KR20030087801A - Wastewater treatment apparatus and method using ultrasonic generator and photo-catalytic material - Google Patents

Wastewater treatment apparatus and method using ultrasonic generator and photo-catalytic material Download PDF

Info

Publication number
KR20030087801A
KR20030087801A KR1020020025732A KR20020025732A KR20030087801A KR 20030087801 A KR20030087801 A KR 20030087801A KR 1020020025732 A KR1020020025732 A KR 1020020025732A KR 20020025732 A KR20020025732 A KR 20020025732A KR 20030087801 A KR20030087801 A KR 20030087801A
Authority
KR
South Korea
Prior art keywords
water
wastewater
photocatalyst
ultrasonic
treatment
Prior art date
Application number
KR1020020025732A
Other languages
Korean (ko)
Other versions
KR100473651B1 (en
Inventor
이양래
임의수
김유창
김현용
Original Assignee
한국기계연구원
김현용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원, 김현용 filed Critical 한국기계연구원
Priority to KR10-2002-0025732A priority Critical patent/KR100473651B1/en
Publication of KR20030087801A publication Critical patent/KR20030087801A/en
Application granted granted Critical
Publication of KR100473651B1 publication Critical patent/KR100473651B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE: Provided are a water treatment apparatus and a water treatment method using ultrasonic wave and photocatalyst, the apparatus and method being capable of eliminating both of hydrophilic contaminants and hydrophobic contaminants. CONSTITUTION: The apparatus comprises a reaction chamber(100), an ultrasonic generator(400) installed on the inside of the reaction chamber(100) at a side thereof, a photocatalyst(200) provided on the inside of the reaction chamber(100) at the other side thereof, a compartment(500) provided between the ultrasonic generator(400) and the photocatalyst(200), an oxygen supply unit for supplying oxygen to the inside of the reaction chamber(100), and a pH adjusting unit(600) for adjusting raw water to be introduced into the reaction chamber(100). The method comprises the steps of adjusting pH of raw water to pH 7, applying ultrasonic wave to raw water, and decomposing/adsorbing contaminants by photocatalyst while applying UV rays to the raw water.

Description

초음파와 광촉매를 이용한 수처리장치 및 수처리방법{WASTEWATER TREATMENT APPARATUS AND METHOD USING ULTRASONIC GENERATOR AND PHOTO-CATALYTIC MATERIAL}WATER WATER TREATMENT APPARATUS AND METHOD USING ULTRASONIC GENERATOR AND PHOTO-CATALYTIC MATERIAL}

본 발명은 산업폐수나 생활하수와 같은 각종 폐수 속에 포함된 오염물질을 초음파와 광촉매를 이용하여 제거하는 수처리 장치 및 수처리 방법에 관한 것이다.The present invention relates to a water treatment apparatus and a water treatment method for removing contaminants contained in various wastewaters, such as industrial wastewater and domestic sewage, using ultrasonic waves and photocatalysts.

산업폐수나 생활하수와 같은 폐수 속에는 유기물이나 무기물 또는 중금속과같은 각종 오염물질이 다량으로 포함되어 있는데, 이들 오염물질은 크기나 비중 또는 물성이 매우 다양하다.Wastewater, such as industrial wastewater and domestic sewage, contains a large amount of various pollutants such as organic, inorganic, or heavy metals, and these pollutants vary greatly in size, specific gravity, or physical properties.

종래의 수처리 시스템은 폐수에 포함된 각 오염물질의 특정 성질을 이용하여 이들 오염물질들을 순차적으로 하나씩 제거하였는데, 예를 들면 중금속처럼 물보다 비중이 무거운 오염물질은 침전시켜 제거하였고 기름이나 나뭇잎처럼 물과 섞이지 않으면서 비중이 가벼운 오염물질은 스크린 장치나 뜰 채 또는 흡입형 스컴스키머 등의 진공흡입장치로 제거하였다. 또한, 폐수 중의 현탁물질은 응집제를 투입하여 침전시키거나 소위 '가압부상장치'라는 기포발생장치로 제거하였다.Conventional water treatment systems use the specific properties of each pollutant contained in the wastewater to remove these pollutants one by one. For example, pollutants that are heavier than water, such as heavy metals, are precipitated and removed. Contaminants that have a low specific gravity without mixing with them are removed by a vacuum device such as a screen device, a garden or a suction scum skimmer. In addition, the suspended solids in the waste water were precipitated by adding a flocculant or removed by a bubble generator called a pressure booster.

따라서, 과거의 수처리 시스템은, 앞에서 언급한 각 요소들 중 몇 개가 필요에 따라 적당한 형태로 조합된 형태이다.Thus, the water treatment system of the past is a form in which some of the aforementioned elements are combined in a suitable form as necessary.

그러나, 이러한 구조의 수처리 시스템은 폐수 유입 시부터 정화된 물을 방류할 때까지 긴 처리시간이 요구되는 단점이 있으며, 시간당 처리량이 적어 많은 양의 폐수를 처리하기 위해서는 시스템이 대형화 될 수밖에 없으며 폐수처리비용이 많이 드는 단점이 있었다. 하지만, 더욱 큰 단점은 이온상태로 존재하거나 아주 미세한 크기로 존재하는 오염물질은 제거되지 않고 여전히 남아 있다는 것이다.However, the water treatment system having such a structure has a disadvantage of requiring a long treatment time from the inflow of the waste water to the discharge of the purified water, and due to the small amount of treatment per hour, the system has to be enlarged in order to treat a large amount of waste water. There was a costly disadvantage. However, a further disadvantage is that contaminants that exist in ionic state or in very fine size remain unremoved.

이러한 종래의 문제점을 개선하기 위한 방안으로서, 이산화티타늄과 같은 광 촉매를 이용하여 폐수 중에 포함된 미세한 오염물질까지 상기 광촉매의 산화작용과 환원작용으로 제거하는 광촉매 수처리 시스템이 최근 개발되어 각광을 받고 있다.As a method for improving such a conventional problem, a photocatalytic water treatment system for removing fine contaminants contained in wastewater by photooxidation and reduction by using a photocatalyst, such as titanium dioxide, has recently been in the spotlight. .

