크기체 통과중량 백분율이 35~65%, 2.00㎜의 크기체 통과중량 백분율이 25~50%, 0.425㎜의 크기체 통과중량 백분율이 5~30%, 0.075㎜의 크기체 통과중량이 15% 이하인 입도 분포별 배합비를 가지고,The particle size of the recycled aggregate, 100% of the weight of the passage through the size of 38.1mm, 80% to 100% of the weight of the passing through the size of 25.4mm, 65-90% of the weight of the passing through the size of 19.1mm, of 65 to 90% 50-75% of the size of the penetrating weight of the size, 35-65% of the weight of the penetrating weight of the 4.75mm, 25-50% of the size of the weight of the penetrating body of the 2.00mm, 5-5 of the size of the weight of the penetrating body of 0.425mm It has a compounding ratio by particle size distribution with a weight of 30% and a body size of 0.075 mm of 15% or less 상기 재생골재의 노상토 지지력비가 20%~40%이고, 회복탄성계수가 1.5~5MPa인 것을 특징으로 하는 노반재료용 재생골재.The subgrade soil bearing capacity ratio of the recycled aggregate is 20% to 40%, and the recycled aggregate for roadbed materials, characterized in that the recovery modulus of 1.5 ~ 5MPa. 노반재료로 사용되기 위한 재생골재로서,As recycled aggregate to be used as roadbed material, 상기 재생골재의 입도가, 25.4㎜의 크기체 통과중량 백분율이 100%, 19.1㎜의 크기체 통과중량 백분율이 80~100%, 9.53㎜의 크기체 통과중량 백분율이 60~85%, 4.75㎜의 크기체 통과중량 백분율이 45~75%, 2.00㎜의 크기체 통과중량 백분율이 30~60%, 0.425㎜의 크기체 통과중량 백분율이 15~35%, 0.075㎜의 크기체 통과중량이 15% 이하인 입도 분포별 배합비를 가지고,The particle size of the recycled aggregate, 100% of the weight of the passage through the size of 25.4 mm, 80-100% of the weight of the passage of the size of 19.1 mm, 60-85% of the size of the passage of the size of 9.53 mm, of 4.75 mm 45-75% of the size of the passage of the size of the body, 30-60% of the weight of the passage of the body of 2.00 mm, 15-35% of the size of the passage of the body of the body size of 0.425 mm, and 15% of the size of the passage of the body of 15 size of 0.075 mm Having a compounding ratio by particle size distribution, 상기 재생골재의 노상토 지지력비가 20%~40%이고, 회복탄성계수가 1.5~5MPa인 것을 특징으로 하는 노반재료용 재생골재.The subgrade soil bearing capacity ratio of the recycled aggregate is 20% to 40%, and the recycled aggregate for roadbed materials, characterized in that the recovery modulus of 1.5 ~ 5MPa.
KR1020020026279A 2002-05-13 2002-05-13 Recycled aggregate for base course material of pavement KR20030088608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020026279A KR20030088608A (en) 2002-05-13 2002-05-13 Recycled aggregate for base course material of pavement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020026279A KR20030088608A (en) 2002-05-13 2002-05-13 Recycled aggregate for base course material of pavement

Publications (1)

Publication Number Publication Date
KR20030088608A true KR20030088608A (en) 2003-11-20

Family

ID=32382609

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020026279A KR20030088608A (en) 2002-05-13 2002-05-13 Recycled aggregate for base course material of pavement

Country Status (1)

Country Link
KR (1) KR20030088608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102209627B1 (en) 2020-06-09 2021-01-29 민원 Real-time gradation combination system in process of producing aggregate and mixing method using that

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970021514A (en) * 1997-02-13 1997-05-28 최영길 Manufacturing method of concrete pavement and sidewalk block using waste concrete
KR20000020919A (en) * 1998-09-24 2000-04-15 황익현 Porous asphalt concrete and pavement method thereof
KR20010007170A (en) * 1999-06-04 2001-01-26 이 아키라 The reclaimed asphalt paving mixture with large particle size, method for manufacturing thereof and paving method with using the same
KR20020003337A (en) * 2001-12-08 2002-01-12 박정호 permeable asphalt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970021514A (en) * 1997-02-13 1997-05-28 최영길 Manufacturing method of concrete pavement and sidewalk block using waste concrete
KR20000020919A (en) * 1998-09-24 2000-04-15 황익현 Porous asphalt concrete and pavement method thereof
KR20010007170A (en) * 1999-06-04 2001-01-26 이 아키라 The reclaimed asphalt paving mixture with large particle size, method for manufacturing thereof and paving method with using the same
KR20020003337A (en) * 2001-12-08 2002-01-12 박정호 permeable asphalt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102209627B1 (en) 2020-06-09 2021-01-29 민원 Real-time gradation combination system in process of producing aggregate and mixing method using that

Similar Documents

Publication Publication Date Title
Gedik et al. Investigation of recycled fluorescent lamps waste as mineral filler in highway construction: A case of asphaltic pavement layers
Harun-Or-Rashid et al. A review paper on: effect of different types of filler materials on marshall characteristics of bitumen hot mix
Tannant et al. Properties of fly ash stabilized haul road construction materials
Subedi et al. Utilization of crushed ceramic tile wastes as partial replacement of coarse aggregate in concrete production
Moses Ogundipe et al. Evaluation of the effects of waste glass in asphalt concrete using the Marshall test
Edeh et al. Cassava peel ash stabilized lateritc soil as highway pavement material
CN101698578A (en) Material taking construction waste as road subbase
Oba et al. Suitability of saw dust ash and quarry dust as mineral fillers in asphalt concrete
KR20030088608A (en) Recycled aggregate for base course material of pavement
Qasrawi et al. Use of recycled concrete rubbles as coarse aggregate in concrete
Sas Application of recycled concrete aggregate in road engineering
CN212611780U (en) Highway road surface structure that waste residue utilized
El-Assaly et al. Evaluation of recycling waste materials and by-products in highway construction
CN114195439A (en) Design method for mix proportion of high-doping-amount construction waste cement stabilized macadam
Tawfeeq et al. Slump and compressive strength of concrete mix with crushed concrete blocks as coarse aggregate
CN111485470A (en) Highway road surface structure that waste residue utilized
Ahmed et al. Potential use of mines and quarries solid waste in road construction and as replacement soil undre foundations
Haque et al. COMPARISON OF PROPERTIES OF FINE AGGREGATE OBTAINED FROM RECYCLED CONCRETE WITH THAT OF CONVENTIONAL FINE AGGREGATES
Etipola et al. Evaluating the material properties of recycled aggregates as a pavement base or sub-base construction material in Sri Lanka
Abukersh High quality recycled aggregate concrete
Bashkoul et al. Evaluate the use of recycled asphalt pavement (RAP) in the construction of roller compacted concret pavement (RCC)
Ataei Sustainability and effect of rubber tire aggregates on compressive and dynamic strength of concrete used for highway and airfield pavement
Molla Concrete with Recycled Fine Aggregate (RFA) and Manufactured Sand (MS): Compressive Strength and Cost
Gupta et al. Feasibility study for using industrial waste as filler in bituminous concrete
Abiero et al. Suitability of sewage sludge ash as a filler material in asphalt concrete

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application