KR20030079351A - Method for detecting the volatile compounds of irradiated meat by using electronic nose - Google Patents

Method for detecting the volatile compounds of irradiated meat by using electronic nose Download PDF

Info

Publication number
KR20030079351A
KR20030079351A KR1020020018318A KR20020018318A KR20030079351A KR 20030079351 A KR20030079351 A KR 20030079351A KR 1020020018318 A KR1020020018318 A KR 1020020018318A KR 20020018318 A KR20020018318 A KR 20020018318A KR 20030079351 A KR20030079351 A KR 20030079351A
Authority
KR
South Korea
Prior art keywords
sensor
irradiated
detecting
meat
electronic nose
Prior art date
Application number
KR1020020018318A
Other languages
Korean (ko)
Other versions
KR100463677B1 (en
Inventor
노봉수
한기영
Original Assignee
노봉수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 노봉수 filed Critical 노봉수
Priority to KR10-2002-0018318A priority Critical patent/KR100463677B1/en
Publication of KR20030079351A publication Critical patent/KR20030079351A/en
Application granted granted Critical
Publication of KR100463677B1 publication Critical patent/KR100463677B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/12Meat; fish
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0044Specially adapted to detect a particular component for H2S, sulfides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0047Specially adapted to detect a particular component for organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0054Specially adapted to detect a particular component for ammonia

Abstract

PURPOSE: A method for detecting volatile compounds of irradiated meat by using an electronic nose is provided, thereby easily detecting off-flavor of the irradiated meat. CONSTITUTION: A method for detecting volatile compounds of irradiated meat by using an electronic nose comprises the steps of: introducing different kinds of irradiated meat into the electronic nose with a sensor array consisting of one or more metal oxide sensors; measuring the sensor resistance(Rgas) exposed to the volatile compounds of the irradiate meat; measuring the sensor resistance(Rair) in the air and determining a resistance ratio of Rgas/Rair; and applying the resistance ratio of Rgas/Rair to principal component analysis or neural network analysis, wherein the metal oxide sensor comprises a hydrogen sulfate sensor, an ammonia sensor, a hydrocarbon volatile steam sensor, an alcohol and organic solvent steam sensor, an air pollution sensor and a combustible gas sensor.

Description

전자코를 이용하여 방사선 조사된 식용육의 휘발성 화합물을 감지하는 방법{Method for detecting the volatile compounds of irradiated meat by using electronic nose}Method for detecting the volatile compounds of irradiated meat by using electronic nose}

본 발명은 전자코를 이용하여 방사선 조사된 식용육의 휘발성 화합물을 감지하는 방법에 관한 것이다. 더욱 상세하게는, 본 발명은 여섯 개의 메탈 옥사이드 센서들(six metal oxide sensors)로 구성된 센서 어레이를 장착한 전자코를 이용하여 방사선 조사된 식용육의 휘발성 화합물을 감지하는 방법에 관한 것이다.The present invention relates to a method for detecting volatile compounds of irradiated edible meat using an electronic nose. More specifically, the present invention relates to a method for detecting volatile compounds of irradiated edible meat using an electronic nose equipped with a sensor array consisting of six six metal oxide sensors.

방사선 조사는 병원체성 박테리아 및 기생충에 대항하여 보호함으로써 육류의 저장기간을 연장하는 것으로 잘 알려져 있다. 다른 한편으로, 방사선 조사는 처리된 식품의 영양적 및 감각적 수용성에 영향을 줄 수 있는 생화학적 변화를 가져온다. 예를 들면, 방사선 조사를 많이 했을 경우 지질의 방사성 산화(radiolytic oxidation)에 기인한 수용할 수 없는 이취(off-flavors)가 증가된다.Irradiation is well known for prolonging the shelf life of meat by protecting it against pathogenic bacteria and parasites. On the other hand, irradiation results in biochemical changes that can affect the nutritional and sensory acceptability of the treated food. For example, a lot of radiation increases unacceptable off-flavors due to radiolytic oxidation of lipids.

방사선 조사된 식품을 감지하기 위한 몇 몇의 방법들이 있다. 물리적인 방법으로는 열발광(thermoluminescence; TL), 광자극 발광(photostimulated luminescence; PSL) 및 전자스핀공명(electron spin resonance; ESR)이 포함된다. 화학적 방법으로는 GC 또는 GC/MS 분석기기를 사용함으로써 방사선에 노출되어졌을 때 지방 함유 식품으로부터 생성된 탄화수소를 감지하는 것, 단일 세포들(single cells)의 마이크로겔 전기영동(microgel electrophoresis)인 DNA "코멧" 에세이 ("Comet" assay), 방사선 조사된 종 및 농업 생산물을 동정하기 위한 TL, 및 방사선 조사된 닭고기, 돼지고기, 및 쇠고기를 감지하기 위한 ESR 분광학이 포함된다. DNA 방법을 통해서, 방사선 조사된 과일, 쇠고기 및 곡물들도 동정할 수 있다. 방사선 조사된 돼지고기, 베이컨 및 햄에서는 탄화수소가 감지되어지고, 방사선 조사된 쇠고기 및 닭고기에서는 2-알킬시클로부타논(2-alkylcyclobutanone)이 감지되어진다. 이러한 방법은 몇몇의 경우에, 시간이 많이 소비되고 미리 입자상물질을 제거하기 위하여 샘플의 전처리가 요구되어지는 질량 분광분석법과 함께 병합하여 사용한다. 상기 방법들은 또한 비싼 장비와 상당한 기술적 실력이 요구되어진다.There are several ways to detect irradiated food. Physical methods include thermoluminescence (TL), photostimulated luminescence (PSL) and electron spin resonance (ESR). Chemical methods include the use of GC or GC / MS analyzers to detect hydrocarbons produced from fat-containing foods when exposed to radiation, and DNA, the microgel electrophoresis of single cells. “Comet” assays, TL for identifying irradiated species and agricultural products, and ESR spectroscopy for detecting irradiated chicken, pork, and beef. Through DNA methods, irradiated fruits, beef and grains can also be identified. Hydrocarbons are detected in irradiated pork, bacon and ham, and 2-alkylcyclobutanone in irradiated beef and chicken. This method is used in combination with mass spectroscopy, which in some cases is time consuming and requires pretreatment of the sample to remove particulate matter in advance. The methods also require expensive equipment and considerable technical skills.

