KR20030086740A - Driving method for agglutination reactor according to gtc function - Google Patents

Driving method for agglutination reactor according to gtc function Download PDF

Info

Publication number
KR20030086740A
KR20030086740A KR1020020024866A KR20020024866A KR20030086740A KR 20030086740 A KR20030086740 A KR 20030086740A KR 1020020024866 A KR1020020024866 A KR 1020020024866A KR 20020024866 A KR20020024866 A KR 20020024866A KR 20030086740 A KR20030086740 A KR 20030086740A
Authority
KR
South Korea
Prior art keywords
function
gtc
turbidity
inflow
flow rate
Prior art date
Application number
KR1020020024866A
Other languages
Korean (ko)
Inventor
여상철
Original Assignee
주식회사 거성개발
여상철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 거성개발, 여상철 filed Critical 주식회사 거성개발
Priority to KR1020020024866A priority Critical patent/KR20030086740A/en
Publication of KR20030086740A publication Critical patent/KR20030086740A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5209Regulation methods for flocculation or precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5227Processes for facilitating the dissolution of solid flocculants in water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE: Provided is a method for controlling a coagulator based on GTC function, wherein G is a value determined by inflow water temperature, T is a retention time and C is turbidity. CONSTITUTION: The method comprises the steps of detecting inflow water temperature, water inflow rate, and turbidity, and adjusting revolution per minute (RPM) of a motor of a mixer in a coagulation tank based on f(GTC), here G is a value determined by inflow water temperature, T is a retention time and C is turbidity, and wherein the f(GTC) is expressed as an equation of G·C¬0.5·T¬0.5.

Description

GTC 함수에 의한 응집기 운전 제어방법{DRIVING METHOD FOR AGGLUTINATION REACTOR ACCORDING TO GTC FUNCTION}DRAGING METHOD FOR AGGLUTINATION REACTOR ACCORDING TO GTC FUNCTION}

본 발명은 정수장 응집지 시설에서 슬러지 입자의 플럭 형성효율을 크게 하기 위한 방법으로서 더욱 상세하게는 수온, 탁도, 유입수량, 기타 영향인자에 따라서 일정함수에 연산된 속도로 운전이 되도록 한 것으로서 기존의 방식보다도 응집효율을 크게 하고 안정된 정수생산을 할 수 있도록 한 GTC 함수에 의한 응집기 운전 제어방법에 관한 것이다.The present invention is a method for increasing the flocculation efficiency of the sludge particles in a water treatment plant flocculation plant, more specifically, to operate at a speed calculated in a constant function according to the water temperature, turbidity, inflow water, and other influence factors. The present invention relates to a control method of agglomerator operation by a GTC function which makes the coagulation efficiency larger than the method and enables stable purified water production.

일반적으로 정수장의 응집기는 원수중의 탁질인 미소 플럭을 서로 충돌시키면서 크고 무겁고 견고한 플럭으로 만들어야만 침전과 여과가 원활하게 이루워진다 한다. 미소 플럭이 무겁고 큰 플럭으로 형성되기 위하여는 적절한 입자와 입자의 충돌이 이루워져야 되는데 이를 위하여는 적절한 교반속도와 교반시간이 절대 필요하다 하였다.In general, the flocculator in the water purification plant has to make a large, heavy and solid flocks while colliding with each other the fine flocks in the raw water, so that the sedimentation and filtration are performed smoothly. In order to form a heavy floc and a large floc, an appropriate particle and particle collision have to be made. For this purpose, an appropriate stirring speed and agitation time are absolutely necessary.

특히 온도와 속도와 관계되는 그 기초 이론식은 캠프(Camp)와 스타인(Stein)의 식이 있으며 플럭의 형성은 입자와 입자의 충돌횟수를 적절히 하는 것으로서 기본적으로 온도의 함수인 G값(Velocity Gradient: 평균속도구배)에 비례한다고 하였다. 그러나 한편 G값이 과대하면 플럭의 성장이 증대하기 보다는 전단력의 증가로 플럭이 파괴되므로 G값을 크게하는 데도 한계가 있다고 하였고, 경사응집에서 하류로 갈수록 G값을 단계별 감소시키는 것이 바람직하다고 하였다. 또한 유입유량은 응집지의 체류시간에 관계되므로 유입유량의 감소에 따라서는 회전속도인 전단력을감소시키는 것이 바람직하다고 보겠으며, 탁도는 일정범위 후에서 그 증가수에 따라서 플럭이 급속히 파괴되는 경향이 있으므로 회전속도인 전단력을 감소시켜야 된다고 보겠으며, 기타 영향인자인(수질의 슬러지성상, PH인자 등)을 고려한 속도조정이 되어야 하겠다.In particular, the basic formulas related to temperature and speed are the formulas of Camp and Stein, and the formation of the floc is appropriate for the number of collisions between particles and particles, and basically the G-value (Velocity Gradient: Average speed gradient). However, if the G value is excessive, it is said that there is a limit to increasing the G value because the floc is destroyed by the increase of shear force rather than the growth of the floc, and it is preferable to decrease the G value step by step from the slope aggregation to the downstream. In addition, since the inflow flow rate is related to the residence time of the flocculation basin, it is desirable to reduce the shear force, which is the rotational speed, according to the decrease of the inflow flow rate.The turbidity tends to break rapidly according to the increase number after a certain range. The shear force, which is the rotational speed, should be reduced, and the speed adjustment should be made in consideration of other influencing factors (water quality sludge property, PH factor, etc.).

종래의 실용신안공고 제94-1655호는 온도의 함수인 일정한 속도 구배값 만을 유지토록 하였으며, 실용신안공고 제137208호는 물속에서 직접 점도측정 수단을 설치하여 회전속도를 운전토록 하였고, 특허 제2000-0012526호는 최적상태가 되는 GT(속도 경사값과 체류시간의 곱)가 결정하여 유입유량과 응집수의 점도를 동시에 측정하고 이를 이용 G값과 체류시간의 곱이 일정하도록 하여 임펠러 회전속도를 구하여 이 값으로 운전되도록 하였다.Conventional Utility Model Publication No. 94-1655 maintains only a constant velocity gradient value that is a function of temperature, and Utility Model Publication No. 137208 allows the rotational speed to be operated by installing a viscosity measurement means directly in water. -0012526 is determined by GT (the product of velocity gradient and residence time), which is the optimum state, and simultaneously measures the viscosity of the inflow flow rate and the flocculation water, and uses it to calculate the impeller rotation speed by making the product of G value and residence time constant. It was allowed to operate at this value.

상기 실용신안공고 제94-1655호와 제137208호는 온도나 점도만을 이용하므로 물의 체류시간의 변화, 탁도의 변화 기타 영향인자등이 적용되지 않아 실제 운영상 여러 변화 발생시 플럭형성에 문제가 있었으며 특허 제2000-0012526호는 상기 실용신안보다 효율적이나 탁도의 변화적용, 기타 영향인자의 적용이 없어 고탁도시나, 수질이 변화시는 적절한 교반이 되지않아 플럭 형성이 깨지는 문제가 발생되었다.Utility Model Publication Nos. 94-1655 and 137208 use only temperature or viscosity, so changes in residence time of water, changes in turbidity, and other influencing factors are not applied. 2000-0012526 is more efficient than the utility model, but there is no application of changes in turbidity and other influence factors, causing problems of floc formation due to poor stirring when the water quality changes.

수중에 탁도(현탁물의 농도)가 높아질수록 입자와 입자의 거리는 가까워 지기 때문에 교반시는 입자의 충돌 기회가 매우 증가하므로 느린 교반으로서 플럭을 성장시켜야 된다. 적정 교반이 아닌 과교반이면 수류에 의한 전단작용으로 생성되는 플럭이 다시 파괴되는 문제가 발생되기 때문이다.The higher the turbidity (suspension concentration) in water, the closer the particle is to the particle, so the chance of collision of particles during agitation increases, so the floc must be grown with slow agitation. This is because if the agitator is not stirred properly, the floc generated by the water flow is destroyed again.

최근 일부문헌에는 온도, 유량, 탁도를 적용한 적용범위가 인정받아야 되는문제점이 있다고 하였으나 아직 구체적인 적용방법이 거의 없는 실정이라 보겠다.Recently, some documents have a problem that the scope of application of temperature, flow rate, and turbidity should be recognized, but there are few specific application methods.

본 발명은 이러한 문제점을 개선 하고자 창안한 것으로, 응집지의 유입수온, 유입유량, 유입탁도를 측정하고, 응집기의 임펠라를 회전시키기 위한 교반기 모터가 유입수온에 영향받는 G값, 유입탁도 C, 체류시간 T를 인자로 하는 함수에 의해 설정되는 회전수로 회전되도록 제어함으로써 슬러지 입자의 플럭 형성효율을 향상시킬 수 있게 되는 GTC 함수에 의한 응집기 운전 제어방법을 제공하고자 함에 목적이 있다.The present invention has been made to improve such a problem, the inflow water temperature, inflow flow rate, inflow turbidity of the flocculation basin, the stirrer motor for rotating the impeller of the flocculator is affected by the inflow water temperature G value, inflow turbidity C, retention An object of the present invention is to provide a method for controlling agglomerator operation by a GTC function, which can improve the flocculation efficiency of sludge particles by controlling the rotation to be set by the rotation speed set by a function taking time T as a factor.

도 1은 본 발명의 일 실시예에 의한 운전 제어부 블럭구성도.1 is a block diagram of the operation control unit according to an embodiment of the present invention.

※ 도면위 주요부분에 대한 부호의 설명 ※※ Explanation of code for main part on drawing ※

10 : GTC 설정부20 : 온도검출부10: GTC setting unit 20: temperature detector

30 : 유량검출부40 : 탁도검출부30: flow rate detection unit 40: turbidity detection unit

41 : 합성영향인자 보정부50 : 속도연산기41: synthetic influence factor correction unit 50: speed calculator

60 : PID조절기 70 : 인버터60: PID controller 70: inverter

80 : 구동모터80: drive motor

상기한 바와 같은 목적을 달성하기 위하여 본 발명은 정수처리장의 응집기에서 응집기의 교반기 임펠러를 전동기와 감속기를 사용하여 회전시키는 것에 있어서, 응집지의 유입수온, 유입유량, 유입탁도를 동시에 측정하고, 교반기 모터가 유입수온에 영향받는 G값, 유입탁도 C, 체류시간 T를 인자로 하는 함수 f(GTC)=const에 의해 설정되는 회전수로 회전되도록 운전하는 것을 특징으로 하는 GTC 함수에 의한 응집기 운전 제어방법을 제공한다.In order to achieve the above object, the present invention is to rotate the agitator impeller of the agglomerator in the water treatment plant using an electric motor and a reducer, at the same time to measure the inlet water temperature, inflow flow rate, inflow turbidity of the flocculation paper, Agitator motor is operated such that the stirrer motor is rotated at a rotational speed set by a function f (GTC) = const taking G value, inlet turbidity C, and residence time T as factors that influence the inlet water temperature. Provides a driving control method.

예를 들어, 응집지 수온, 탁도(현탁물의 농도), 유입수량을 고려하고, 함수=const를 적용하여 비례 운전토록함으로써 응집지에서 응집효과가 최대화 되도록 하였다.For example, consider the flocculant water temperature, turbidity (suspension concentration), influent volume, and By applying = const to the proportional operation, the coagulation effect is maximized in the coagulation paper.

=const의 공식유도는 하기와 같다. The formula induction of = const is as follows.

평균속도 G값은 공지된 것과 아래와 같이 알려져 있다.The average velocity G value is known and is as follows.

= =

P : 수동력 (Kw)P: manual force (Kw)

g : 중력의 가속도 (9.8M/S2)g: acceleration of gravity (9.8M / S 2 )

Cd : 응집기날개의 저항 계수 ( 1.5 - 1.8)Cd: Resistance coefficient of agglomerator wings (1.5-1.8)

A : 응집기날개면적 ㎡A: flocculator wing area ㎡

υ : 날개의 속도(M/S)υ: Wing speed (M / S)

= 유체의 밀도 (1,000㎏/㎥) = Density of fluid (1,000㎏ / ㎥)

= 물의 점도 (㎏/m·sec×10-3: ) = Viscosity of water (kg / msec × 10 -3 :)

V = 응집조의 체적 (㎥)V = volume of coagulation tank (㎥)

상기의 수학식 1에서 응집지의 최적의 G값이 결정되면 Cd, A, V,값이 일정하므로 물의 점도에 따라 P,υ가 결정된다. 이 방법이 종래의 하나의 방법이고,When the optimal G value of the aggregated paper is determined in Equation 1, Cd, A, V, Since the value is constant, P, υ is determined by the viscosity of water. This method is one conventional method,

또한 상기의 식에서 양변에 응집지의 체류시간 T(T= V/Q)를 곱함과 아울러, 여기서 V는 상수처리하고 P,υ를 결정하여 G값과 Q(유량)에 연동되게 한 것이다.In the above equation, both sides are multiplied by the residence time T (T = V / Q) of the flocculation paper, where V is a constant treatment, and P, v is determined to be linked to G value and Q (flow rate).

응집기에서 고려해야 될사항은 수온, 유량 뿐 아니라 변화폭이 큰 탁도도 고려하는 것이 좋다.Considerations for agglomerators should consider not only water temperature and flow rate but also turbidity with varying variations.

설계고려시 탁도는 저탁도에서 운전하는 것으로 보통 설계되어지며, 고탁도시는 입자와의 거리가 가까워져 종래의 속도로는 생성되는 플럭이 중간에 파괴되므로 느린 교반으로 하지 않으면 않된다. 이때 G값 운전이나 GT값 운전은 자동운전이 되지않으며, 별도로 회전수 조정하여 수동운전을 하여야 하는 문제가 발생된다.In consideration of design, turbidity is usually designed to operate at low turbidity, and high turbidity requires slow agitation as the distance from the particles is closer and the resulting flocs are destroyed in the middle. At this time, the G value operation or the GT value operation is not automatic operation, and a problem arises in that manual operation is performed by adjusting the rotation speed separately.

이러한 문제 때문에 G값, C값, T값을 이용한 효율적인값을 일정하게 해주는 것이 바람직하다고 보겠고, 상기 식은 다음과 같이 만들 수 있다.Because of these problems, efficient use of G, C, and T values It would be desirable to have a constant value, which can be written as

상기 식(1)에서 V = QT를 대입하고 탁도C 는 Q 와 반비례되므로 양변에를 곱하면 다음 식과 같이 된다.Substituting V = QT in equation (1) and turbidity C is inversely proportional to Q, If you multiply by, you get

= =

= = const = = const

여기서 회전속도 υ를 구하면 다음 식과 같이 된다.If the rotation speed υ is obtained, it is as follows.

υ = k1 x u1/3x Q1/3x C-1/3 υ = k1 xu 1/3 x Q 1/3 x C -1/3

여기에 점도함수 u1/3은 온도함수f(t)2/3이므로 다음 식이 된다.Since the viscosity function u 1/3 is the temperature function f (t) 2/3 , the following equation is obtained.

υ = k2 x f(t)2/3x Q1/3x C-1/3 υ = k2 xf (t) 2/3 x Q 1/3 x C -1/3

상기 수학식 5에서 회전속도는 온도함수 f(t) 2/3승에 비례하고, 유량의 1/3승에 비례하고, 탁도의 -1/3승에 비례하게 운전하면값이 일정하게 하면서 운전할수 있다.In Equation 5, the rotational speed is proportional to the temperature function f (t) 2/3 power, proportional to 1/3 power of the flow rate, and proportional to -1/3 power of turbidity. You can operate with the value constant.

다시 말하면 응집지 수온을 측정하고, 유입수유량을 직접, 간접으로 측정하고, 탁도를 직접, 간접으로 측정하며, 여기서 기준온도탁도시 계획회전수에 연산하여 구동하면 된다.In other words, the flocculation basin water temperature is measured, the inflow water flow rate is measured directly and indirectly, and the turbidity is measured directly and indirectly.

또한 기타 여러 영향인자 P를 고려하여 상기의 수학식 5에서 P를 적용하면 다음 식이 된다.In addition, when P is applied in Equation 5 in consideration of various other influence factors P, the following equation is obtained.

υ = k2 x f(t)1/3x Q1/3x C-1/3x Pυ = k2 xf (t) 1/3 x Q 1/3 x C -1/3 x P

여기서 수온 0도-25도 범위에서는 상기 수학식 5에서 f(t)2/3값은 f(t)= (1 - (21 x t) / 2500)와 근사하므로 f(t)값으로 운전할수도 있다.In the temperature range of 0 degrees to 25 degrees, f (t) 2/3 in Equation 5 is approximated to f (t) = (1-(21 xt) / 2500). .

이렇게 구동되는 응집기는 수온, 탁도, 유량등의 변화에 적절히 대응하므로 응집효율을 극대화하며, 동력절감 및 운전관리가 편하도록 한 것이 발명의 특징이다.The agglomerator driven in this way corresponds to changes in water temperature, turbidity, flow rate, etc. to maximize the coagulation efficiency and to make power saving and operation management easy.

이하, 본 발명에 따른 응집기의 GCT함수로 운영되는 제어장치를 첨부도면에 의거하여 일 실시예를 들어 상세하게 설명하면 다음과 같다.Hereinafter, an embodiment based on the accompanying drawings, the control device operated by the GCT function of the flocculator according to the present invention will be described in detail as follows.

도 1은 본 발명에 따른 응집기의 GCT함수로 운영되는 제어장치의 구성도를 나타낸 것으로서 제어반의 GCT 설정부(10)에서 GC1/2T1/2값을 800~8000범위에서 설정하여놓고 온도검출부(20)의 신호, 유량검출부(30)의 신호, 탁도검출부(40)의 신호를 동시에 검출하여 R/I 컨버터등을 통해 전송하면 속도 연산기(50)에서 설정된 GC1/2T1/2값에 의한 연산된 회전수의 출력신호를 PID조절기(60)를 통해 인버터(70)에 전송하여 교반기의 구동모터(80)를 회전시켜준다.Figure 1 shows the configuration of the control device operated by the GCT function of the agglomerator according to the present invention, and set the GC 1/2 T 1/2 value in the range of 800 ~ 8000 in the GCT setting unit 10 of the control panel When the signal of the temperature detector 20, the signal of the flow rate detector 30, and the signal of the turbidity detector 40 are simultaneously detected and transmitted through the R / I converter, the GC 1/2 T 1 / The output signal of the number of revolutions calculated by two values is transmitted to the inverter 70 through the PID controller 60 to rotate the drive motor 80 of the stirrer.

이와같이 구성되는 본 발명의 일 실시예에 의한 작동상태를 설명하면 다음과 같다.Referring to the operating state according to an embodiment of the present invention configured as described above are as follows.

본 제어부판넬의= const에서Of this control panel in const

G값 60, 탁도 20도(이 이하에서는 최대회전수), 지체류시간 2400초 이하에서 운영데이터를 최대 회전수로 잡는다.The operating data is taken as the maximum rotational speed with a G value of 60, a turbidity of 20 degrees (maximum rotational speed hereafter), and a delay time of 2400 seconds or less.

이때값은 = 60 x 201/2x 24001/2= 13145이므로,At this time The value is = 60 x 20 1/2 x 2400 1/2 = 13145,

제어반에서값으로 13145로 설정하여 놓는다.On the control panel Set it to 13145 as the value.

상기 수학식 5에서In Equation 5

υ(4극모터의 부하회전수) = 1700 x f(t) x Q1/3x C-1/3에 비례되므로υ (load rotation speed of 4-pole motor) = 1700 xf (t) x Q 1/3 x C -1/3

이때 유량신호에 의해 최대치인 설계수량(지체류시간 2400초 설계)의 80%가 유입되고, 탁도40도, 수온은 20도를 나타낸다면,At this time, if 80% of the design quantity (design of the retardation time 2400 seconds), which is the maximum value, is introduced by the flow signal, the turbidity is 40 degrees and the water temperature is 20 degrees,

이때 GCT 제어부판넬에서의 전송출력회전수, 모터의 회전RPM은 1700 x (1 - (21 x 20) / 2500) x 0.81/3x (40/20)-1/3인 1287RPM으로 연산된 속도로 출력되어 나간다.At this time, the transmission output speed in the GCT control panel and the rotation RPM of the motor are calculated as 1287 RPM, which is 1700 x (1-(21 x 20) / 2500) x 0.8 1/3 x (40/20) -1/3 Will be printed out.

본 발명에 따른 응집기의 GCT함수로 운영되는 제어장치의 구성도 중에서 합성영향인자 P를 별도로 고려하여 합성영향인자 보정부(41)에 의한 신호가 속도 연산기(50)에 입력되도록 할 수도 있으며, 이때의 모터의 회전수는In the configuration diagram of the control device operated by the GCT function of the coagulator according to the present invention, the signal from the synthesis influence factor correction unit 41 may be input to the speed calculator 50 by considering the synthesis influence factor P separately. The rotation speed of the motor at this time

υ(4극모터의 부하회전수) = 1700 x f(t) x Q1/3x C-1/3x P 이고υ (load revolution of 4-pole motor) = 1700 xf (t) x Q 1/3 x C -1/3 x P

이때 유량신호에 의해 최대치인 설계수량(지체류시간 2400초 설계)의 80%가 유입되고, 탁도 40도, 수온은 20도를 나타내고 기타 여러 종합영향인자가 미치는 수치가 0.95로 적용시킨다고 하면, 상기와 같은 방법으로 모터의 회전RPM은 1700 x (1 - (21 x 20) / 2500) x 0.81/3x (40/20)-1/3x 0.95 인 1222RPM으로 연산된 속도로 출력되어 나간다.In this case, when 80% of the maximum design quantity (design of the designation time of 2400 seconds) flows in by the flow signal, the turbidity is 40 degrees, the water temperature is 20 degrees, and the value applied by various other influence factors is 0.95. In the same way, the rotating RPM of the motor is output at the calculated speed of 1222 RPM which is 1700 x (1-(21 x 20) / 2500) x 0.8 1/3 x (40/20) -1/3 x 0.95.

이렇게 작동이 되어지는 응집지의 GCT값 제어기는 플럭 형성에 영향을 미치는 여러 인자의 변화에도 적절히 대처함으로써, 종래의 온도와 유량만으로 제어하므로 발생되는 문제점을 한층 개선시킨 것으로, 탁도 및 여러 인자도 취급하게 되므로 수생산에 고도의 기술을 접목시킬수 있고, 또한 고탁도 변화시 발생되는 플럭 파괴현상으로 몇일씩 운전이 중단되는 문제 등을 탁도에 대한 보상운전을 유지하게 함으로써 해결이 되었고 또한 기존보다 전력을 절전하게 되었다.The GCT value controller of the coagulated paper that is operated in this way can cope with the change of various factors affecting the formation of the flocs, thereby further improving the problems caused by controlling only the conventional temperature and flow rate. Therefore, it is possible to combine high technology with the production of water, and to solve the problem of stopping the operation for several days due to the flop destruction caused by the change of high turbidity. Was done.

Claims (5)

정수처리장의 응집기에서 응집기의 교반기 임펠러를 전동기와 감속기를 사용하여 회전시키는 것에 있어서, 응집지의 유입수온, 유입유량, 유입탁도를 동시에 측정하고, 교반기 모터가 유입수온에 영향받는 G값, 유입탁도 C, 체류시간 T를 인자로 하는 함수 f(GTC)=const에 의해 설정되는 회전수로 회전되도록 운전하는 것을 특징으로 하는 GTC 함수에 의한 응집기 운전 제어방법.In rotating the agitator impeller of the agglomerator in a water treatment plant using an electric motor and a reduction gear, the inflow water temperature, the inflow flow rate and the inflow turbidity of the agglomeration station are simultaneously measured, and the agitator motor is affected by the inflow water temperature. A method of controlling agglomerator operation by a GTC function, characterized in that it is operated to rotate at a rotation speed set by a function f (GTC) = const having a turbidity C and a residence time T as a factor. 제 1 항에 있어서, 상기 함수 f(GTC)는 상기 G값과, 유입탁도의 1/2승과, 체류시간의 1/2승의 곱인인 것을 특징으로 하는 회전하게 구성된 것을 특징으로 하는 GTC 함수에 의한 응집기 운전 제어방법.The method of claim 1, wherein the function f (GTC) is a product of the G value, 1/2 power of inflow turbidity and 1/2 power of the residence time. A method for controlling agglomerator operation by a GTC function, characterized in that it is configured to rotate. 제1항에 있어서 상기 GCT함수에 의해 설정되는 교반기 모터의 운전 제어값에 별도의 영향인자를 첨가하여 GCTP함수에 의해 설정되는 제어값으로 운전하는 것을 특징으로 하는 GTC 함수에 의한 응집기 운전 제어방법.The method according to claim 1, wherein a separate influence factor is added to the operation control value of the agitator motor set by the GCT function to operate at the control value set by the GCTP function. . 제 2 항에 있어서 임펠라의 회전을 위한 교반기 모터의 회전수를 다음 식The rotational speed of the stirrer motor for the rotation of the impeller according to claim 2 υ = k2 x f(t)2/3x Q1/3x C-1/3(여기서, 날개의 속도(M/S): υ, C: 유입탁도, 유량: Q, 온도함수: f(t), k2: 상수)으로 설정하여 운전하는 것을 특징으로 하는 GTC 함수에 의한 응집기 운전 제어방법.υ = k2 xf (t) 2/3 x Q 1/3 x C -1/3 (where wing velocity (M / S): υ, C: inflow turbidity, flow rate: Q, temperature function: f (t ), and k2: constant) to operate the coagulator operation control method according to the GTC function. 제 3 항에 있어서 임펠라의 회전을 위한 교반기 모터의 회전수를 다음 식The rotation speed of the stirrer motor for the rotation of the impeller according to claim 3 υ = k2 x f(t) x Q1/3x C-1/3x P (여기서, P: 영향인자, 날개의 속도(M/S): υ, C: 유입탁도, 유량: Q, 온도함수: f(t), k2: 상수)으로 설정하여 운전하는 것을 특징으로 하는 GTC 함수에 의한 응집기 운전 제어방법.υ = k2 xf (t) x Q 1/3 x C -1/3 x P (where P: influence factor, wing velocity (M / S): υ, C: inflow turbidity, flow rate: Q, temperature function : F (t), k2: constant) to operate the agglomerator operation control method according to the GTC function characterized in that the operation.
KR1020020024866A 2002-05-06 2002-05-06 Driving method for agglutination reactor according to gtc function KR20030086740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020024866A KR20030086740A (en) 2002-05-06 2002-05-06 Driving method for agglutination reactor according to gtc function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020024866A KR20030086740A (en) 2002-05-06 2002-05-06 Driving method for agglutination reactor according to gtc function

Publications (1)

Publication Number Publication Date
KR20030086740A true KR20030086740A (en) 2003-11-12

Family

ID=32381740

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020024866A KR20030086740A (en) 2002-05-06 2002-05-06 Driving method for agglutination reactor according to gtc function

Country Status (1)

Country Link
KR (1) KR20030086740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6330085B1 (en) * 2017-06-15 2018-05-23 株式会社ヤマト Setting method of coagulant injection rate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200199579Y1 (en) * 2000-05-04 2000-10-02 이수옥 Floculator with gt valve controler
KR100334154B1 (en) * 1999-12-04 2002-04-25 김원기 Operating methods of Flocculator
KR20030003172A (en) * 2002-11-27 2003-01-09 (주)우진 A best control cohesion machine of a water purification plant and its best contol method
KR20030014471A (en) * 2001-08-11 2003-02-19 주식회사 피엠씨코리아 Flocculation Basin Flocculator Automatic Control System

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100334154B1 (en) * 1999-12-04 2002-04-25 김원기 Operating methods of Flocculator
KR200199579Y1 (en) * 2000-05-04 2000-10-02 이수옥 Floculator with gt valve controler
KR20030014471A (en) * 2001-08-11 2003-02-19 주식회사 피엠씨코리아 Flocculation Basin Flocculator Automatic Control System
KR20030003172A (en) * 2002-11-27 2003-01-09 (주)우진 A best control cohesion machine of a water purification plant and its best contol method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6330085B1 (en) * 2017-06-15 2018-05-23 株式会社ヤマト Setting method of coagulant injection rate
JP2019000806A (en) * 2017-06-15 2019-01-10 株式会社ヤマト Flocculant injection rate setting method

Similar Documents

Publication Publication Date Title
US20090255876A1 (en) Feedback control scheme for optimizing dewatering processes
CN105984929B (en) A kind of aluminium silicate polymer zinc composite flocculation agent and its application
Amirtharajah et al. Destabilization of particles by turbulent rapid mixing
CN108689584A (en) A kind of sludge mixing concentration discharge integrated tank
CN102228749A (en) Quantitative method for coagulation reagent for slime water
KR20030086740A (en) Driving method for agglutination reactor according to gtc function
JP2004074066A (en) Rotary pressure dehydrator having control means
JP2002205076A (en) Flocculating agent injection control system
KR100476277B1 (en) A best control cohesion machine of a water purification plant and its best control method
JPH0663311A (en) New method for coagulation and cohesion
KR20040067702A (en) Automatic control method of investing amount of flocculant for treatment room of purity water to detect real time image of floc
JP6770949B2 (en) Control method of rapid stirrer and rapid stirrer
JP4111880B2 (en) Aggregation precipitation apparatus and control method thereof
KR100334154B1 (en) Operating methods of Flocculator
US3170868A (en) Water treatment with temperature control
KR200199579Y1 (en) Floculator with gt valve controler
JP2538466B2 (en) Method and apparatus for controlling coagulant injection
Langer et al. Rapid mixing in sludge conditioning with polymers
JP3409036B2 (en) Forced circulation type separation device
KR100814011B1 (en) Device and methode for water purification
KR200310679Y1 (en) A best control cohesion machine of a water purification plant
JPWO2018193794A1 (en) Coagulation sedimentation treatment method
CN113230917A (en) Adjustable static hydraulic mixing method and measurement and control system
KR900011094Y1 (en) Device for flocculation and agitation
JP4493473B2 (en) Water treatment process operation support equipment

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application