광촉매의 산화반응과 환원반응을 이용하는 상기 수처리 시스템은 일반적으로 광촉매 물질이 분말형태로 사용되는 현탁계와 다공성 물체에 담지된 상태로 사용되는 고정화계로 분류하는데, 이 중 현탁계의 광촉매 수처리 시스템은 수처리 종료 후 광촉매를 회수해야 하는 문제가 있다.The water treatment system using the oxidation and reduction of photocatalysts is generally classified into a suspension system in which photocatalytic materials are used in powder form and an immobilization system in which a photocatalytic material is supported on a porous object. There is a problem that the photocatalyst must be recovered after termination.

그러나, 상술한 광촉매 수처리 시스템은 그것이 현탁계이든 고정화계이든 상관없이 폐수 중에 포함된 오염물질 중 소수성오염물질은 전혀 제거할 수 없는 단점이 있었다.However, the photocatalytic water treatment system described above has a disadvantage in that hydrophobic contaminants contained in the wastewater cannot be removed at all, regardless of whether they are suspended or immobilized.

본 발명은 이러한 문제점을 개선하기 위해 안출된 것으로서, 폐수 중에 포함된 친수성오염물질은 물론 소수성오염물질까지도 제거할 수 있는 수처리 장치 및 수처리 방법을 제공함에 목적이 있다.The present invention has been made to improve such a problem, and an object of the present invention is to provide a water treatment apparatus and a water treatment method capable of removing hydrophobic contaminants as well as hydrophilic contaminants contained in waste water.

또한, 본 발명은 광촉매의 산화반응과 환원반응이 종래보다 더욱 활발히 일어나도록 함으로써 짧은 시간 내에 고효율로 친수성오염물질을 제거할 수 있는 수처리 장치 및 수처리 방법을 제공함에 목적이 있다.In addition, an object of the present invention is to provide a water treatment apparatus and a water treatment method capable of removing hydrophilic contaminants with high efficiency in a short time by allowing the oxidation and reduction reactions of the photocatalyst to occur more actively than before.

도1은 본 발명의 수처리 장치가 채용된 일 실시예의 수처리 시스템을 도시한 것이다.1 shows a water treatment system of one embodiment in which the water treatment apparatus of the present invention is employed.

도2는 도1에 도시된 반응처리조의 단면도이다.FIG. 2 is a sectional view of the reaction treatment tank shown in FIG.

[도면 부호의 설명][Description of Drawing Reference]

100...반응처리조, 200...광 촉매 매체,100 reaction tank, 200 photocatalyst medium,

300...UV 발생수단, 400...초음파 발생수단,300 ... UV generating means, 400 ... Ultrasound generating means,

500...격벽, 600...pH 조정조.500 ... bulk, 600 ... pH adjustment tank.

상기의 기술적 과제를 해결하기 위한 본 발명의 수처리 방법은, 폐수에 포함된 오염물질을 제거하기 위한 수처리 방법에 있어서, 폐수 중의 소수성오염물질은 초음파 처리공정에서 주로 제거하고, 폐수 중에 포함된 친수성오염물질은 광학적 처리공정에서 주로 제거하는 것을 특징으로 한다. 필요하다면, 상기 초음파 처리공정과 상기 광학적 처리공정을 반복하여 수행할 수 있다.In the water treatment method of the present invention for solving the above technical problem, in the water treatment method for removing contaminants contained in the waste water, hydrophobic contaminants in the waste water is mainly removed in the ultrasonic treatment process, hydrophilic contamination contained in the waste water The material is characterized in that it is mainly removed in the optical processing process. If necessary, the ultrasonic treatment process and the optical treatment process may be repeated.

잘 알려져 있는 것처럼, 광 여기된 이산화티탄 등의 광촉매 표면의 정공(正孔)은, 높은 산화전위를 가진다. 따라서, 광 여기상태의 광촉매에 물분자가 접촉하면 OH- 이온(OH 라디칼)이 형성되어 이 OH 라디칼의 산화작용에 의해 폐수 중의 친수성오염물질이 산화분해 된다. 한편, 광촉매 표면에 흡착되어 있던 친수성오염물질이 라디칼에 의해 분해되는 동안 폐수 중에는 소수성오염물질이 중간생성물로 남게 되는데, 본 발명에 의하면 이 소수성오염물질이 초음파에 의해 분해되어 버리므로 폐수 중에 포함된 소수성오염물질의 거의 대부분이 제거된다.As is well known, holes on the surface of photocatalysts such as photoexcited titanium dioxide have a high oxidation potential. Therefore, when water molecules come into contact with the photocatalyst in the photoexcited state, OH- ions (OH radicals) are formed, and the hydrophilic pollutants in the wastewater are oxidatively decomposed by the oxidation of the OH radicals. On the other hand, while hydrophilic pollutants adsorbed on the surface of the photocatalyst are decomposed by radicals, hydrophobic pollutants remain as intermediate products in the wastewater. According to the present invention, the hydrophobic pollutants are decomposed by ultrasonic waves and thus contained in the wastewater. Almost all of the hydrophobic contaminants are removed.

여기서, 초음파에 의한 소수성오염물질의 제거과정을 간략히 살펴본다.Here, the removal process of hydrophobic contaminants by ultrasonic wave is briefly described.

먼저, 폐수 중에 초음파를 주사하면 폐수 내에서 미세한 기포가 생성되는데, 이 기포는 수면으로 부상하는 중에 그 크기가 점점 커지다가 어느 크기에 도달하면 붕괴되어 버리게 된다. 이러한 기포의 붕괴 시, 붕괴된 기포 주변에는 고온·고압의 반응장이 생성되며 이때 상기 반응장 내의 소수성오염물질은 휘발되거나 분해되어 폐수로부터 제거된다.First, when ultrasonic waves are injected into the waste water, fine bubbles are generated in the waste water, and the bubbles grow larger in size while rising to the surface, and collapse when reaching a certain size. When the bubble collapses, a high-temperature, high-pressure reaction field is generated around the collapsed bubble. At this time, hydrophobic contaminants in the reaction field are volatilized or decomposed and removed from the wastewater.

따라서, 상기와 같은 본 발명의 수처리 방법에 의하면 폐수 중에 내포된 미세한 오염물질들이 완벽하게 제거될 수 있다.Therefore, according to the water treatment method of the present invention as described above, the fine contaminants contained in the waste water can be completely removed.

또한, 본 발명의 수처리 방법에서는, 폐수가 초음파 처리공정 및/또는 광학적 처리공정에 제공되기 전이나 이미 제공된 상태에서 상기 폐수에 산성용액 등을 투입하여 폐수의 pH를 7 이하로 낮추는 것이 바람직하다.In addition, in the water treatment method of the present invention, it is preferable to lower the pH of the wastewater to 7 or less by introducing an acidic solution or the like into the wastewater before or before the wastewater is provided to the ultrasonic treatment process and / or the optical treatment process.

이와 같이 하면, 광학적 처리공정에서 라디칼의 발생가능성이나 발생빈도가 훨씬 높아지게 되어 폐수 중의 친수성오염물질에 대한 산화분해의 효율이 향상되며산(acid)에 의한 살균효과를 볼 수 있다.In this way, the possibility of generating radicals or the frequency of occurrence of radicals in the optical treatment process is much higher, and thus the efficiency of oxidative decomposition of hydrophilic contaminants in wastewater is improved, and acid sterilization effect can be seen.

더욱 바람직하게는, 초음파 처리공정 및/또는 광학적 처리공정의 수행 전이나 수행 중에 산소를 공급함으로써 폐수의 용존산소량을 증대시키는 것이다.More preferably, the amount of dissolved oxygen in the wastewater is increased by supplying oxygen before or during performing the ultrasonic treatment process and / or the optical treatment process.

이와 같이 하면, 초음파 처리공정에서는 더욱 많은 수의 미세 기포가 형성되어 폐수 중의 소수성오염물질이 보다 용이하게 대량으로 제거될 수 있으며, 광학적 처리공정에서는 보다 많은 라디칼이 형성됨과 아울러 산화분해 반응도 촉진되어 친수성오염물질이 더욱 많이 제거될 수 있다.In this way, a larger number of fine bubbles are formed in the sonication process so that hydrophobic contaminants in the waste water can be more easily removed in a large amount, and in the optical treatment process, more radicals are formed and the oxidative decomposition reaction is promoted to promote hydrophilicity. More contaminants can be removed.

상술한 수처리 방법을 수행하기 위한 본 발명의 수처리 장치는, 기본적으로는 폐수를 초음파 처리하기 위한 초음파 발생수단과 폐수를 광학적으로 처리하기 위한 광촉매 매체 및 UV 발생수단을 포함하며, 필요에 따라 폐수의 pH를 조절하기 위한 pH조절수단과 산소공급수단이 추가로 설치될 수 있다. 또한, 상기 초음파 발생수단과 광촉매 매체 및 UV 발생수단 사이에는 이들을 부분적으로 차단하기 위한 격벽이 추가로 설치될 수 있다.The water treatment apparatus of the present invention for performing the above-described water treatment method basically includes an ultrasonic wave generating means for ultrasonically treating the wastewater and a photocatalyst medium and UV generating means for optically treating the wastewater. pH adjusting means and oxygen supply means for adjusting the pH may be additionally installed. In addition, a partition wall may be additionally installed between the ultrasonic wave generating means, the photocatalyst medium and the UV generating means to partially block them.

더욱 바람직하게는, 상기 초음파 발생수단과 광촉매 매체 및 UV 발생수단이 교대로 다수 개가 배치되고 그 사이 사이마다 격벽이 설치되는 것이다.More preferably, a plurality of the ultrasonic wave generating means, the photocatalyst medium and the UV generating means are alternately arranged, and partition walls are provided therebetween.

여기서, 상기 광촉매 매체로는 분말형태의 광촉매를 이용할 수도 있지만 이 경우 정화처리 된 물로부터 광촉매를 회수해야 하므로 가능하면 소정 형상의 소재에 광촉매를 고정시킨 담지체를 사용하여 회수에 대한 문제가 없게 하는 것이 바람직하다.In this case, a photocatalyst in the form of powder may be used as the photocatalyst medium, but in this case, the photocatalyst should be recovered from the purified water, so that there is no problem of recovery by using a carrier having the photocatalyst fixed to a material of a predetermined shape if possible. It is preferable.

또한, 산소공급수단을 통해서 폐수 중에 공급되는 산소원으로는 통상의 공기나 산소(O2) 및 오존(O3)과 같은 기체 또는 과산화수소수(H2O2)와 같은 액체가 사용될 수 있다.In addition, as the oxygen source supplied to the wastewater through the oxygen supply means, a normal air or a gas such as oxygen (O 2 ) and ozone (O 3 ) or a liquid such as hydrogen peroxide (H 2 O 2 ) may be used.

이상과 같이 구성되는 본 발명의 수처리 장치에 따르면, 초음파 발생수단과 광촉매 매체 사이를 부분적으로 차단하는 격벽에 의하여 상기 초음파 발생수단에서 발생된 초음파가 격벽에서 반사되거나 세기가 약화된 상태로 광촉매 매체에 도달하게 되므로, 담지체로부터 광촉매가 떨어져 나가는 것을 방지할 수 있다.According to the water treatment apparatus of the present invention configured as described above, the ultrasonic wave generated by the ultrasonic wave generating means by the partition wall partially blocking the ultrasonic wave generating means and the photocatalyst medium is reflected to the photocatalyst medium or the intensity is reduced. Since it reaches, the photocatalyst can be prevented from falling off from the carrier.

따라서, 광 촉매를 회수해야 하는 문제가 예방된다.Thus, the problem of recovering the photocatalyst is prevented.

또한, 본 발명의 수처리 장치에 따르면, 폐수 중에 과잉 공급된 산소가 광 촉매와 반응하여 더욱 많은 라디칼을 생성할 뿐 아니라 오염물질의 산화분해를 촉진하므로 오염물질의 제거효율이 상승하게 된다.In addition, according to the water treatment apparatus of the present invention, the oxygen supplied excessively in the waste water reacts with the photocatalyst to generate more radicals and promotes oxidative decomposition of the pollutants, thereby increasing the removal efficiency of the pollutants.

또한, pH조절수단으로 폐수의 pH를 조절함으로써 광촉매에 의한 OH- 이온의 발생가능성 또는 발생빈도를 높여 친수성오염물질의 제거효율을 상승시킬 수 있다.In addition, by adjusting the pH of the waste water by the pH control means it is possible to increase the generation or frequency of the generation of OH- ions by the photocatalyst to increase the removal efficiency of hydrophilic pollutants.

이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예에 따른 수처리 장치와 수처리 방법을 상세히 설명한다.Hereinafter, a water treatment apparatus and a water treatment method according to a preferred embodiment of the present invention with reference to the accompanying drawings will be described in detail.

여기서, 본 발명의 보호범위는 후술하는 실시예에 한정되지 않고 예컨대 본 명세서 상에서 언급하지 않았다 하더라도 그것이 공지의 구성요소인 경우에는 본 발명에 포함되는 것으로 이해되어야 할 것이다.Here, the protection scope of the present invention is not limited to the embodiments described below, for example, even if it is not mentioned in the present specification will be understood to be included in the present invention if it is a known component.

도1은 본 발명의 수처리 장치가 채용된 일 실시예의 수처리 시스템을 도시한 것이다.1 shows a water treatment system of one embodiment in which the water treatment apparatus of the present invention is employed.

도면에서, 부호 10은 폐수 중에 포함된 나무조각이나 천조각처럼 가볍지만 부피는 큰 부유성 물체를 제거하기 위한 전처리조이다.In the figure, reference numeral 10 denotes a pretreatment tank for removing a light but bulky floating object such as a piece of wood or a piece of cloth contained in the wastewater.

상기 전처리조(10)의 내부 바닥에는 한 쪽이 흡입펌프(P)와 연결된 파이프의 다른 쪽 끝 부분이 잠겨 있으며, 상기 파이프의 다른 쪽 끝 부분에는 여과망이 장착되어 있다. 또한, 상기 전처리조(10)에 폐수를 보충해 주기 위한 급수관로가 연결되어 있다.One end of the pipe connected to the suction pump P is locked to the inner bottom of the pretreatment tank 10, and the other end of the pipe is equipped with a filtering net. In addition, a water supply line for replenishing wastewater is connected to the pretreatment tank 10.

따라서, 상기 흡입펌프(P)를 구동시키면 상기 전처리조(10) 내에 저장된 폐수가 파이프 안으로 빨려들어 가게 되고 이때 파이프 끝에 설치된 여과망(도시않음)의 메쉬보다 작은 크기의 오염물질들이 폐수와 함께 흡입된다.Accordingly, when the suction pump P is driven, the waste water stored in the pretreatment tank 10 is sucked into the pipe, and contaminants having a smaller size than the mesh of the filter network (not shown) installed at the end of the pipe are sucked together with the waste water. .

이어서, 상기 전처리조(10)에서 폐수와 함께 흡입된 오염물질은 상기 파이프를 통해 전처리조의 후방에 설치된 침전조(20)로 배출되고, 상기 침전조(20)에서 폐수 중에 포함된 무거운 오염물질은 중력에 의해 바닥으로 가라앉고(침전작용) 가벼운 오염물질은 수면 위로 떠오르게 된다.Subsequently, the contaminants sucked together with the wastewater in the pretreatment tank 10 are discharged to the settling tank 20 installed at the rear of the pretreatment tank through the pipe, and the heavy contaminants contained in the wastewater in the settling tank 20 are subject to gravity. It sinks to the bottom (sedimentation) and light contaminants float above the water surface.

한편, 상기 침전조의 바닥에 가라앉은 오염물질은 바닥 일측에 설치된 드레인관을 통해 간헐적으로 제거되며, 상기 드레인 관보다 높은 위치에 설치된 배출 관을 통해 상기 침전조의 후방에 설치된 pH조정조(600) 쪽으로 폐수가 배출된다.On the other hand, contaminants settled on the bottom of the settling tank is intermittently removed through a drain pipe installed on one side of the bottom, waste water toward the pH adjustment tank 600 installed behind the settling tank through a discharge pipe installed at a position higher than the drain pipe. Is discharged.

상기 pH조정조(600)는 본 발명의 pH조절수단이 구체화 된 예로서, 모터(M)로 구동되는 교반날개(agitating blade)(610)가 상기 pH조정조의 내부 중앙에 설치되어 있으며, pH조절약품탱크(620)(630)에 일측이 연결되어 있는 파이프의 타측이 pH 조정조의 상부나 측면에 설치되어 있다.The pH adjusting tank 600 is an embodiment of the pH adjusting means of the present invention, the agitating blade (610) driven by a motor (M) is installed in the inner center of the pH adjusting tank, pH adjusting chemicals The other side of the pipe, one side of which is connected to the tanks 620 and 630, is installed on the upper side or side of the pH adjustment tank.

또한, 폐수의 pH를 검출하기 위한 pH미터(640)가 상기 pH조정조에 설치되어 있다.In addition, a pH meter 640 for detecting the pH of the wastewater is provided in the pH adjustment tank.

여기서, 본 실시예에서는 상기 pH조절약품탱크(620)(630)에 저장되는 약품으로서 황산용액과 수산화나트륨용액을 사용하였다.In this embodiment, sulfuric acid solution and sodium hydroxide solution were used as the chemicals stored in the pH adjusting chemical tanks 620 and 630.

상기 pH조정조(600)에서는 예를 들면 폐수의 pH를 5로 맞추는데 pH미터(640)의 검출치가 그 이상인 경우에는 예컨대 7인 경우에는 추가로 황산용액을 투입하고 그 이하인 경우에는 수산화나트륨용액을 추가로 투입하여 폐수의 pH가 5를 유지하도록 조정한다.In the pH adjustment tank 600, for example, the pH of the wastewater is adjusted to 5, but when the detection value of the pH meter 640 is higher or higher, for example, an additional sulfuric acid solution is added, and when it is lower, sodium hydroxide solution is added. To adjust the pH of the wastewater to 5.

이후, pH가 조정된 폐수는 상기 pH조정조의 후방에 설치된 본 발명의 반응처리조(100) 쪽으로 관로를 통해 배출된다.Thereafter, the pH-adjusted wastewater is discharged through the conduit toward the reaction treatment tank 100 of the present invention installed behind the pH adjustment tank.

첨부된 도2는 본 실시예의 반응처리조를 보다 상세히 도시한 것으로서, 상기 반응처리조(100) 내에는 폐수가 흘러나가는 하류 쪽에 초음파 발생수단(400)이 설치되고 상류 쪽에 광촉매 매체(200) 및 UV 발생수단(300)이 설치되어 있다.2 is a view illustrating the reaction treatment tank of the present embodiment in more detail. In the reaction treatment tank 100, an ultrasonic wave generating unit 400 is installed on the downstream side of the waste water and the photocatalyst medium 200 and the upstream side. UV generating means 300 is installed.

그리고, 이들 초음파발생수단(400)과 광촉매매체(200) 등은 반응처리조(100)의 내부를 가로질러 설치된 격벽(500)에 의해 부분적으로 차단되어 있다.In addition, these ultrasonic wave generating means 400 and the photocatalyst medium 200 are partially blocked by the partition wall 500 provided across the inside of the reaction treatment tank 100.

상기 광촉매 매체(200)로는 분말 형태의 광 촉매 입자나 상기 광촉매 입자가 담지체에 고정된 것을 사용할 수 있지만, 본 실시예에서는 수처리 후 광촉매를 회수하지 않아도 되는 고정식 광촉매를 사용하였다.As the photocatalyst medium 200, photocatalyst particles in the form of powder or those in which the photocatalyst particles are fixed to the carrier may be used, but in the present embodiment, a fixed photocatalyst which does not need to recover the photocatalyst after water treatment is used.

또한, 본 실시예에서는 반응처리조(100)의 내부 바닥에 설치된 산기관(110)과, 한 쪽이 도1에 도시된 과산화수소수 저장탱크(130)에 연결되어 있는 파이프를산소 공급수단으로 채용하였는데, 이 산기관의 한쪽 끝에는 송풍기(120)가 설치되어 있고 상기 과산화수소수 저장탱크에 연결된 파이프의 끝 부분은 상기 반응처리조의 상부나 측면 또는 바닥에 설치되어 있다.In addition, in the present embodiment, the oxygen supply means employs a diffuser 110 installed at the inner bottom of the reaction treatment tank 100 and one pipe connected to one of the hydrogen peroxide storage tanks 130 shown in FIG. 1. At one end of the diffuser, a blower 120 is installed, and an end of a pipe connected to the hydrogen peroxide storage tank is installed at the top, side, or bottom of the reaction tank.

따라서, 상기 반응처리조(100)에서는 광촉매 매체(200)와 UV 발생수단(300)에 의한 광학적 처리작업과 초음파 발생수단(400)에 의한 초음파 처리작업이 동시에 수행되어 폐수에 포함된 친수성오염물질과 소수성오염물질이 제거된다.Therefore, in the reaction treatment tank 100, the optical treatment by the photocatalyst medium 200 and the UV generating means 300 and the ultrasonic treatment by the ultrasonic generating means 400 are performed at the same time, so that the hydrophilic pollutants contained in the waste water. And hydrophobic contaminants are removed.

이상과 같이 구성된 본 실시예의 반응처리조에서는, 폐수에 포함된 오염물질이 다음과 같은 과정을 통해 제거된다.In the reaction treatment tank of this embodiment configured as described above, contaminants contained in the waste water are removed through the following process.

먼저, 전 처리공정에서 pH 5 정도로 맞춰진 폐수가 반응처리조의 상류 측에 유입되면 상기 폐수 중에 포함된 친수성오염물질이 광학적 처리에 의해 제거된다.First, when the wastewater adjusted to pH 5 in the pretreatment step flows into the upstream side of the reaction treatment tank, hydrophilic contaminants contained in the wastewater are removed by optical treatment.

즉, 상기 UV 발생수단(300)에 전원이 인가되어 자외선이 방출되면 상기 광촉매 매체(200)의 표면에 정공이 형성되고 그 주변에 라디칼이 생성되는데, 본 실시예에서는 폐수가 미리 산성처리 되어 있기 때문에 라디칼의 발생가능성이 종래보다 훨씬 높을 뿐 아니라 처리 중인 폐수에 과산화수소수가 추가로 투입됨으로써 보다 많은 량의 라디칼이 생성되게 된다.That is, when power is applied to the UV generating means 300 to emit ultraviolet rays, holes are formed on the surface of the photocatalyst medium 200 and radicals are generated in the vicinity thereof. Therefore, the generation of radicals is much higher than in the prior art, and further hydrogen peroxide water is added to the wastewater being treated to generate a larger amount of radicals.

이 라디칼은 폐수 중에 포함된 친수성오염물질을 공격하여 산화분해 시키며 이때 산기관(110)을 통해 공급되는 공기나 과산화수소수로부터 유래된 산소가 산화분해반응을 촉진시켜 폐수처리시간을 단축하게 된다.The radicals oxidize and decompose hydrophilic pollutants contained in the wastewater. At this time, oxygen from the air or hydrogen peroxide water supplied through the acid pipe 110 promotes the oxidative decomposition reaction and shortens the wastewater treatment time.

한편, 광학적 처리공정에서 친수성오염물질이 제거된 폐수는 상기 반응처리조(100)와 격벽(500) 사이에 형성된 틈새를 통해 반응처리조(100)의 하류로 유동하여 초음파 처리공정을 거치게 된다.Meanwhile, wastewater from which hydrophilic contaminants are removed in the optical treatment process flows downstream of the reaction treatment tank 100 through a gap formed between the reaction treatment tank 100 and the partition wall 500 and undergoes an ultrasonic treatment process.

상기 초음파 처리공정에서는 소수성오염물질의 제거작업이 수행되는데, 반응처리조(100) 안에 설치된 초음파 발생수단(400)으로부터 초음파가 방출되면 폐수 내에 미세한 기포가 생성됨과 거의 동시에 상기 기포의 붕괴과정에서 고온·고압의 반응장이 형성되어 이 반응장의 영향 아래에 놓인 소수성오염물질이 휘발되거나 산화되어 폐수로부터 제거된다.In the ultrasonic treatment process, hydrophobic contaminants are removed. When ultrasonic waves are emitted from the ultrasonic generator 400 installed in the reaction treatment tank 100, fine bubbles are generated in the waste water and at the same time, high temperatures are generated during the collapse of the bubbles. A high pressure reaction field is formed, and hydrophobic contaminants under the influence of this reaction field are volatilized or oxidized and removed from the waste water.

여기서, 본 발명의 초음파 처리공정과 광학적 처리공정은 본 실시예에서처럼 한 장소에서 한번만 수행될 수도 있지만, 처리공정이 교대로 반복하여 수행될 수도 있고 인접·설치된 다른 처리조에서 각각의 공정이 별도로 이루어질 수도 있다.Here, the ultrasonic treatment process and the optical treatment process of the present invention may be performed only once in one place as in this embodiment, but the treatment process may be repeatedly performed alternately, and each process may be performed separately in another processing tank adjacent to and installed. It may be.

이후, 상기 과정을 거쳐 나온 폐수는 반응처리조(100)의 후방에 설치된 방류조(30)에 잠시 저장되었다가 하천에 그대로 방류되거나 다른 처리공정에 제공된다.Thereafter, the wastewater discharged through the above process is temporarily stored in the discharge tank 30 installed at the rear of the reaction treatment tank 100 and discharged as it is in a stream or provided to another treatment process.

여기서, 미설명부호 L은 수위를 측정하기 위한 레벨러이다.Here, reference numeral L is a leveler for measuring the water level.

이하에서는, A공단 종말처리장의 유입수를 대상으로 본 발명의 수처리 방법에 따라서 광학적 처리와 초음파 처리를 병행한 경우의 오염물질 제거효율에 대해 설명한다.Hereinafter, the contaminant removal efficiency when the optical treatment and the ultrasonic treatment are performed in accordance with the water treatment method of the present invention for the influent of the industrial complex A treatment terminal will be described.

실험 1Experiment 1

A공단의 종말처리장에서 수거한 pH7.8 수준의 폐수를 광학적 처리공정과 초음파 처리공정에 연속으로 제공하여 폐수 중에 포함된 오염물질을 제거한 경우로써H2O2의 사용량을 변화시킨 경우이다.This is the case where the wastewater of pH7.8 collected from the terminal A of the industrial complex is continuously provided to the optical and ultrasonic treatment processes to remove contaminants contained in the wastewater, thereby changing the amount of H 2 O 2 used.

운전조건 및 실험조건과 수처리 후의 수질검사결과는 아래와 같다.Operational conditions, experimental conditions, and water quality test results after water treatment are as follows.

* 운전조건* Operation condition

① 유량 : 1ton/day① Flow rate: 1ton / day

② pH : 5② pH: 5

③ UV 발생수단 : 28ea × 39W③ UV generating means: 28ea × 39W

④ 초음파 발생수단 : 13ea × 450W(사용주파수범위 : 20∼250㎑)④ Ultrasonic generating means: 13ea × 450W (Use frequency range: 20 ~ 250 ㎑)

⑤ 변수 : H2O2의 사용량⑤ Variable: Usage of H 2 O 2

* 실험조건* Experimental condition

① 반응처리조의 체적 : 약 600ℓ① Volume of reaction treatment tank: about 600ℓ

② 반응처리조 내 폐수의 체류시간 : 약 12시간② Retention time of wastewater in reaction tank: about 12 hours

③ 반응처리조의 형상 : 장방형③ Shape of Reaction Treatment Tank: Rectangle

④ 격벽의 두께 : 약 10mm④ Thickness of bulkhead: about 10mm

⑤ 담지체 : 실리카 구슬⑤ Carrier: Silica Beads

표 1Table 1

H2O2(㎎/ℓ)H 2 O 2 (mg / L) COD mnCOD mn 처리율Throughput BODBOD 처리율Throughput SSSS 처리율Throughput 색도Chromaticity 처리율Throughput 00 25.525.5 43.343.3 0.90.9 96.196.1 99 86.286.2 2.42.4 95.395.3 2525 1919 57.757.7 0.90.9 96.196.1 77 89.289.2 4.84.8 90.690.6 100100 7.07.0 84.484.4 0.90.9 96.196.1 2.42.4 96.396.3 2.12.1 95.995.9 200200 11.611.6 74.274.2 0.30.3 98.798.7 5.15.1 92.192.1 2.12.1 95.995.9 400400 13.713.7 69.569.5 0.50.5 97.897.8 7.77.7 88.288.2 5.85.8 88.788.7 600600 26.826.8 42.242.2 0.10.1 99.699.6 4.74.7 92.892.8 44 92.292.2

상기 표1에서 알 수 있듯이, BOD처리율이나 SS처리율 및 색도처리율은 H2O2의양에 크게 상관없이 거의 일정한 수준을 유지하였지만, COD처리율은 사용된 H2O2의 양에 따라 큰 편차를 보였다.As can be seen from Table 1, BOD throughput or SS throughput and color throughput but maintain a substantially constant level significantly regardless of the H 2 O 2 uiyang, COD throughput showed a large variation depending on the amount of H 2 O 2 using .

본 실험에 따르면, H2O2의 사용량이 대략 100∼400㎎/ℓ 일 때 효율적인 것으로 밝혀졌다. 또한, 도1의 수처리 시스템에서 실험대상 폐수를 상기의 운전조건 및 실험조건에 따라 수처리 한 후 수질검사를 실시한 결과 페놀과 노르말헥산은 전혀 검출되지 않았다.According to this experiment, it was found to be efficient when the amount of H 2 O 2 used was approximately 100 to 400 mg / L. In addition, in the water treatment system of FIG. 1, the test wastewater was treated according to the above operating conditions and experimental conditions, and water quality test was performed.

실험 2Experiment 2

실험 2는 A공단의 폐수를 광학적 처리공정과 초음파 처리공정에 연속으로 제공하되 폐수의 pH를 변화시켜 가면서 처리한 경우이다.Experiment 2 is a case where the wastewater of industrial complex A is continuously provided to the optical treatment process and the ultrasonic treatment process, but it is treated by changing the pH of the wastewater.

실험조건과 운전조건 및 수처리 후의 수질검사결과는 아래와 같다.The test conditions, the operating conditions and the water quality test results after the water treatment are as follows.

운전조건Operating conditions

① 유량 : 1ton/day① Flow rate: 1ton / day

② H2O2: 400(㎎/ℓ)② H 2 O 2 : 400 (mg / L)

③ UV 발생수단 : 28ea × 39W③ UV generating means: 28ea × 39W

④ 초음파 발생수단 : 13ea × 450W(주파수범위 : 20∼250㎑)④ Ultrasonic generating means: 13ea × 450W (Frequency range: 20 to 250 kHz)

⑤ 변수 : 폐수의 pH⑤ Variable: pH of waste water

실험조건Experimental condition

실험 1과 동일Same as experiment 1

표 2TABLE 2

pHpH COD mnCOD mn 처리율Throughput BODBOD 처리율Throughput SSSS 처리율Throughput 색도Chromaticity 처리율Throughput 33 9.19.1 79.879.8 1.31.3 94.394.3 -- -- 4.44.4 91.491.4 44 7.07.0 84.484.4 0.90.9 96.196.1 2.42.4 96.396.3 2.12.1 95.995.9 55 13.713.7 69.669.6 1.51.5 93.593.5 4.74.7 92.892.8 4.14.1 92.092.0 7.87.8 26.826.8 40.440.4 0.10.1 99.699.6 4.74.7 92.892.8 44 92.292.2

상기 표2의 실험결과에 따르면, 실험 1과 마찬가지로 BOD처리율 등은 pH에 큰 영향을 받지 않았으나 COD처리율은 pH가 낮을수록 즉 산성일수록 효율적임을 알 수 있다.According to the experimental results of Table 2, as in Experiment 1, the BOD treatment rate and the like were not significantly affected by the pH, but the COD treatment rate was more efficient as the pH was lower, that is, the acid.

이상과 같이, 본 발명의 수처리 장치 및 수처리 방법에 따르면, 종래 광촉매 방식의 수처리 방법에 비해 COD는 약 30%가량, BOD는 12% 가량 감소됨을 알 수 있으며 난분해성 오염물질도 약 85%정도의 고 효율로 제거됨을 알 수 있다.As described above, according to the water treatment apparatus and the water treatment method of the present invention, it can be seen that COD is reduced by about 30% and BOD by about 12% compared to the conventional photocatalytic water treatment method. It can be seen that it is removed with high efficiency.

또한, 색도의 제거 면에 있어서도 초음파 처리만 한 경우에는 처리효율이 88%, 광학적 처리만 한 경우에는 처리효율이 84%이었지만, 본 발명의 방법에 따라 2개의 처리공정을 동시에 적용하였을 때에는 처리효율이 95% 이상으로 거의 완벽에 가까웠다.In addition, in terms of chromaticity removal, the treatment efficiency was 88% when only the ultrasonic treatment was performed, and the processing efficiency was 84% when the optical treatment was only performed. More than 95 percent were almost perfect.

또한, 광촉매를 소정 형상의 담지체에 담지하여 사용함으로써 반응처리조로부터 광촉매를 회수해야 하는 문제점을 근본적으로 제거할 수 있었다.In addition, by using the photocatalyst on a carrier having a predetermined shape, the problem of recovering the photocatalyst from the reaction treatment tank could be essentially eliminated.

이상에서 살펴본 바와 같이, 본 발명은 초음파와 광촉매 모두를 수처리 과정에 채용함으로써 초음파로는 소수성오염물질을 제거하고 광촉매로는 친수성오염물질을 제거하여 폐수의 정화효율을 극대로 한 특징이 있다.As described above, the present invention employs both ultrasonic waves and photocatalysts in the water treatment process, thereby removing hydrophobic pollutants with ultrasonic waves and hydrophilic pollutants with photocatalysts, thereby maximizing the purification efficiency of wastewater.

Claims (9)

폐수에 포함된 오염물질을 제거하기 위한 수처리 방법에 있어서,In the water treatment method for removing contaminants contained in waste water, 폐수에 초음파를 가하는 초음파 처리공정; 및An ultrasonic treatment step of applying ultrasonic waves to the waste water; And 폐수에 광촉매 및 UV를 가하는 광학적 처리공정; 을 포함하는 것을 특징으로 하는 수처리 방법.Optical treatment process for applying photocatalyst and UV to the waste water; Water treatment method comprising a. 제1항에 있어서,The method of claim 1, 상기 초음파 처리공정 및 상기 광학적 처리공정이 반복되는 것을 특징으로 하는 수처리 방법.And the ultrasonic treatment process and the optical treatment process are repeated. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 투입되는 또는 투입된 폐수의 pH가 7 이하가 되도록 처리하는 것을 특징으로 하는 수처리 방법.A water treatment method characterized by treating so that the pH of the introduced or introduced wastewater is 7 or less. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 초음파 처리공정 및/또는 광학적 처리공정에서 폐수에 산소를 공급하는 것을특징으로 하는 수처리 방법.A water treatment method characterized by supplying oxygen to wastewater in an ultrasonic treatment process and / or an optical treatment process. 폐수에 포함된 오염물질을 제거하기 위한 수처리 장치에 있어서,In the water treatment apparatus for removing contaminants contained in waste water, 폐수에 초음파를 가하기 위한 초음파 발생수단; 및Ultrasonic generator for applying ultrasonic waves to the waste water; And 폐수를 광학적으로 처리하기 위한 광촉매 매체 및 UV 발생수단; 을 포함하는 것을 특징으로 하는 수처리 장치.Photocatalyst medium and UV generating means for optically treating the wastewater; Water treatment apparatus comprising a. 제5항에 있어서,The method of claim 5, 상기 초음파 발생수단과, 광촉매 매체 및 UV 발생수단은 격벽에 의해 부분적으로 차단되어 있는 것을 특징으로 하는 수처리 장치.And the ultrasonic generating means, the photocatalyst medium and the UV generating means are partially blocked by the partition wall. 제6항에 있어서,The method of claim 6, 격벽에 의해 부분적으로 차단되어 있는 상기 초음파 발생수단과, 광촉매 매체 및 UV 발생수단이 반복적으로 설치되어 있는 것을 특징으로 하는 수처리 장치.And the ultrasonic generating means, the photocatalyst medium and the UV generating means, which are partially blocked by the partition wall, are repeatedly provided. 제5항 내지 제7항 중의 어느 한 항에 있어서,The method according to any one of claims 5 to 7, 폐수의 pH를 조절하는 pH 조절수단이 추가로 포함된 것을 특징으로 하는 수처리 장치.Water treatment apparatus further comprises a pH adjusting means for adjusting the pH of the waste water. 제5항 내지 제7항 중의 어느 한 항에 있어서,The method according to any one of claims 5 to 7, 폐수에 산소를 공급하는 산소공급수단이 추가로 포함된 것을 특징으로 하는 수처리 장치.Water treatment apparatus further comprises an oxygen supply means for supplying oxygen to the waste water.
KR10-2002-0025732A 2002-05-10 2002-05-10 Wastewater treatment apparatus and method using ultrasonic generator and photo-catalytic material KR100473651B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0025732A KR100473651B1 (en) 2002-05-10 2002-05-10 Wastewater treatment apparatus and method using ultrasonic generator and photo-catalytic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0025732A KR100473651B1 (en) 2002-05-10 2002-05-10 Wastewater treatment apparatus and method using ultrasonic generator and photo-catalytic material

Publications (2)

Publication Number Publication Date
KR20030087801A true KR20030087801A (en) 2003-11-15
KR100473651B1 KR100473651B1 (en) 2005-03-08

Family

ID=32382249

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0025732A KR100473651B1 (en) 2002-05-10 2002-05-10 Wastewater treatment apparatus and method using ultrasonic generator and photo-catalytic material

Country Status (1)

Country Link
KR (1) KR100473651B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105693004A (en) * 2016-02-18 2016-06-22 金华知产婺源信息技术有限公司 Method for sewage treatment by magnetic nanopowder and photocatalytic oxidation
WO2019172552A1 (en) * 2018-03-06 2019-09-12 김학민 Method and system for treating water by using ultrasonication and/or photocatalytic reaction

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101269386B1 (en) * 2011-06-21 2013-05-29 고려대학교 산학협력단 Water treatment system using a LED-UV lamp and a photocatalyst
KR20240016783A (en) 2022-07-29 2024-02-06 (주)수정환경플랜트 Water treating apparatus using photo catalyst
KR20240016785A (en) 2022-07-29 2024-02-06 (주)수정환경플랜트 Water treating apparatus using photo catalyst

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3672823A (en) * 1970-03-25 1972-06-27 Wave Energy Systems Method of sterilizing liquids
US5130031A (en) * 1990-11-01 1992-07-14 Sri International Method of treating aqueous liquids using light energy, ultrasonic energy, and a photocatalyst
JPH0655196A (en) * 1992-08-06 1994-03-01 F Tex:Kk Method for purifying fouled water and device therefor
JPH08309372A (en) * 1995-05-23 1996-11-26 Hitachi Ltd Washing method and apparatus
JP3400942B2 (en) * 1998-04-20 2003-04-28 株式会社クボタ Method and apparatus for decomposing organic chlorine compounds such as dioxins in landfill leachate
JP2907814B1 (en) * 1998-05-13 1999-06-21 扶桑建設工業株式会社 Photocatalytic reactor
JP3922825B2 (en) * 1999-01-25 2007-05-30 株式会社荏原製作所 Liquid processing method and apparatus using bubble contraction
JP2000237771A (en) * 1999-02-19 2000-09-05 Suzuki Motor Corp Liquid treatment by catalytic reaction
JP3795268B2 (en) * 1999-08-17 2006-07-12 アタカ工業株式会社 Method and apparatus for treating wastewater containing organochlorine compounds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105693004A (en) * 2016-02-18 2016-06-22 金华知产婺源信息技术有限公司 Method for sewage treatment by magnetic nanopowder and photocatalytic oxidation
WO2019172552A1 (en) * 2018-03-06 2019-09-12 김학민 Method and system for treating water by using ultrasonication and/or photocatalytic reaction
CN111836785A (en) * 2018-03-06 2020-10-27 柳荣根 Method and system for water treatment using ultrasonic action and/or photocatalytic reaction

Also Published As

Publication number Publication date
KR100473651B1 (en) 2005-03-08

Similar Documents

Publication Publication Date Title
KR100848117B1 (en) Advanced water treatment equipment
US8926842B2 (en) Water treatment system and method using high pressure advanced oxidation process with unreacted ozone reusing
JP2007509740A (en) Apparatus and method for purifying aqueous effluents by oxidation and membrane filtration
JP2009262122A (en) Apparatus for water treatment
KR20110103801A (en) The gas captured type gas-liquid reactor and the water treatment apparatus, gas purification apparatus using thereof
JPH10109095A (en) Water purifying treatment device
KR101443835B1 (en) Sewage advanced treatment apparatus using automatic controll ozone nano-micro bubble generator and batch type floating reactor
KR101029589B1 (en) Water treatment apparatus having multiple straw filters
KR100473651B1 (en) Wastewater treatment apparatus and method using ultrasonic generator and photo-catalytic material
KR101858028B1 (en) Rapid complex water treatment system
KR20220100140A (en) Bubble flotation water treatment system using ultraviolet and ozone microbubbles
KR100438668B1 (en) Water treatment apparatus
JP4897255B2 (en) Water treatment apparatus and method
KR100711259B1 (en) Purification treatment apparatus
KR100497546B1 (en) Processing methode for sewage purification and equipment therefor
JP2002126480A (en) Ozonized water treatment equipment
JP2003334432A (en) Gas dissolving device and water treatment device and water treatment apparatus having these
KR100205443B1 (en) Apparatus for treating waste water using photocatalyst
KR20010068850A (en) The system to treat the sanitary sewage,wastewater by the membrane separator activated sludge process and the advanced oxidation process
KR100469317B1 (en) System for Advanced Wastewater Treatment using ozone
JP2002119978A (en) Apparatus and method for continuously treating water
WO2015174618A1 (en) Reused water treatment apparatus for reusing rainwater and graywater
KR200294909Y1 (en) Processing equipment for sewage purification
JP4700859B2 (en) HAZARDOUS SUBSTANCE TREATMENT METHOD, ITS DEVICE, AND WASTEWATER TREATMENT SYSTEM
JP2002119980A (en) Apparatus and method for continuously treating water

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131206

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151208

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20161207

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20171204

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 16