최근에, 단일한 또는 복잡한 향기성분을 인식할 수 있는, 부분적 특이성과 적절한 패턴-인식 시스템(appropriate pattern-recognition system)을 가진 전기 화학적 센서들의 배열(array)로 이루어져 있는 전자코가 도입되어졌다. 식품 산업에서 전자코의 다양한 응용들이 보고되고 있다. 이러한 것들에는 육류(ground meat)의 질평가, 육류내의 보어 타인트(boar taint) 및 육류 제품내 성(gender) 차이의 감지, 농업 생산물을 위한 산지 식별, 맥주와 소세지의 향기성분의 모니터링(monitoring), 및 오렌지 주스 및 우유의 신선함의 추정을 포함한다.Recently, electronic noses have been introduced that consist of an array of electrochemical sensors with partial specificity and an appropriate pattern-recognition system capable of recognizing a single or complex scent. Various applications of electronic noses in the food industry have been reported. These include quality assessment of ground meat, detection of differences in boar taint and meat in meat products, identification of producers for agricultural production, and monitoring of fragrance components in beer and sausages. ), And an estimate of the freshness of orange juice and milk.

더 나아가, 전자코를 사용한, 적색 후추의 방사선 조사 처리의 감지 및 콩기름(soybean oil)의 지방질 산화의 분석이 보고되어졌다. 이는 전자코를 사용하여 육류의 방사선 처리 후 지방질 산화 및 이취(off-flavors)를 측정하는 것이 가능하다는 것을 제안해준다.Furthermore, the detection of irradiation treatment of red pepper and analysis of lipid oxidation of soybean oil using an electronic nose has been reported. This suggests that it is possible to measure fat oxidation and off-flavors after meat radiation using an electronic nose.

본 발명에서는 전자코를 사용한 방사선 조사된 육류의 동정 가능성을 조사하였다. 주성분 분석(principal component analysis) 및 신경망 시스템(neural network system)이 방사선 조사된 육류의 동정에 또한 적용되어졌다.In the present invention, the possibility of identifying irradiated meat using an electronic nose was investigated. Principal component analysis and neural network systems have also been applied to the identification of irradiated meat.

본 발명자들은 상기와 같은 점을 감안하여 식용육을 방사선 조사한후 여섯 개의 메탈 옥사이드(six metal oxide) 센서들로 구성된 센서 어레이를 장착한 전자코를 이용하여 식용육내 휘발성 화합물을 감지하여 공기중에서 측정한 센서의 저항과 휘발성 화합물에 노출되어졌을 때의 저항비를 측정하고 탄화수소 농도, 방사선 조사량, 저장온도 및 저장시간에 따른 전자코내의 저항비 변화를 조사함으로써 본 발명을 완성하였다.In view of the above, the inventors of the present invention have measured the volatile compounds in the meat by using an electronic nose equipped with a sensor array composed of six metal oxide sensors after irradiating the meat. The present invention was completed by measuring the resistance ratio of the sensor and the resistance ratio when exposed to volatile compounds, and the change of the resistance ratio in the electronic nose according to hydrocarbon concentration, radiation dose, storage temperature and storage time.

따라서, 본 발명의 목적은 전자코를 이용하여 방사선 조사된 식용육의 휘발성 화합물을 감지하는 방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a method for detecting volatile compounds of irradiated edible meat using an electronic nose.

본 발명의 상기 목적은 식용육을 방사선 조사한후 여섯 개의 메탈 옥사이드(six metal oxide) 센서들로 구성된 센서 어레이를 장착한 전자코를 이용하여 식용육내 휘발성 화합물을 감지하여 공기중에서 측정한 센서의 저항과 휘발성 화합물에 노출되어졌을 때의 저항비를 측정하고 탄화수소 농도, 방사선 조사량, 저장온도 및 저장시간에 따른 전자코내의 저항비 변화를 조사함으로써 달성하였다.The object of the present invention is to detect the volatile compounds in the meat meat by using an electronic nose equipped with a sensor array consisting of six metal oxide (six metal oxide) sensors after irradiating the meat and the resistance of the sensor measured in the air and This was achieved by measuring the resistance ratio when exposed to volatile compounds and examining the change in resistance ratio in the electronic nose with the hydrocarbon concentration, radiation dose, storage temperature and storage time.

이하 본 발명의 구성을 설명한다.Hereinafter, the configuration of the present invention.

도 1은 다른 조사량으로 방사선 조사된 식용육의 휘발성 화합물에 대하여 전자코에 의해 측정된 저항비변화를 보여주는 그래프이다.1 is a graph showing the change in resistance ratio measured by an electronic nose for volatile compounds of edible meat irradiated with different dosages.

도 2는 다른 조사량으로 방사선 조사된 식용육의 휘발성 화합물에 대하여 전자코에 의해 측정된 저항비의 주성분 분석결과를 보여주는 그래프이다.Figure 2 is a graph showing the results of the principal component analysis of the resistance ratio measured by the electronic nose for the volatile compounds of edible meat irradiated with different dosages.

도 3은 -20℃에서 저장하는 동안 다른 조사량으로 방사선 조사된 식용육의 휘발성 화합물에 대하여 전자코에 의해 측정된 저항비의 변화를 보여주는 그래프이다.FIG. 3 is a graph showing the change in resistance ratio measured by an electronic nose for volatile compounds of edible meat irradiated at different dosages during storage at −20 ° C. FIG.

도 4는 4℃에서 저장하는 동안 다른 조사량으로 방사선 조사된 식용육의 휘발성 화합물에 대하여 전자코에 의해 측정된 저항비의 변화를 보여주는 그래프이다.FIG. 4 is a graph showing the change in resistance ratio measured by electronic nose for volatile compounds of edible meat irradiated with different dosages during storage at 4 ° C. FIG.

본 발명은 식용육을 방사선 조사한 후 8주간 저장하는 단계; 상기 단계의 식용육의 휘발성 화합물을 전자코내에서 분석하여 공기중에서 측정된 센서 저항과 가스에 노출되어진 상태에서 측정되어진 센서 저항의 비를 구하는 단계; 저항비에 대한 탄화수소 농도의 영향을 조사하는 단계; 저항비에 대한 방사선 조사량의 영향을조사하는 단계; 저항비에 대한 저장온도 및 저장시간의 영향을 조사하는 단계로 구성된다.The present invention comprises the steps of storing the food for 8 weeks after irradiation; Analyzing the volatile compounds of the edible meat in the electronic nose to obtain a ratio of the sensor resistance measured in the air and the sensor resistance measured in the state exposed to the gas; Investigating the influence of hydrocarbon concentration on the resistance ratio; Investigating the effect of radiation dose on the resistance ratio; Investigating the effect of storage temperature and storage time on the resistance ratio.

본 발명에서 n-펜타데칸(n-pentadecane), 1-헥사데켄(1-hexadecene), n-헵타데칸(n-heptadecane)(Acros, USA), 및 1-테트라데켄(1-tetradecene)(Aldrich, USA)과 같은 탄화수소들이 표준 물질로서 사용되어지며 방사선 조사된 식용육내의 탄화수소와 같는 조건하에서 전자코에 의하여 분석되어졌다.In the present invention, n-pentadecane, 1-hexadecene, 1-hexadecene, n-heptadecane (Acros, USA), and 1-tetradecene (1-tetradecene) (Aldrich Hydrocarbons such as USA, USA) were used as standard materials and analyzed by electronic nose under the same conditions as hydrocarbons in irradiated edible meat.

본 발명에서 데이타 분석은 Lee, D.S.(대한민국, 서울특별시, 서울여자대학교)에 의해 개발된 다변량 통계 분석 프로그램(multivariate statistics analysis program; MVSAP, version 3.1)을 사용하여 수행되어진 주성분분석(principle component analysis)을 방사선 조사된 식용육을 감지하는 센서들로부터 얻은 데이터에 적용시켜 수행한다. Lab windows/CVI(National Instrument Co., USA)가 신경망 분석 프로그램(neural network analysis program)을 발전시키기 위하여 사용되어졌다.Data analysis in the present invention is principal component analysis (principle component analysis) performed using a multivariate statistics analysis program (MVSAP, version 3.1) developed by Lee, DS (Korea, Seoul, Seoul Women's University) Is applied to data obtained from sensors that detect irradiated edible meat. Lab windows / CVI (National Instrument Co., USA) was used to develop the neural network analysis program.

이하, 본 발명의 구체적인 방법을 실시예를 들어 상세히 설명하고자 하지만 본 발명의 권리범위는 이들 실시예에만 한정되는 것은 아니다.Hereinafter, the specific method of the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited only to these Examples.

실시예 1 : 식용육의 방사선 조사 및 저장Example 1 Irradiation and Storage of Edible Meat

식용육(食用肉)[반힘줄모양근(muscle semitendinosus)] 100g을 한국원자력연구소(Korea Atomic Energy Research Institute; 대한민국 대전시 소재)에서60Coγ-방사선 조사기(60Co γ-irradiator)를 사용하여 1, 3, 5, 10 kGy로 방사선을 조사하였다. 세륨 방사선량계(ceric cerous dosimeter)가 흡수된 분량(absorbed dose)를 확인하기 위하여 사용되어졌다(±0.2 kGy).Using 60 Coγ- radiation irradiation (60 Co γ-irradiator) in; (Republic of Korea in Daejeon material Korea Atomic Energy Research Institute) 1, edible flesh (食用肉) [Van tendon shaped muscle (muscle semitendinosus)] 100g of Korea Atomic Energy Research Institute The radiation was irradiated at 3, 5 and 10 kGy. Ceric cerous dosimeters were used to confirm the absorbed dose (± 0.2 kGy).

상기와 같이 방사선 조사된 샘플과 방사선 조사되지 않은 대조구 샘플을 PE/나일론(Nylon) 백에 밀봉해서 사용하기 전에 8주동안 -20 내지 4℃에서 보관하였다.The irradiated and non-irradiated control samples as described above were stored at −20 to 4 ° C. for 8 weeks prior to use in sealed PE / Nylon bags.

실시예 2 : 전자코에 의한 분석Example 2 Analysis by Electronic Nose

여섯 개의 메탈 옥사이드(six metal oxide) 센서들(표 1)로 구성된 센서 어레이(sensor array)를 장착한 전자코는 한빛 인스트러먼트(Hanbit Instrument; 대한민국, 서울)에서 제조한 제품을 사용하였다. 여섯 개의 센서들은 피가로 코오퍼레이션(Figaro Co.; 일본, 도쿄)로부터 구입하였다. 컴퓨터에 의해 제어되어지는 밸브를 열어서 정해진 시간에 가스 샘플을 주입하였다. 메탈 옥사이드(metal oxide) 센서들로부터 데이터도 컴퓨터에 의해 수집되어졌다. 저항비(ratio of resistance)는 Rgas/Rair로 정의하고, 여기에서 Rair와 Rgas는 각각 공기중에서와 가스에 노출되어진 상태에서 측정되어진 센서의 저항이다.An electronic nose equipped with a sensor array consisting of six six metal oxide sensors (Table 1) used a product manufactured by Hanbit Instrument (Seoul, South Korea). Six sensors were purchased from Figaro Co. (Tokyo, Japan). A gas sample was injected at a defined time by opening a computer controlled valve. Data from metal oxide sensors was also collected by the computer. The ratio of resistance is defined as R gas / R air , where R air and R gas are the resistance of the sensor measured in air and exposed to gas, respectively.

전자코의 메탈 옥사이드 센서들Electronic Metal Sensors 센서 번호Sensor number 센서 모델(sensor model)Sensor model specificationspecification 1One TGS825TGS825 황화수소(Hydrogen sulfide)Hydrogen sulfide 22 TGS824TGS824 암모니아(Ammonia)Ammonia 33 TGS880TGS880 탄화수소 휘발성 증기(Hydrocarbon volatile vapors)Hydrocarbon volatile vapors 44 TGS822TGS822 알코올 및 유기 용매 증기(Alcohol and organic solvent vapors)Alcohol and organic solvent vapors 55 TGS800TGS800 대기 오염(Air contamination)Air contamination 66 TGS813TGS813 가연성 가스(Combustible gas)Combustible gas

분석을 위하여, 방사선 조사된 식용육 10g을 폴리에틸렌으로 밀봉되어진 325㎖ 유리병에 넣었다. 분석을 위한 평형시간은 전자코내에서 3분(min)이었다. 모든 측정은 30℃에서 수행되어졌다. 측정과정은 10초(sec)동안 히터 클리닝(heater cleaning)하는 단계, 전자코 내에서 센서들을 깨끗하게 하고 10초(sec)동안 깨끗한 공기를 펌핑하는 단계와 60초동안 방사선 조사된 식용육의 윗공간(headspace)을 분석하는 단계로 구성된다.For analysis, 10 g of irradiated edible meat was placed in a 325 ml glass jar sealed with polyethylene. Equilibration time for analysis was 3 minutes in the electronic nose. All measurements were performed at 30 ° C. The measurement process includes the steps of heater cleaning for 10 seconds, cleaning the sensors in the electronic nose, pumping clean air for 10 seconds and the upper space of irradiated edible meat for 60 seconds. (headspace) analysis.

여섯 개의 메탈 옥사이드(six metal oxide) 센서들이 방사선 조사된 제품내의 휘발성 화합물의 분석을 위하여 사용되어졌다. 따라서 저항비는 가스의 농도가 증가됨에 따라 1 이하로 감소하였다. 타깃 가스(target gases)(휘발성 화합물)에 노출됨에 따라, 센서들은 저항 변화를 표시하였다. 이러한 저항 변화는 수반되는 데이터 처리를 위하여 사용되어졌다. 저항비는 감지층 물질(sensing layer materials)과 선택된 센서의 타입에 의해 상당한 영향을 받는다. 전자코를 이요하여 방사선 조사된 식용육내의 휘발성 화합물의 측정을 위하여, 샘플 양, 추출 시간(extraction time) 및 추출 온도(extraction temperature)와 같은 조건들이 저항비의 변화를 측정함에 따라 최대한으로 활용되어졌다. 저항비는 60초에 가장 낮았다. 60초 이후에 저항비가 증가하였는데 이는 샘플 병(sample bottles)내에 희석효과에 의한 것으로 추측된다. 도입된 휘발성 화합물은 metal oxide sensor와 함께 반응하였으며, 흡수된 화합물의 농도는 신선한 공기의 유입에 기인하여 최대값 이후로 감소하였다. 따라서, 메탈 옥사이드 센서들(metal oxide sensors)의 반응 시간은 60초로 정하였다.Six six metal oxide sensors were used for the analysis of volatile compounds in irradiated products. Therefore, the resistance ratio decreased below 1 as the gas concentration increased. As they were exposed to target gases (volatile compounds), the sensors indicated a change in resistance. This resistance change was used for subsequent data processing. The resistance ratio is significantly influenced by the sensing layer materials and the type of sensor selected. For the measurement of volatile compounds in irradiated edible meat using an electronic nose, conditions such as sample volume, extraction time and extraction temperature are utilized to the maximum as the resistance ratio is measured. lost. The resistance ratio was the lowest at 60 seconds. After 60 seconds the resistance ratio increased, presumably due to the dilution effect in the sample bottles. The introduced volatile compounds reacted with the metal oxide sensor, and the concentration of the absorbed compounds decreased after the maximum value due to the inflow of fresh air. Therefore, the reaction time of the metal oxide sensors was set to 60 seconds.

실험예 1 : 전자코내의 저항비에 대한 탄화수소 농도의 영향Experimental Example 1: Effect of hydrocarbon concentration on the resistance ratio in the electronic nose

식품이 방사선 조사되어졌을 때, 많은 휘발성 화합물들이 형성되어진다. 이러한 화합물들은 방사선 처리를 위한 마커들(markers)로서 유용하다. 휘발성 탄화수소류, 알데히드류(aldehydes) 또는 부타논류(butanones)와 같은 지질로부터의 방사성 생성물의 비율은 지질의 화학적 구성성분과 직접적으로 연계된다. 이는 지방산이 높은 에너지의 방사선에 노출되어졌을 때, 다른 처리들(treatments)과는 달리 선택적인 분할을 수행하며 이러한 분할은 에스테르 카르보닐 영역(ester carbonyl region)에서 발생한다. 두 가지 타입의 탄화수소들이 지방산의 방사선 조사로부터 두드러지게 생산되어진다. 하나는 모지방산(parent fatty acid)보다 탄소가 하나 적은 것(Cn-1) 그리고 나머지 하나는 모지방산보다 탄소가 두 개 적고 1번 위치에 부가적인 이중결합(double bond)이 있는 것(Cn-2, 1-ene)이다.When food is irradiated, many volatile compounds are formed. Such compounds are useful as markers for radiation treatment. The proportion of radioactive products from lipids such as volatile hydrocarbons, aldehydes or butanones is directly linked to the chemical constituents of the lipids. When fatty acids are exposed to high energy radiation, they undergo selective cleavage, unlike other treatments, which occur in the ester carbonyl region. Two types of hydrocarbons are produced prominently from irradiation of fatty acids. One having one carbon less than the parent fatty acid (C n-1 ) and the other having two carbons less than the parent fatty acid and having an additional double bond at position 1 (C n-2 , 1-ene).

일반적으로, 식용육은 팔미트산(palmitic acids), 스테아르산(stearicacids), 올레인산(oleic acids) 및 리놀레인산(linoleic acids)들을 포함한다. 그러므로 팔미트산으로부터 펜타데칸(pentadecane)(C15:0) 및 1-테트라데켄(1-tetradecene)(C14:1), 스테아르산으로부터 헵타데칸(heptadecane)(C17:0) 및 1-헥사데켄(1-hexadecene)(C16:1), 올레인산으로부터 8-헵타데켄(8-heptadecene)(C17:1) 및 1,7-헥사데카디엔(1,7-hexadecadiene)(C16:2), 리놀레인산으로부터 6,9-헵타데카디엔(6,9-heptadecadiene)(C17:2) 및 1,7,10-헥사데카트리엔(1,7,10-hexadecatriene)(C16:3)이 방사선 조사된 식용육내에서 감지되어질 것이 기대되어진다. 그러므로, 이러한 탄화수소들의 감지를 위하여 전자코를 적용하였다.In general, edible meats include palmitic acids, stearic acids, oleic acids and linoleic acids. Therefore, pentadecane (C15: 0) and 1-tetradecene (C14: 1) from palmitic acid, heptadecane (C17: 0) and 1-hexadecene (from stearic acid) 1-hexadecene) (C16: 1), 8-heptadecene (C17: 1) from oleic acid and 1,7-hexadecadiene (C16: 2), linoleic acid Edible from which 6,9-heptadecadiene (C17: 2) and 1,7,10-hexadecatriene (C16: 3) were irradiated from It is expected to be detected in the body. Therefore, an electronic nose was applied for the detection of these hydrocarbons.

탄화수소의 농도가 증가됨에 따라, 전자코내의 저항비가 감소하였다(표 2).As the concentration of hydrocarbons increased, the resistance ratio in the electronic nose decreased (Table 2).

탄화수소에 대한 전자코내 센서 저항비의 변화Variation of Electronic Resistance Sensor Resistance Ratio for Hydrocarbons 구성성분Ingredient 양(Amount)(㎕)Amount (μl) 센서의 저항비(Ratio of resistance of sensor)Ratio of resistance of sensor 1One 22 33 44 55 66 n-펜타데칸(n-Pentadecane)n-Pentadecane 1One 0.7301490.730149 0.7899940.789994 0.7186200.718620 0.7695950.769595 0.7687240.768724 0.7173560.717356 1010 0.6785430.678543 0.7031960.703196 0.6416490.641649 0.6876610.687661 0.6999850.699985 0.6612270.661227 100100 0.6706340.670634 0.7051820.705182 0.6664920.666492 0.6848120.684812 0.7079930.707993 0.6668740.666874 1-테트라데켄(1-Tetradecene)1-tetradeken (1-Tetradecene) 1One 0.7237650.723765 0.7424200.742420 0.6896830.689683 0.7461770.746177 0.7443280.744328 0.6833640.683364 1010 0.5762730.576273 0.5774000.577400 0.6110060.611006 0.5554270.555427 0.5978450.597845 0.6201250.620125 100100 0.3436230.343623 0.3519910.351991 0.4819240.481924 0.2906780.290678 0.3808190.380819 0.5166890.516689 n-헵타데칸(n-Heptadecane)n-heptadecane (n-Heptadecane) 1One 0.7334490.733449 0.7877850.787785 0.7815270.781527 0.7365880.736588 0.7390350.739035 0.7452060.745206 1010 0.6289890.628989 0.6474540.647454 0.6271260.627126 0.6127980.612798 0.6321040.632104 0.6433790.643379 100100 0.4374140.437414 0.4526150.452615 0.5996480.599648 0.3977290.397729 0.3811460.381146 0.6162450.616245 1-헥사데켄(1-Hexadecene)1-hexadecene (1-Hexadecene) 1One 0.6760670.676067 0.6870730.687073 0.6240600.624060 0.6619340.661934 0.6786030.678603 0.6213140.621314 1010 0.5848230.584823 0.5600310.560031 0.5399760.539976 0.5428760.542876 0.5798370.579837 0.5624370.562437 100100 0.5630390.563039 0.5426020.542602 0.6281790.628179 0.5208410.520841 0.5831040.583104 0.6470840.647084

몇몇의 센서들은 일반적으로 상기 탄화수소들에 잘 반응하였다. 센서의 반응은 탄화수소의 농도와 상호 관련이 있었다. 이는 전자코가 방사선 조사된 식용육을 감지할 수 있음을 나타낸다. 그러므로 방사선 조사된 식용육으로부터의 탄화수소뿐만 아니라 다른 휘발성 화합물들도 선택된 센서들의 타입이 다른 것에 기인한다(표 1).Some sensors generally responded well to the hydrocarbons. The response of the sensor was correlated with the concentration of hydrocarbons. This indicates that the electronic nose can detect irradiated edible meat. Therefore, other volatile compounds as well as hydrocarbons from irradiated edible meat are due to the different types of sensors selected (Table 1).

실험예 2 : 전자코내의 저항비에 대한 조사량의 영향Experimental Example 2: Effect of dosage on resistance ratio in electronic nose

six metal oxide sensors을 가진 전자코를 1, 3, 5 및 10 kGy로 조사된 식용육 및 조사되지 않은 식용육을 동정하기 위하여 사용되어졌다. 4번 센서가 전자코내에서 가장 낮은 저항비를 보여주었다(도 1). 4번 센서내의 저항비는 방사선 조사되지 않은 식용육내에서 0.42 그리고 10 kGy로 조사된 식용육내에서 0.21이었다. 조사량이 증가함에 따라 저항비가 감소하였다. 전자코에 의한 방사선 조사된 적색 후추(red pepper)의 감지에서, 조사량이 증가됨에 따라 처리된 샘플의 좋은 분리 패턴(seperated pattern)을 보여주었다.Electronic noses with six metal oxide sensors were used to identify edible and unirradiated edible meats at 1, 3, 5 and 10 kGy. Sensor 4 showed the lowest resistance ratio in the electronic nose (FIG. 1). The resistance ratio in sensor 4 was 0.41 in unirradiated edible meat and 0.21 in edible meat irradiated at 10 kGy. As the dose increased, the resistance ratio decreased. Detection of irradiated red pepper by the nose showed a good segregated pattern of treated samples as the dose increased.

전자코에 의해 수집되어진 데이터는 PCA를 위한 방사선 조사된 식용육을 동정하기 위해 사용되어졌다. 다른 조사량 순에서 방사선 조사된 식용육은 PCA를 통해 분류되었다(도 2). 제 1 주성분의 비율(first principal component score)은 0.980이었으며 제 2 주성분의 비율(second principal component score)은 0.01이었다. 방사선 조사된 식용육의 PCA는 다른 조사량의 수준에서 이취의 특징적인 발생을 보여주었다. 조사량이 증가함에 따라, PCA 플롯(plot)이 왼쪽(제 1 주성분의 음의 값)에서부터 중간을 통과하여 오른쪽(제 1 주성분의 양의 값)으로 확장하였다. 방사선 조사된 식용육을 감지함에 따라 제 1 주성분이 조사량 또는 이취의 정도에 서로 관련이 있다는 것을 알 수 있었다.The data collected by the electronic nose was used to identify irradiated edible meat for PCA. Irradiated edible meat at different doses was sorted through PCA (FIG. 2). The first principal component score was 0.980 and the second principal component score was 0.01. PCA of irradiated edible meat showed a characteristic occurrence of off-flavor at different dose levels. As the dose increased, the PCA plot expanded from the left (negative value of the first principal component) through the middle to the right (positive value of the first principal component). As the irradiated meat was detected, it was found that the first principal component was related to the dose or the degree of off-flavor.

방사선 조사된 식용육을 동정하기위한 신경망 분석이 개발되어졌으며 미지의 샘플에 적용되어졌다. 방사선 조사된 식용육의 알려진 데이터가 신경망을 알기 위한 데이터로서 사용되어졌다. 데이터베이스(database)의 기초 위에서, 인풋 패턴(input pattern)과 타깃 패턴(target pattern)을 역전파 학습 알고리즘(back propagation learning algorithm)을 위해 세웠다. 감독학습(supervised learning)후에, 미지의 샘플 데이터가 학습된 신경망 시스템에 입력되어졌으며 조사량을 감지하기 위해 분석되어졌다. 신경망 분석 시스템을 통해 분석된 아웃풋 패턴이 미지의 샘플의 조사량을 나타내었다. 전자코내에서 미지의 샘플의 조사량을 예측하는 정확한 확률을 표 3에 나타내었다. 미지의 방사선 조사된 샘플이 성공적으로 감지되었음을 알 수 있었다.A neural network analysis has been developed to identify irradiated edible meat and applied to unknown samples. Known data of irradiated edible meat was used as data for understanding neural networks. On the basis of the database, an input pattern and a target pattern were set up for the back propagation learning algorithm. After supervised learning, unknown sample data was entered into the learned neural network system and analyzed to detect the dose. Output patterns analyzed through the neural network analysis system showed the dose of unknown samples. Table 3 shows the exact probability of predicting the dosage of an unknown sample in the electronic nose. It was found that an unknown irradiated sample was successfully detected.

전자코내 저항비와 인조 신경망 프로그램(artificial neural network progran)에 의한 다른 방사선 조사량으로 조사된 식용육의 분류Classification of Edible Meats Irradiated at Different Radiation Dose by Electronic Nose Resistance Ratio and Artificial Neural Network Progran 방사선 조사Irradiation 예측된 조사량(Predicted dose(kGy)Predicted dose (kGy) 정확한 확률(Correct probability)(%)Correct probability (%) 실제적인 조사량(Actual dose)(kGy)Actual dose (kGy) 00 1One 33 55 1010 00 8/88/8 100100 1One 8/88/8 100100 33 1/81/8 6/86/8 1/81/8 7575 55 7/87/8 1/81/8 87.587.5 1010 2/82/8 6/86/8 7575

실험예 3 : 전자코내의 저항비에 대한 저장온도 및 저장시간의 영향Experimental Example 3 Effects of Storage Temperature and Storage Time on the Resistance Ratio in Electronic Noses

방사선 조사된 식용육이 -20℃에서 저장되어졌을 때, 저항비는 낮은 조사량 수준에서 증가하였다. 그러나 저향비는 10 kGy에서 처음 저항비와 유사하였다(도 3). 조사량이 10 kGy이었을 때, 전자코가 산패취를 통해서가 아니라 방사선 조사를 통해서 발생되는 변질향료를 감지할 수 있다. 방사선 조사된 식용육이 4℃에서 저장되어졌을 때, 저항비는 비조사된 식용육내에서 급속하게 감소하였다. 1, 3 및 5kGy에서 조사된 식용육의 저항비는 비조사된 식용육보다 더 낮았다(도 4). 조사량이 낮고 저장 온도가 높았을 때, 전자코는 조사되어지고 산패된(rancid) 샘플로부터 변질 향료를 감지할 수 있었다. 그러므로, 저장 온도는 조사된 식용육의 감지에 있어서 매우 중요하다.When the irradiated edible meat was stored at -20 ° C, the resistance ratio increased at low dose levels. However, the refraction ratio was similar to the initial resistance ratio at 10 kGy (FIG. 3). When the dose is 10 kGy, the electronic nose can detect the deteriorating fragrances generated by radiation, not through rancidity. When the irradiated edible meat was stored at 4 ° C., the resistance ratio rapidly decreased in the unirradiated edible meat. The resistance ratios of the edible meats irradiated at 1, 3 and 5 kGy were lower than the non-irradiated edible meats (FIG. 4). When the dose was low and the storage temperature was high, the electronic nose was able to detect altered perfume from irradiated and rancid samples. Therefore, storage temperature is very important for the detection of irradiated meat.

전자코 분석은 식용육을 위한 방사선 처리를 감지하기 위한 매우 효과적인 방법으로 사용되어질 수 있다. 가스 센서의 어레이(array of gas sensors)와 패턴 인식(pattern recognition)을 함께 사용하는 본 발명은 GC/MS를 포함하는 다른 방법과 비교하여 보다 빠르고, 비파괴적이며, 간단하고 싼 이점이 있다. 본 발명은 전자코가 식품 산업에서 질평가를 위한 용도로 사용하기 위해 더욱더 개발되어질 수 있다.Electron nose analysis can be used as a very effective way to detect radiation treatment for edible meat. The invention, which uses an array of gas sensors and pattern recognition together, has the advantages of being faster, nondestructive, simple and cheap compared to other methods including GC / MS. The present invention can be further developed for use in the electronic nose for the purpose of quality assessment in the food industry.

이상, 상기 실시예를 통하여 설명한 바와 같이 본 발명 전자코를 이용하여 방사선 조사된 식용육의 휘발성 화합물을 감지하는 방법은 방사선 조사된 식용육의 휘발성 화합물을 전자코를 이용하여 감지하고 공기중에서 측정된 센서 저항과 휘발성 화합물에 노출되어진 상태에서 측정되어진 센서 저항의 비를 구함으로써 방사선 조사된 식용육을 동정할 수 있으므로 축산업상 매우 유용한 발명인 것이다.As described above, the method for detecting the volatile compounds of irradiated edible meat using the electronic nose of the present invention as described through the above embodiment is to detect the volatile compounds of the irradiated edible meat using the electronic nose and measured in the air. Irradiated edible meat can be identified by obtaining the ratio of the sensor resistance measured in the state exposed to the sensor resistance and the volatile compound, which is a very useful invention for the livestock industry.

Claims (2)

하나 또는 그 이상의 메탈 옥사이드(metal oxide) 센서로 구성된 센서 어레이(sensor array)를 장착한 전자코 내부에 각기 다른 조사량으로 방사선 조사된 식용육을 넣는 단계; 방사선 조사된 식용육으로부터 나오는 휘발성 화합물에 노출되어진 상태에서 센서저항(Rgas)을 측정하는 단계; 상기 단계에서 측정되어진 센서저항(Rgas)과 공기중에서 측정되어진 센서저항(Rair)의 저항비 Rgas/Rair를 측정하는 단계; 상기 단계에서 얻은 각기 다른 조사량에 따른 저항비를 주성분분석(principal component analysis) 또는 신경망 분석(neural network analysis)에 적용하는 단계로 이루어짐을 특징으로 하는 방사선 조사된 식용육의 휘발성 화합물을 감지하는 방법.Placing the irradiated edible meat at different doses inside the electronic nose equipped with a sensor array comprising one or more metal oxide sensors; Measuring a sensor resistance (R gas ) in a state of being exposed to volatile compounds emitted from irradiated edible meat; Measuring a resistance ratio R gas / R air resistance of the sensor (R air) been measured at the sensor resistor (R gas) and air been measured in the above step; A method of detecting volatile compounds of irradiated edible meat, characterized in that the step of applying the resistance ratio according to the different doses obtained in the step to principal component analysis or neural network analysis. 제 1항에 있어서, 상기 메탈 옥사이드 센서는 황화수소를 감지하는 센서, 암모니아를 감지하는 센서, 탄화수소 휘발성 증기를 감지하는 센서, 알코올 및 유기 용매 증기를 감지하는 센서, 대기 오염을 감지하는 센서 및 가연성 가스를 감지하는 센서들로 구성된 군임을 특징으로 하는 방사선 조사된 식용육의 휘발성 화합물을 감지하는 방법.The method of claim 1, wherein the metal oxide sensor is a sensor for detecting hydrogen sulfide, a sensor for detecting ammonia, a sensor for detecting hydrocarbon volatile vapor, a sensor for detecting alcohol and organic solvent vapor, a sensor for detecting air pollution and a flammable gas Method for detecting volatile compounds of irradiated edible meat, characterized in that the group consisting of sensors for detecting.
KR10-2002-0018318A 2002-04-03 2002-04-03 Method for detecting the volatile compounds of irradiated meat by using electronic nose KR100463677B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0018318A KR100463677B1 (en) 2002-04-03 2002-04-03 Method for detecting the volatile compounds of irradiated meat by using electronic nose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0018318A KR100463677B1 (en) 2002-04-03 2002-04-03 Method for detecting the volatile compounds of irradiated meat by using electronic nose

Publications (2)

Publication Number Publication Date
KR20030079351A true KR20030079351A (en) 2003-10-10
KR100463677B1 KR100463677B1 (en) 2004-12-29

Family

ID=32464320

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0018318A KR100463677B1 (en) 2002-04-03 2002-04-03 Method for detecting the volatile compounds of irradiated meat by using electronic nose

Country Status (1)

Country Link
KR (1) KR100463677B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103662A1 (en) * 2004-04-21 2005-11-03 E-Nose Pty Ltd A detector for detecting molecules conveyed through a gaseous medium
CN102692488A (en) * 2012-03-22 2012-09-26 浙江大学 Jinhua ham grading and identifying method based on electronic nose technology
CN103675127A (en) * 2013-12-02 2014-03-26 上海应用技术学院 Method for distinguishing flavor substance in edible mushroom through combination of headspace gas chromatography-mass spectrometer and electronic nose
CN103983676A (en) * 2014-06-04 2014-08-13 云南神农农业产业集团股份有限公司 Quick pork freshness nondestructive testing method based on gas sensor technology
CN104483460A (en) * 2014-09-30 2015-04-01 山东国家农产品现代物流工程技术研究中心 Sensor array optimization method for meat detection
CN105181761A (en) * 2015-08-26 2015-12-23 安徽农业大学 Method for rapidly identifying irradiation absorbed dose of tea by using electronic nose
CN109239285A (en) * 2018-09-28 2019-01-18 南昌大学 A kind of detector of measurement meat corruption degree

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297930A (en) * 2011-07-20 2011-12-28 浙江大学 Method for identifying and predicting freshness of meat
KR102456291B1 (en) * 2020-12-04 2022-10-20 한국과학기술원 Gas identification method of photoactivated gas sensor using variable photo-illumination

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103662A1 (en) * 2004-04-21 2005-11-03 E-Nose Pty Ltd A detector for detecting molecules conveyed through a gaseous medium
CN102692488A (en) * 2012-03-22 2012-09-26 浙江大学 Jinhua ham grading and identifying method based on electronic nose technology
CN103675127A (en) * 2013-12-02 2014-03-26 上海应用技术学院 Method for distinguishing flavor substance in edible mushroom through combination of headspace gas chromatography-mass spectrometer and electronic nose
CN103983676A (en) * 2014-06-04 2014-08-13 云南神农农业产业集团股份有限公司 Quick pork freshness nondestructive testing method based on gas sensor technology
CN104483460A (en) * 2014-09-30 2015-04-01 山东国家农产品现代物流工程技术研究中心 Sensor array optimization method for meat detection
CN105181761A (en) * 2015-08-26 2015-12-23 安徽农业大学 Method for rapidly identifying irradiation absorbed dose of tea by using electronic nose
CN105181761B (en) * 2015-08-26 2018-02-16 安徽农业大学 A kind of method using electronic nose quick discriminating tealeaves radiation absorber amount
CN109239285A (en) * 2018-09-28 2019-01-18 南昌大学 A kind of detector of measurement meat corruption degree
CN109239285B (en) * 2018-09-28 2020-08-11 南昌大学 Detector for measuring meat corruption degree

Also Published As

Publication number Publication date
KR100463677B1 (en) 2004-12-29

Similar Documents

Publication Publication Date Title
Karami et al. Application of the E‐nose machine system to detect adulterations in mixed edible oils using chemometrics methods
Sliwinska et al. Food analysis using artificial senses
Tohidi et al. Development of a metal oxide semiconductor-based artificial nose as a fast, reliable and non-expensive analytical technique for aroma profiling of milk adulteration
Górska-Horczyczak et al. Applications of electronic noses in meat analysis
Wei et al. Detecting internal quality of peanuts during storage using electronic nose responses combined with physicochemical methods
Winquist et al. Performance of an electronic nose for quality estimation of ground meat
Hansen et al. Sensory based quality control utilising an electronic nose and GC-MS analyses to predict end-product quality from raw materials
US6767732B2 (en) Method and apparatus for the detection of volatile products in a sample
CN101382531B (en) Method for detecting fresh degree of shrimp by electronic nose
Tang et al. A novel electronic nose for the detection and classification of pesticide residue on apples
Feng et al. Volatile profile, lipid oxidation and protein oxidation of irradiated ready-to-eat cured turkey meat products
Górska-Horczyczak et al. Chromatographic fingerprints supported by artificial neural network for differentiation of fresh and frozen pork
Weng et al. A comprehensive method for assessing meat freshness using fusing electronic nose, computer vision, and artificial tactile technologies
KR100463677B1 (en) Method for detecting the volatile compounds of irradiated meat by using electronic nose
Markiewicz-Keszycka et al. Laser-induced breakdown spectroscopy for food authentication
Jia et al. Nondestructive determination of salmon fillet freshness during storage at different temperatures by electronic nose system combined with radial basis function neural networks
CN104020224A (en) Method for detecting oxidative deterioration of cured meat product
Li et al. Analysis of the volatile compounds associated with pickling of ginger using headspace gas chromatography‐ion mobility spectrometry
Thazin et al. Formalin adulteration detection in food using E-nose based on nanocomposite gas sensors
Tazi Principal component analysis (PCA) method for classification of beef and pork aroma based on electronic nose
Shen et al. Monitoring the lipid oxidation and flavor of Russian sturgeon fillets treated with low temperature vacuum heating: formation and relationship
Korel et al. Quality evaluation of raw and cooked catfish (Ictalurus punctatus) using electronic nose and machine vision
Yang et al. Optimizing conditions of electronic nose for rapid detection of flavor substances in Ningxiang Pork
HARIOM et al. Vanilla flavor evaluation by sensory and electronic nose techniques
Ólafsdóttir et al. Electronic-nose technology: application for quality evaluation in the fish industry

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081211

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee