KR20030082077A - Producing method of sugar fatty acid ester - Google Patents

Producing method of sugar fatty acid ester Download PDF

Info

Publication number
KR20030082077A
KR20030082077A KR1020020020610A KR20020020610A KR20030082077A KR 20030082077 A KR20030082077 A KR 20030082077A KR 1020020020610 A KR1020020020610 A KR 1020020020610A KR 20020020610 A KR20020020610 A KR 20020020610A KR 20030082077 A KR20030082077 A KR 20030082077A
Authority
KR
South Korea
Prior art keywords
fatty acid
reaction
reaction solvent
acid ester
reactor
Prior art date
Application number
KR1020020020610A
Other languages
Korean (ko)
Other versions
KR100443078B1 (en
Inventor
한부섭
Original Assignee
(주)코아켐
한부섭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)코아켐, 한부섭 filed Critical (주)코아켐
Priority to KR10-2002-0020610A priority Critical patent/KR100443078B1/en
Publication of KR20030082077A publication Critical patent/KR20030082077A/en
Application granted granted Critical
Publication of KR100443078B1 publication Critical patent/KR100443078B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • C07H13/06Fatty acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)

Abstract

PURPOSE: A producing method of sugar fatty acid ester is provided, thereby rapidly producing the sugar fatty acid ester in higher yield. CONSTITUTION: A producing method of sugar fatty acid ester comprises mixing sugar with fatty acid lower alkyl ester and heating and stirring the mixture thereof in the presence of alkali catalyst under 0.1 to 100 torr to exhaust alcohol and reaction solvent produced in the upper part of a reactor and to condense them; separating the alcohol from reaction solvent in column, recycling the reaction solvent to the reactor and recovering the alcohol from the lower part of the reactor, wherein the reaction temperature is 50 to 150 deg. C; the condensation temperature is 50 to 140 deg. C; the alkali catalyst is selected from sodium carbonate, potassium carbonate, and potassium hydroxide; the reaction solvent is selected from morpholine, dipropylsulfoxide, dimethylformamide, pyridine, pyrazine, 2-methylpiperazine, trimethylamine, triethylamine, 2-pyrrolidone, and dimethylsulfoxide; and the lower fatty acid alkyl ester is C10-C28 saturated fatty acid and C1-C4 lower alcohol ester.

Description

자당 지방산 에스테르 제조방법{Producing method of sugar fatty acid ester}Producing method of sugar fatty acid ester

본 발명은 자당 지방산 에스테르의 제조방법에 관한 것으로 설탕과 고급지방산 알킬에스테르(C10∼ C28까지의 탄소수를 갖는 고급 지방산 에스테르)의 교환반응에 의해 효율적으로 제조하는 방법에 대한 것이다.The present invention relates to a method for producing a sucrose fatty acid ester and to a method for efficiently preparing sugar and a higher fatty acid alkyl ester (higher fatty acid ester having a carbon number of C 10 to C 28 ) by an exchange reaction.

자당 지방산 에스테르는 설탕과 알킬 에스테르의 종류 및 교환반응된 알킬 에스테르의 수에 따라 다양한 친수친유도(보통 HLB(Hydrophillic-Lipophillic Balance)값으로 표시함)를 갖는 특징과 우수한 계면성능, 생분해성 및 물질 자체의 안전성 등의 장점을 갖추고 있는 바, 각종 식음료용, 의약용, 화장품용, 고급 세제용, 수지 및 섬유 등의 제조시 첨가제로 광범위하게 사용될 수 있는 매우 유용한 화합물질이다.Sucrose fatty acid esters are characterized by varying hydrophilicity (usually expressed as HLB (Hydrophillic-Lipophillic Balance) values), depending on the type of sugar and alkyl esters and the number of exchanged alkyl esters, and excellent interfacial performance, biodegradability and materials. It is a very useful compound that can be widely used as an additive in the manufacture of various food and beverage, medicine, cosmetics, high-grade detergents, resins, and fibers.

종래의 자당 지방산 에스테르의 제조방법으로는 다음과 같이 크게 세가지가 있다.As a conventional method for producing a sucrose fatty acid ester, there are three main methods.

첫째, 디메칠포름아미드(DMF) 등의 아미드류, 디메칠설폭사이드(DMSO) 등의 디알킬설폭사이드류 등의 반응 용매 중에서 알칼리 촉매 존재 하에 설탕과 지방산 알킬에스테르를 반응시키는 용매법이 있다.First, there is a solvent method for reacting sugar and fatty acid alkyl ester in the presence of an alkali catalyst in a reaction solvent such as amides such as dimethylformamide (DMF) and dialkyl sulfoxides such as dimethyl sulfoxide (DMSO).

둘째, 반응용매를 이용하지 않고 물을 사용하여 설탕을 지방산 석검과 같이 용융 혼합물로 만든 후 알칼리 촉매 존재 하에 지방산 알킬에스테르를 반응시키는 무용매법이 있다.Second, there is a solventless method in which sugar is made into a molten mixture by using water without using a reaction solvent, such as fatty acid stone gum, and the fatty acid alkyl ester is reacted in the presence of an alkali catalyst.

셋째, 설탕과 지방산을 특정효소의 존재 하에서 직접 반응시키는 방법이 있다.Third, there is a method of directly reacting sugar and fatty acids in the presence of specific enzymes.

일반적으로 상용화된 자당 지방산 에스테르의 제조방법은 설탕과 고급지방산(C10∼C28의 지방산) 메틸에스테르를 용매, 예를 들면 디메틸포름아미드 (DMF) 또는 디메틸술폭사이드(DMSO)와 같은 극성용매와 알칼리성 촉매 존재 하에서 제조하는 용매법을 채택하고 있다.In general, a method for preparing a commercially available sucrose fatty acid ester includes sugar and a higher fatty acid (C 10 -C 28 fatty acid) methyl ester with a solvent such as a polar solvent such as dimethylformamide (DMF) or dimethyl sulfoxide (DMSO). The solvent method which manufactures in presence of an alkaline catalyst is employ | adopted.

용매법의 경우 반응조건이 까다롭지 않고 일반적이나 반응시간이 길어 생산성이 저하되는 단점을 갖고 있는 바, 이를 극복할 수 있는 좀더 효율적인 제조방법이 요구된다. 일반적으로는 반응기 상부에 충진탑을 설치하여 부생되는 알콜을 제거하고 일부용매를 환류시키는 방법을 채택하고 있으나 이 같은 경우 충진탑의 용량에 제약을 받아 환류량 (기존 제조방법의 경우 용매 투입량 대비 시간당15%∼50%를 환류시킴)이 적어지게 되고 이로 이해 반응시간이 과다하게 소요되어 생산성이 저하됨으로써 경제성이 떨어지는 문제점을 안고 있다. 또한 가열되는 열량 및 진공도에 따라 충진탑 운전을 용이하게 하기 위한 설비투자비가 과다하게 요구된다.In the case of the solvent method, the reaction conditions are not demanding, and in general, the reaction time is long, and the disadvantage of productivity is lowered. Therefore, a more efficient manufacturing method is required to overcome this problem. Generally, a packing tower is installed at the top of the reactor to remove by-produced alcohol and reflux some solvent, but in this case, the amount of reflux is limited by the capacity of the packing tower. 15% to 50% of reflux) is reduced, which leads to excessive reaction time, and the productivity is lowered. In addition, according to the amount of heat to be heated and the degree of vacuum, the facility investment cost to facilitate the operation of the packed tower is required excessively.

따라서 본 발명은 반응중 발생되는 부반응물을 단시간에 효율적으로 제거함으로써 기존 제조방법에 있어서의 환류량 제약문제, 충진탑 최적 운전조건에 수반되는 투자비 문제 등을 해결하고 나아가 반응시간을 대폭 단축시켜 생산성을 극대화하는 것을 기술적 과제로 한다.Therefore, the present invention efficiently eliminates side reactions generated during the reaction in a short time, and solves the problem of the limitation of the reflux amount in the existing manufacturing method, the investment cost associated with the optimum operating conditions of the packing tower, and further shorten the reaction time To maximize the technical task.

본 발명자는 상기와 같은 기술적 과제를 해결하기 위해 특수 고안된 충진탑을 이용하여 반응 중에 발생되는 부반응물인 알콜을 단시간에 효율적으로 제거하여 반응시간을 단축함으로써 생산성을 극대화할 수 있는 자당 지방산 에스테르 제조방법을 발견하게 되었다.The inventors of the present invention provide a method for producing a sucrose fatty acid ester which can maximize productivity by shortening the reaction time by efficiently removing the side reaction alcohol generated during the reaction in a short time using a specially designed packing tower. Was found.

즉, 본 발명의 요지는 설탕과 고급 지방산 알킬에스테르를 알칼리 촉매 존재 하에 반응시키되, 감압하에서 교반, 가열하여 부생되는 알콜과 일부 반응용매를 전량 유출시켜 분리, 제거함으로써 반응속도를 가속화시켜 종래의 반응시간과 비교하여 반응시간을 대폭 단축시켜 생산성을 극대화하는 것을 특징으로 한다.That is, the gist of the present invention is to react the sugar and higher fatty acid alkyl esters in the presence of an alkali catalyst, but by stirring and heating under reduced pressure, the total amount of the by-produced alcohol and some reaction solvents are separated out and removed to accelerate the reaction rate, thereby accelerating the conventional reaction. Compared with time, the reaction time is greatly shortened, thereby maximizing productivity.

본 발명은 자당과 지방산 저급 알킬 에스테르를 알칼리 촉매하, 0.1∼100torr의 감압 조건에서 교반, 가열하면서 반응기 상부로 발생되는 부생알콜 및 반응용매를 유출시켜 응축시키는 공정;The present invention is a step of condensing the sucrose and fatty acid lower alkyl ester by flowing out by-product alcohol and the reaction solvent generated in the upper portion of the reactor while stirring and heating under reduced pressure of 0.1 to 100 torr under an alkali catalyst;

응축 후 충진탑에서 반응용매와 부생알콜을 분리시켜 반응용매는 반응기로 환류시키고 부생알콜은 하류부에서 응축, 회수시키는 공정;으로 이루어진 자당 지방산 에스테르 제조방법에 관한 것이다.The reaction solvent and the by-product alcohol is separated from the packed column after condensation, the reaction solvent is refluxed to the reactor and the by-product alcohol condensation, recovery process in the downstream; consisting of a sucrose fatty acid ester production method.

또한, 본 발명은 충진탑으로 유입되는 부생알콜 및 반응용매의 응축온도를 50∼140℃로 제어하며, 환류량을 전체 반응용매의 무게기준으로 5∼500%로 조절하는 것을 특징으로 하는 자당 지방산 에스테르 제조방법에 관한 것이다. 환류량은 10∼200%인 것이 더욱 바람직하다. 환류량이 5% 미만인 경우 반응이 잘 일어나지 않는 문제가 발생하며, 500%를 초과하는 경우에는 경제성이 문제가 된다.In addition, the present invention is to control the condensation temperature of the by-product alcohol and the reaction solvent introduced into the packing column to 50 ~ 140 ℃, the sucrose fatty acid, characterized in that the reflux amount is adjusted to 5 to 500% by weight of the total reaction solvent It relates to an ester production method. The reflux amount is more preferably 10 to 200%. If the reflux amount is less than 5%, the reaction does not occur well, and if it exceeds 500%, economics are a problem.

본 발명은 상기 반응 온도가 50∼150℃로 유지되는 것을 특징으로 한다.The present invention is characterized in that the reaction temperature is maintained at 50 ~ 150 ℃.

또한, 본 발명은 상기 알칼리 촉매가 탄산나트륨, 탄산칼륨 및 수산화칼륨으로 이루어진 그룹 중 선택된 1종 이상인 것을 특징으로 한다.In addition, the present invention is characterized in that the alkali catalyst is at least one selected from the group consisting of sodium carbonate, potassium carbonate and potassium hydroxide.

또한, 본 발명은 상기 반응용매가 몰포린, 디프로필설폭사이드, 디메칠포름아미드, 피리딘, 피라진, 2-메칠피페라진, 트리메칠아민, 트리에칠아민, 키노린, 2-피로리돈 및 디메칠설폭사이드로 이루어진 그룹 중 선택된 1종 이상인 것을 특징으로 한다.In addition, the present invention is the reaction solvent is morpholine, dipropyl sulfoxide, dimethylformamide, pyridine, pyrazine, 2-methylpiperazine, trimethylamine, triethylamine, chiolin, 2-pyrrolidone and di It is characterized in that at least one member selected from the group consisting of methyl sulfoxide.

또한, 본 발명은 상기 지방산 저급 알킬에스테르가 탄소수 10∼28개의 포화 지방산과 탄소수 1∼4의 저급 알콜의 에스테르 화합물인 것을 특징으로 한다.The present invention is also characterized in that the fatty acid lower alkyl ester is an ester compound of a saturated fatty acid having 10 to 28 carbon atoms and a lower alcohol having 1 to 4 carbon atoms.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 사용하는 지방산 저급 알킬에스테르로는 탄소수 10∼28, 바람직하기로는 10∼24개의 포화 지방산, 예를 들면 카프론산, 카프린산, 라우린산, 미리스틴산, 팔미틴산, 스테아린산, 베헨산 등 혹은 불포화 지방산, 예를 들면 리놀산, 올레인산, 리놀레인산, 엘카산, 리시놀산 등과 탄소수 1∼4의 저급 알콜, 예를 들면 메탄올, 에탄올, 프로판올, 부탄올과의 에스테르 화합물이 추천되며 필요에 따라 관계된 지방산 저급알킬에스테르는 2종이상의 혼합물을 이용해도 된다.Fatty acid lower alkyl esters used in the present invention include saturated fatty acids having 10 to 28 carbon atoms, preferably 10 to 24 carbon atoms, such as caproic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid and behenic acid. Ester compounds with such or unsaturated fatty acids such as linoleic acid, oleic acid, linoleic acid, elkaic acid, ricinolic acid and lower alcohols having 1 to 4 carbon atoms, such as methanol, ethanol, propanol and butanol, are recommended and The fatty acid lower alkyl ester concerned may use 2 or more types of mixtures.

지방산 저급 알킬에스테르는 설탕 1몰에 대하여 0.1∼15몰, 바람직하기로는 0.2∼10몰을 사용하고 몰비에 대한 결정은 목적하는 자당 지방산 에스테르의 치환도에 따라 달라진다.Fatty acid lower alkyl esters are used in an amount of 0.1 to 15 moles, preferably 0.2 to 10 moles, per mole of sugar, and the determination of the molar ratio depends on the degree of substitution of the desired sucrose fatty acid ester.

본 발명에 이용하는 반응용매로는 몰포린, 디프로필설폭사이드, 디메칠포름아미드, 피리딘, 피라진, 2-메칠피페라진, 트리메칠아민, 트리에칠아민, 키노린, 2-피로리돈, 디메칠설폭사이드류 등을 사용할 수 있지만 그 중에도 디메칠포름아미드(DMF) , 디메칠설폭사이드(DMSO)가 적합하고 열안정성 및 설탕에 대한 용해성 등을 고려할 때 DMSO가 적합하다. 반응용매의 사용량은 설탕 및 지방산 저급 알킬에스테르 사용량 대비 통상 50∼500 중량%, 바람직하기로는 100∼400 중량%이다.Reaction solvents used in the present invention include morpholine, dipropylsulfoxide, dimethylformamide, pyridine, pyrazine, 2-methylpiperazine, trimethylamine, triethylamine, chinoline, 2-pyrrolidone, dimethyl Although sulfoxides can be used, among them, dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) are suitable, and DMSO is suitable in consideration of thermal stability and solubility in sugar. The amount of the reaction solvent is usually 50 to 500% by weight, preferably 100 to 400% by weight relative to the amount of sugar and fatty acid lower alkyl ester.

본 발명에 사용하는 알칼리 촉매로는 알칼리 금속수산화물, 알칼리금속염, 알칼리 금속 수소화물 등이 유효하고 그 중에도 탄산나트륨, 탄산칼륨, 수산화칼륨 등이 적당하다. 알칼리 촉매의 사용량은 지방산 저급 알킬에스테르 1몰 대비 통상0.001∼0.1몰이다.As the alkali catalyst used in the present invention, alkali metal hydroxides, alkali metal salts, alkali metal hydrides and the like are effective. Among them, sodium carbonate, potassium carbonate, potassium hydroxide and the like are suitable. The amount of the alkali catalyst is generally 0.001 to 0.1 mol relative to 1 mol of the fatty acid lower alkyl ester.

본 발명에 있어서 반응은 회분식 반응기 내에서 설탕과 고급지방산 알킬에스테르를 감압 하에서 가열하여 반응진행에 따라 발생되는 부생알콜과 일부 반응용매를 전량 반응기 외부로 유출시켜 부생알콜만을 제거후 반응용매만을 다시 반응기내로 순환시키면서 반응을 진행시킴에 따라 환류량을 극대화하여 반응속도를 증대시킬 수 있고 그 결과 반응시간 단축에 따른 제품품질(백색도) 향상 및 생산성 증대효과가 있다.In the present invention, the reaction is by heating the sugar and higher fatty acid alkyl ester in a batch reactor under reduced pressure to by-produce the alcohol and some reaction solvent generated by the reaction proceeds to the outside of the reactor to remove only the by-product alcohol and only react the reaction solvent again As the reaction proceeds while circulating in the cabin, the reaction rate can be maximized by maximizing the reflux amount. As a result, the product quality (whiteness) can be improved and productivity is increased by shortening the reaction time.

반응기 내부의 온도는 통상 50∼150℃이며 특히 60∼100℃가 적당하다. 반응기 내의 진공도는 통상 0.1∼100 torr의 범위, 특히 0.5∼50 torr의 범위가 적당하다.The temperature inside the reactor is usually 50 to 150 ° C, particularly 60 to 100 ° C. The degree of vacuum in the reactor is usually in the range of 0.1 to 100 torr, particularly in the range of 0.5 to 50 torr.

반응기 상부에는 부생되는 알콜과 반응용매를 응축시킬 수 있는 응축기와 부생알콜과 반응용매를 분리시키는 충진탑을 설치하고 다시 충진탄 상부에는 부생알콜만을 응축시킬 수 있는 응축기와 이를 저장할 수 있는 수액조를 설치하고 수액조 하류부에 진공펌프를 설치하여 전 공정에 진공을 형성시킬 수 있도록 하였고 충진탑 하부에는 반응용매를 반응기 내부로 환류시킬 수 있는 공정을 구성하였다.In the upper part of the reactor, a condenser capable of condensing by-produced alcohol and reaction solvent and a packing column separating the by-product alcohol and reaction solvent are installed.In the upper part of the packed coal, a condenser capable of condensing only by-product alcohol and a fluid tank to store it are installed. A vacuum pump was installed at the downstream of the sap tank to form a vacuum in the whole process, and a process for refluxing the reaction solvent into the reactor was formed at the bottom of the packed column.

반응기 내에서의 반응을 촉진시키려면 부반응물을 효율적으로 제거시킬 수 있는 공정구성이 중요하므로 본 발명자는 이점에 착안하여 반응용매와 부생알콜 전량을 응축시켜 분리시킬 수 있는 공정을 개발하게 되었다.In order to promote the reaction in the reactor, the process configuration that can effectively remove the side reactions is important, the inventors focus on the advantages to develop a process that can be separated by condensation of the entire reaction solvent and by-product alcohol.

기존 공정의 경우 반응기 상부에 충진탑을 설치하여 본 충진탑내에서 주로부반응물만을 분리, 제거하여 응축시키고 응축된 일부 부반응물을 다시 환류시키는 공정을 구성함으로써 충진탑 효율이 저하되는 문제점과 반응기로 가열되는 열량과 충진탑의 용량을 적절히 연계시켜 운전해야 하는 시스템을 구성해야 하는 관계로 투자비측면 및 공정운전 측면에서 효율성이 저하되는 문제점을 안고 있다.In the case of the existing process, a packing tower is installed at the top of the reactor to separate and remove only the side reactants mainly in the packed tower, to condense and reflux the condensed part of the reactants. Due to the need to configure a system that must be operated in conjunction with the required amount of heat and the capacity of the packed tower, there is a problem that the efficiency is reduced in terms of investment cost and process operation.

그러나, 본 발명의 경우는 반응기 상부에 설치된 응축기를 통하여 반응기에 가열된 열량에 해당되는 반응용매와 부반응물을 전량 응축시킬 수 있고 이를 다시 충진탑에서 분리시켜 반응용매만을 반응기로 다시 환류시켜 반응을 촉진시킬 수 있고 충진탑 상부로는 부생알콜만을 분리, 제거함으로써 반응에 필요한 가열량과 충진탑 운전효율을 극대화시켜 반응시간을 기존공정 대비 대폭 단축시킬 수 있는 공정으로, 반응기 상부에 설치된 충진탑은 유입되는 반응용매와 부생알콜을 잘 분사시켜 분리될 수 있도록 고안되었고 충진탑에 유입되는 유입물(반응용매와 부생알콜)의 온도는 응축기와 연계되어 일정한 온도를 유지시킨다. 충진탑 내부에서 분리된 반응용매는 다시 반응기로 유입되고 상부로 유출되는 부생알콜은 다시 응축되어 수액조에서 회수, 제거한다. 본 충진탑내에서의 진공도는 통상 0.1∼100 torr의 범위, 특히 0.5∼50 torr의 범위가 적당하며 온도는 반응온도 대비 20℃ 이내에서 낮게 조절해야 하며 너무 낮을 경우 반응속도에 영향을 줄 수 있다.However, in the present invention, through the condenser installed in the upper part of the reactor it can condense all the reaction solvent and sub-reactant corresponding to the amount of heat heated in the reactor and is separated from the packed tower again to reflux only the reaction solvent back to the reactor to react It is possible to promote and maximize the amount of heating required for the reaction and the efficiency of the filling tower by separating and removing only by-product alcohol at the top of the packing tower, and greatly shortening the reaction time compared to the existing process. It is designed to be separated by spraying the reaction solvent and by-product alcohol well, and the temperature of the influent (reaction solvent and by-product alcohol) which enters the filling tower is maintained in constant temperature in connection with the condenser. The reaction solvent separated in the packed column is introduced into the reactor again, and the by-product alcohol flowing out to the top is condensed again to be recovered and removed from the sap tank. The degree of vacuum in the packed column is usually in the range of 0.1 to 100 torr, particularly in the range of 0.5 to 50 torr, and the temperature should be controlled within 20 ° C. lower than the reaction temperature.

본 발명은 외부 충진탑을 이용하여 부생되는 알콜을 전량 단시간에 제거함으로써 반응효율을 극대화하였는 바, 기존의 용매 환류에 의한 부생 알콜 제거 방법과 비교해서 생산성 측면에서 큰 장점이 있는 특징을 갖고 있다.The present invention has maximized the reaction efficiency by removing all the by-product alcohol in a short time by using an external packing tower, has a great advantage in terms of productivity compared to the by-product alcohol removal method by the conventional solvent reflux.

종래 자당 에스테르의 제조방법에서는 90℃ 이상의 고온에서 8∼12시간동안반응시켜야 97% 정도의 반응효율을 얻을 수 있었으나, 본 발명의 제조방법으로는 2∼4시간의 반응으로 97∼99%의 반응효율을 얻을 수 있다.In the conventional method of preparing sucrose ester, the reaction efficiency of about 97% can be obtained by reacting at a high temperature of 90 ° C. or higher for 8 to 12 hours. Efficiency can be obtained.

반응종료 후에는 추출, 증류 등의 공정을 통해 반응 혼합물로부터 최종 목적물인 자당 지방산 에스테르 화합물을 얻을 수 있다.After completion of the reaction, the final target sucrose fatty acid ester compound can be obtained from the reaction mixture through a process such as extraction and distillation.

다음에 본발명을 실시예를 통해 좀더 상세히 설명한다. 그러나, 본 발명의 범위가 실시예의 기재에 의하여 한정되는 것은 아니다.Next, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited by the description of the examples.

<실시예 1><Example 1>

상기 설명한 바와 같이 교반기가 장착된 반응기와 반응기의 상부에는 응축기, 충진탑과 이의 하류부에 다시 응축기, 수액조 및 진공펌프를 설치하여 반응중 발생되는 반응용매와 부생알콜을 충진탑내에서 분리후 반응기 내부로 순환시키면서 반응시킬 수 있는 설비를 준비하였다. 본 실시예 및 비교예에서는 충진탑을 직경 25mm, 높이 300mm, 이론단수 6단으로 설치하였다. 응축기 및 수액조는 여유있는 용량으로 선정하고 충진탑 내부로 유입되는 응축물의 온도는 응축기로 유입되는 응축수량과 연계시켜 제어할 수 있도록 한다. (충진탑으로 유입되는 응축물의 온도는 반응온도 대비 10℃ 정도 낮게 조절한다.)As described above, a condenser, a filling tower, and a downstream condenser, a fluid tank, and a vacuum pump are installed at the upper part of the reactor and the reactor equipped with the stirrer to separate the reaction solvent and by-product alcohol generated during the reaction in the packing column. The equipment was prepared to allow the reaction while circulating. In this Example and Comparative Example, the filling tower was installed with a diameter of 25 mm, a height of 300 mm, and six theoretical stages. The condenser and sap tank are selected with a sufficient capacity, and the temperature of the condensate flowing into the filling tower can be controlled in connection with the amount of condensate flowing into the condenser. (The temperature of the condensate flowing into the packing tower is controlled 10 ℃ lower than the reaction temperature.)

진공펌프는 기계식 고진공 펌프를 설치하고 상류에 냉각기(냉매공급)를 설치하였다. 또한 응축기, 충진탑의 상하부 및 수액조에는 진공계와 온도계를 설치하여 운전조건을 확인할 수 있도록 하고 반응기의 유입부에는 유량계를 설치하여 순환량을 확인할 수 있도록 한다.The vacuum pump was equipped with a mechanical high vacuum pump and a cooler (refrigerant supply) upstream. In addition, a vacuum gauge and a thermometer are installed in the condenser, the upper and lower parts of the filling tower, and the fluid bath to check the operating conditions, and a flow meter is installed at the inlet of the reactor to check the circulation.

상기와 같은 설비를 갖춘 반응기에 설탕 150g, 디메칠설폭사이드(DMSO) 600g, 메칠스테아레이트 200g 및 무수 탄산칼륨 3g를 투입하고 가열하면서 다음과 같은 조건 하에서 반응시켰다. 반응온도: 85±5 ℃, 진공도: 20torr로 반응을 진행시킨 결과 반응개시 후 메칠스테아레이트의 전환율이 97.5% 도달되는데 6시간이 소요되었다. (환류량; 100%*투입용매량/시간)150 g of sugar, 600 g of dimethyl sulfoxide (DMSO), 200 g of methylstearate and 3 g of anhydrous potassium carbonate were added to a reactor equipped with the above equipment, and reacted under the following conditions while heating. The reaction temperature was 85 ± 5 ° C. and the vacuum degree was 20 torr. After the reaction was started, the conversion of methylstearate took 9 hours to reach 97.5%. (Reflux amount; 100% * solvent volume / hour)

<비교예 1>Comparative Example 1

반응은 <실시예 1>과 동일한 조건에서 진행시키되 단지 반응기 내부의 진공도를 상향 조정(진공도; 15 torr)하여 반응시켰다. 반응 개시 6시간후 메칠스테아레이트의 전환율은 98.5%였다.The reaction was carried out under the same conditions as in <Example 1>, but the reaction was carried out by only adjusting the degree of vacuum in the reactor (up to 15 torr). Six hours after the start of the reaction, the conversion rate of methylstearate was 98.5%.

<비교예 2>Comparative Example 2

반응은 <실시예 1>과 동일한 조건에서 진행시키되 단지 반응기 내부의 진공도를 하향 조정(진공도; 30 torr)하여 반응시켰다. 반응 개시 6시간후 메칠스테아레이트의 반응율은 96.2%였다.The reaction was carried out under the same conditions as in <Example 1>, but the reaction was carried out by only adjusting the vacuum degree inside the reactor (vacuum degree; 30 torr). Six hours after the start of the reaction, the reaction rate of methylstearate was 96.2%.

<실시예 2><Example 2>

<실시예 1>과 동일한 조건의 설비를 이용하여 반응기에 설탕 150g, 디메칠설폭사이드(DMSO) 600g, 메칠스테아레이트 400g 및 무수 탄산칼륨 6g를 투입하고 가열하면서 다음과 같은 조건 하에서 반응시켰다. 반응온도: 90±5 ℃, 진공도: 20torr로 반응을 진행시킨 결과 반응개시 후 메칠스테아레이트의 전환율이 97.5% 도달되는데 6시간이 소요되었다.150 g of sugar, 600 g of dimethyl sulfoxide (DMSO), 400 g of methylstearate and 6 g of anhydrous potassium carbonate were added to a reactor using the same conditions as in Example 1, and the reaction was carried out under the following conditions. Reaction temperature: 90 ± 5 ℃, vacuum degree: 20torr as a result of the reaction after the start of the conversion of methyl stearate was 97.5% it took 6 hours to reach.

<비교예 3>Comparative Example 3

반응은 <실시예 2>와 동일한 조건에서 진행시키되 반응용매 환류량을 상향 조정(실시예 2 대비 200%)하여 반응시켰다. 반응개시 6시간후 메칠스테아레이트의 반응율은 99.1%였다.The reaction was carried out under the same conditions as in <Example 2>, but reacted by adjusting the reaction solvent reflux amount upward (200% compared with Example 2). Six hours after the start of the reaction, the reaction rate of methylstearate was 99.1%.

<비교예 4><Comparative Example 4>

반응은 <실시예 2>와 동일한 조건에서 진행시키되 반응용매 환류량을 하향 조정((실시예 2 대비 50%)하여 반응시켰다. 반응개시 6시간후 메칠스테아레이트의 반응율은 96.3%였다.The reaction was carried out under the same conditions as in <Example 2>, but the reaction was refluxed by adjusting the reaction reflux (50% of Example 2.) The reaction rate of methylstearate was 96.3% after 6 hours from the start of the reaction.

<실시예 3><Example 3>

<실시예 1>과 동일한 조건에서 진행시키되 응축기로 공급되는 냉매수량을 상향조정하여 반응온도 대비 30℃ 정도 낮게 환류시켰다. 반응개시 6시간후 메칠스테아레이트의 전환율은 92.2%정도로 낮게 나타났다.Proceed under the same conditions as in Example 1, but the amount of refrigerant supplied to the condenser was adjusted upward to reflux about 30 ℃ lower than the reaction temperature. Six hours after the start of the reaction, the conversion rate of methylstearate was as low as 92.2%.

<비교예 5>Comparative Example 5

<실시예 3>과 동일한 조건에서 진행시키되 응축기로 공급되는 냉매수량을 하향 조정하여 반응온도 대비 5℃ 정도 환류시켰다. 반응 개시 6시간후 스테아린산메칠의 반응율은 99.0%로 높게 나타났다.In the same conditions as in Example 3, the amount of refrigerant supplied to the condenser was adjusted downward to reflux about 5 ° C. relative to the reaction temperature. Six hours after the start of the reaction, the reaction rate of methyl stearate was 99.0%.

본 발명의 제조방법에 의하면 반응속도가 크고 효율적이며, 더욱 경제적으로 유리하게 자당 지방산 에스테르를 제조하는 것이 가능하여 공업적 가치가 크다.According to the production method of the present invention, it is possible to produce sucrose fatty acid esters with a large reaction rate and efficiency, and more economically, and thus has high industrial value.

Claims (6)

자당과 지방산 저급 알킬 에스테르를 알칼리 촉매하, 0.1∼100torr의 감압 조건에서 교반, 가열하면서 반응기 상부로 발생되는 부생알콜 및 반응용매를 유출시켜 응축시키는 공정;Sucrose and fatty acid lower alkyl esters are condensed by flowing out by-product alcohol and reaction solvent generated in the upper portion of the reactor while stirring and heating under reduced pressure of 0.1 to 100 torr under an alkali catalyst; 응축 후 충진탑에서 반응용매와 부생알콜을 분리시켜 반응용매는 반응기로 환류시키고 부생알콜은 하류부에서 응축, 회수시키는 공정;으로 이루어진 자당 지방산 에스테르 제조방법.Sucrose fatty acid ester production method comprising the step of separating the reaction solvent and by-product alcohol in the packed column after condensation reflux the reaction solvent to the reactor and the by-product alcohol condensation, recovery in the downstream. 제1항에 있어서, 충진탑으로 유입되는 부생알콜 및 반응용매의 응축온도는 50∼140℃로 제어하며, 환류량은 전체 반응용매의 무게기준으로 5∼500%로 조절하는 것을 특징으로 하는 자당 지방산 에스테르 제조방법.The condensation temperature of the by-product alcohol and the reaction solvent flowing into the packed column is controlled to 50 ~ 140 ℃, reflux is adjusted to 5 to 500% by weight of the total reaction solvent. Fatty acid ester preparation method. 제1항에 있어서, 반응 온도는 50∼150℃로 유지시키는 것을 특징으로 하는 자당 지방산 에스테르 제조방법.The method for producing sucrose fatty acid ester according to claim 1, wherein the reaction temperature is maintained at 50 to 150 ° C. 제1항에 있어서, 알칼리 촉매는 탄산나트륨, 탄산칼륨 및 수산화칼륨으로 이루어진 그룹 중 선택된 1종 이상인 것을 특징으로 하는 자당 지방산 에스테르 제조방법.The method for producing sucrose fatty acid ester according to claim 1, wherein the alkali catalyst is at least one selected from the group consisting of sodium carbonate, potassium carbonate and potassium hydroxide. 제 1항에 있어서, 반응용매는 몰포린, 디프로필설폭사이드, 디메칠포름아미드, 피리딘, 피라진, 2-메칠피페라진, 트리메칠아민, 트리에칠아민, 키노린, 2-피로리돈 및 디메칠설폭사이드로 이루어진 그룹 중 선택된 1종 이상인 것을 특징으로 하는 자당 지방산 에스테르 제조방법.The reaction solvent of claim 1, wherein the reaction solvent is morpholine, dipropylsulfoxide, dimethylformamide, pyridine, pyrazine, 2-methylpiperazine, trimethylamine, triethylamine, chinoline, 2-pyrrolidone and di Sucrose fatty acid ester production method, characterized in that at least one selected from the group consisting of methyl sulfoxide. 제1항에 있어서, 지방산 저급 알킬에스테르는 탄소수 10∼28개의 포화 지방산과 탄소수 1∼4의 저급 알콜의 에스테르 화합물인 것을 특징으로 하는 자당 지방산 에스테르 제조방법.The method for producing a sucrose fatty acid ester according to claim 1, wherein the fatty acid lower alkyl ester is an ester compound of a saturated fatty acid having 10 to 28 carbon atoms and a lower alcohol having 1 to 4 carbon atoms.
KR10-2002-0020610A 2002-04-16 2002-04-16 Producing method of sugar fatty acid ester KR100443078B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0020610A KR100443078B1 (en) 2002-04-16 2002-04-16 Producing method of sugar fatty acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0020610A KR100443078B1 (en) 2002-04-16 2002-04-16 Producing method of sugar fatty acid ester

Publications (2)

Publication Number Publication Date
KR20030082077A true KR20030082077A (en) 2003-10-22
KR100443078B1 KR100443078B1 (en) 2004-08-02

Family

ID=32379129

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0020610A KR100443078B1 (en) 2002-04-16 2002-04-16 Producing method of sugar fatty acid ester

Country Status (1)

Country Link
KR (1) KR100443078B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2630182B2 (en) * 1992-09-10 1997-07-16 三菱化学株式会社 Method for producing sucrose fatty acid ester
JPH06336493A (en) * 1993-05-28 1994-12-06 Mitsubishi Kasei Corp Production of sucrose fatty acid ester
KR100486859B1 (en) * 1998-07-31 2005-07-18 삼성토탈 주식회사 Method for producing high purity sucrose fatty acid ester

Also Published As

Publication number Publication date
KR100443078B1 (en) 2004-08-02

Similar Documents

Publication Publication Date Title
KR101663586B1 (en) Dioctylterephthalate manufacturing method increased reaction coversion rate through unique reaction temperature control
KR101355256B1 (en) Production of di-(2-ethylhexyl) terephthalate
US5043458A (en) One-step continuous process for preparing cyclic esters
KR20060041832A (en) Process for producing methionine
CN104177250A (en) Process for producing glycollic acid from methyl glycolate
US10947174B2 (en) Method for preparing trimethylolpropane
CN109438182A (en) A kind of production system and its production technology of 99 grades of pentaerythrites
CS183991A3 (en) Process for preparing 4-acetoxystyrene
KR100443078B1 (en) Producing method of sugar fatty acid ester
CN101959842A (en) A process for the preparation of bronopol
CN110845376B (en) Preparation method of pentaerythritol mercaptocarboxylic ester
US6482976B1 (en) Processes for conducting equilibrium-limited reactions
KR100676304B1 (en) Process for preparing neopentyl glycol
EP1611082B1 (en) Process for conducting equilibrium-limited reactions
US7674931B1 (en) Method for producing 2,2,4-trimethyl-1,3-pentanediol di-2-ethylhexanoate
SK278328B6 (en) Manufacturing process for mercapto carboxylic acids and alcohols creating azeotropic mixture with water
US3823185A (en) Improved process for the preparation of ethoxylated isethionates
CN111205319B (en) Continuous synthesis method and system of glyphosate
CN211814218U (en) Continuous synthesis system of glyphosate
KR20150084054A (en) Method for producing 6,6&#39;-(ethylenedioxy)di-2-naphthoic acid diester
EP0617040A2 (en) Production of alkyl phosphites
CN113402393A (en) Semi-continuous reactive distillation process for producing carbonic ester
WO2016036655A1 (en) Improved formaldehyde recovery method
EP3844140B1 (en) Method and apparatus to produce fatty acids from methyl esters throughout non-catalytic process
CN102731420B (en) Method for preparing acetoguanamine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee
R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20130808

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140624

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150724

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee