KR20030077820A - Holographic polymer dispersed liquid crystal display - Google Patents

Holographic polymer dispersed liquid crystal display Download PDF

Info

Publication number
KR20030077820A
KR20030077820A KR1020020016751A KR20020016751A KR20030077820A KR 20030077820 A KR20030077820 A KR 20030077820A KR 1020020016751 A KR1020020016751 A KR 1020020016751A KR 20020016751 A KR20020016751 A KR 20020016751A KR 20030077820 A KR20030077820 A KR 20030077820A
Authority
KR
South Korea
Prior art keywords
liquid crystal
polymer
layer
crystal layers
polymer layer
Prior art date
Application number
KR1020020016751A
Other languages
Korean (ko)
Other versions
KR100476057B1 (en
Inventor
정연학
김진만
이승희
Original Assignee
비오이 하이디스 테크놀로지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 비오이 하이디스 테크놀로지 주식회사 filed Critical 비오이 하이디스 테크놀로지 주식회사
Priority to KR10-2002-0016751A priority Critical patent/KR100476057B1/en
Publication of KR20030077820A publication Critical patent/KR20030077820A/en
Application granted granted Critical
Publication of KR100476057B1 publication Critical patent/KR100476057B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13342Holographic polymer dispersed liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133365Cells in which the active layer comprises a liquid crystalline polymer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

PURPOSE: A holography polymer injection type LCD is provided to avoid the use of polarization plates and color filters which absorb light and deteriorate light efficiency, thereby realizing relatively high light efficiency and the rapid response time characteristics. CONSTITUTION: A holography polymer injection type LCD includes transparent electrodes(110,210) formed on facing surfaces of upper and lower substrates, vertical orientation films(120,220) formed on the transparent electrodes, liquid crystal layers(310,320) aligned between the orientation films. A liquid crystal polymer(350) is interposed between the liquid crystal layers. The liquid crystal layers are driven and the orientation films align the liquid crystal layers, as electric fields are applied to the transparent electrodes. The liquid crystal layers and the liquid crystal polymer layer are adjacent and inclined by an inclination angle of 25-45° with respect to a horizontal surface. As a voltage is applied, the polymers of the liquid crystal polymer layer do not move while the liquid crystal of the liquid crystal layers become laid, generating a difference of refractive index among the liquid crystal layers and the liquid crystal polymer layer. A diffraction state is generated and the light advances toward viewers outside HPDLCD cells.

Description

홀로그래피 고분자 분사형 액정표시장치{HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL DISPLAY}Holographic polymer injection type liquid crystal display device {HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL DISPLAY}

본 발명은 홀로그래피 고분자 분사형 액정표시장치에 관한 것으로, 특히 색대비비(Contrast ratio)를 향상시킬 수 있는 홀로그래피 고분자 분사형 액정표시장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a holographic polymer injection type liquid crystal display device, and more particularly, to a holographic polymer injection type liquid crystal display device capable of improving contrast ratio.

홀로그래피 고분자 분사형 액정표시장치는 도 1과 같이 칼라필터를 구비한 상부기판(10)과 화소전극을 구비한 하부기판(20)이 일정간격을 갖으며 대향되도록 배치되고, 상기 상부기판(10)과 하부기판(20) 각각 내측면에 투명전극(11)(21)이 형성된다. 그리고 상기 투명전극(11,21)상에 각각 배향막(12,22)이 형성되고, 상기 배향막(12,22) 사이에 홀로그래피 고분자 분사형 액정(이하, HPDLC라 칭함)(30)이 개재되어 있다.In the holographic polymer injection type liquid crystal display device, as shown in FIG. 1, the upper substrate 10 including the color filter and the lower substrate 20 including the pixel electrode are disposed to face each other with a predetermined interval, and the upper substrate 10 Transparent electrodes 11 and 21 are formed on inner surfaces of the lower substrate 20, respectively. Alignment films 12 and 22 are formed on the transparent electrodes 11 and 21, respectively, and a holographic polymer jet liquid crystal (hereinafter referred to as HPDLC) 30 is interposed between the alignment films 12 and 22.

상기와 같이 구성된 HPDLCD는 측면에 LED(40) 등의 라이트 소오스(Light Source)로부터 발광된 빛은 상기 HPDLC(30)를 내장한 상기 상부기판(10)과 하부기판(20) 내면에서 전반사를 하게 되어 빛을 통과시키는 상태(Transparent stage)(점선)를 유지하게 된다. 그러나 전압인가 유무에 따라 상기 HPDLC(30)의 폴리머층과 인접해 있는 경사진 액정층의 액정들이 필드(Field)에 의해 트위스트(Twist)되므로 폴리머층과 액정층 사이의 굴절율차에 의해 빛의 회절이 생기게 되어 결국 관측자(50) 방향으로 빛이 진행(실선)하게 된다.The HPDLCD configured as described above allows the light emitted from a light source such as an LED 40 to be totally reflected inside the upper substrate 10 and the lower substrate 20 having the HPDLC 30 embedded therein. To maintain the transparent stage (dotted line). However, since the liquid crystals of the inclined liquid crystal layer adjacent to the polymer layer of the HPDLC 30 are twisted by a field depending on whether a voltage is applied or not, diffraction of light is caused by a difference in refractive index between the polymer layer and the liquid crystal layer. This causes light to proceed toward the observer 50 (solid line).

도 2는 종래의 등방성 폴리머를 사용한 HPDLC의 구조를 나타낸 도면이다.2 is a view showing the structure of HPDLC using a conventional isotropic polymer.

도 2에 도시한 바와 같이 상부기판(10)과 하부기판(20) 내측면에 각각 투명전극(11,21)을 형성하고, 상기 투명전극(11)(21)상에 각각 수평 배향막(12)(22)을 형성한 후, 상기 수평 배향막(12)(22) 사이에 각각 비정렬 액정층(31,32)을 삽입하고, 상기 비정렬 액정층(31)(32) 사이에 등방성 폴리머(35)를 개재한다.As shown in FIG. 2, transparent electrodes 11 and 21 are formed on inner surfaces of the upper substrate 10 and the lower substrate 20, respectively, and horizontal alignment layers 12 are formed on the transparent electrodes 11 and 21, respectively. After the 22 is formed, the unaligned liquid crystal layers 31 and 32 are respectively inserted between the horizontal alignment layers 12 and 22, and the isotropic polymer 35 is disposed between the unaligned liquid crystal layers 31 and 32. Through).

한편, 상기와 같은 HPDLCD에 사선으로 광을 쬐어주면 사선방향으로 배향되어 있는 균일한 상태(Homogeneous State)의 액정층(30a)(30b)과 등방성 상태(Isotropic State)의 폴리머층(35)들이 놓이게 된다.On the other hand, when the light is irradiated to the HPDLCD in an oblique direction, the liquid crystal layers 30a and 30b in the homogeneous state and the isotropic state polymer layers 35 are oriented in the diagonal direction. do.

이때, 전압이 인가되지 않는 상태에서는 측면에 있는 LED(도면에 도시하지 않았음)등의 라이트 소오스에 의해 발광된 빛이 등방성 상태의 폴리머층(35)과 액정층(31,32) 사이의 굴절율 차이에 의해 빛이 회절하는 회절상태(Diffraction State)가 되어 도 1의 실선과 같이 된다. 즉, 관측자측으로 빛이 진행하게 된다.At this time, when no voltage is applied, the light emitted by the light source such as the LED (not shown) on the side surface of the refractive index between the polymer layer 35 and the liquid crystal layers 31 and 32 in the isotropic state Due to the difference, the light is diffracted (diffraction state), as shown in the solid line of FIG. In other words, light travels toward the observer.

그러나 전압이 인가될 경우, 상기 액정(31,32)들이 특정방향으로 정렬되면서 상기 등방성 폴리머층(35)을 통과한 빛이 상기 액정층(31,32)을 그대로 통과하게 되어 빛이 상기 상부기판(10)과 하부기판(20)에서 전반사되므로 빛이 통과한 상태(Transparent State) 즉, 도 1의 점선과 같이 된다. 한편, 전압을 인가한 후, 액정(31,32)이 필드에 의해 완전히 세워져야 좋은 빛이 통과한 상태(Transparent State)를 얻을 수 있으나, 실제로는 수평 배향막에 의한 액정의 앵커링 에너지(Anchoring Energy) 및 여러 요인들에 의해 상기 액정층(31,32)이 동일하게 수직한 방향으로 세워진 상태가 되지 않는다.However, when a voltage is applied, the liquid crystals 31 and 32 are aligned in a specific direction, and the light passing through the isotropic polymer layer 35 passes through the liquid crystal layers 31 and 32 as it is. Since it is totally reflected from the 10 and the lower substrate 20, the state of light passing through (10), that is, as shown in the dotted line of FIG. On the other hand, after the voltage is applied, the liquid crystals 31 and 32 must be completely set up by the field to obtain a transparent state. However, in reality, the anchoring energy of the liquid crystal is caused by the horizontal alignment layer. And the liquid crystal layers 31 and 32 do not stand in the same vertical direction due to various factors.

따라서, 상기 상부기판(10)과 하부기판(20) 표면에서 빛이 전반사되어 셀 밖으로 나가지 말아야하나, 회절누설(Diffraction Leakage)이 발생되어 결국 색대대비를 저하시킨다.Therefore, the light is totally reflected from the upper substrate 10 and the lower substrate 20 surface and should not go out of the cell, but diffraction leakage occurs, which eventually lowers the color contrast.

이를 해결하기 위해 도 3은 종래의 액정 폴리머를 사용한 HPDLCD 구조를 나타낸 도면이다.In order to solve this problem, FIG. 3 is a view showing the HPDLCD structure using a conventional liquid crystal polymer.

도 3에 도시한 바와 같이 상부기판(10)과 하부기판(20) 내측면에 각각 투명전극(11)(21)을 형성하고, 상기 투명전극(11)(21)상에 각각 수평 배향막(12)(22)을 형성한 후, 상기 수평 배향막(12)(22)을 반대방향으로의 러빙(Anti-parallel)하게 하고, 상기 수평 배향막(12)(22) 사이에 각각 정렬 액정층(33,34)을 삽입한다. 그리고 상기 정렬 액정층(33)(34) 사이에 액정 폴리머(37)를 개재한다.As shown in FIG. 3, transparent electrodes 11 and 21 are formed on inner surfaces of the upper substrate 10 and the lower substrate 20, respectively, and horizontal alignment layers 12 are formed on the transparent electrodes 11 and 21, respectively. (22), the horizontal alignment layers 12 and 22 are anti-parallel in opposite directions, and the alignment liquid crystal layers 33 and 22 are respectively interposed between the horizontal alignment layers 12 and 22. Insert 34). The liquid crystal polymer 37 is interposed between the alignment liquid crystal layers 33 and 34.

따라서, 반대방향으로의 러빙 및 상기 수평 배향막(12)(22)에 의해 액정들이 일정방향으로 균일하게 배열이 되며, 이에 상기 액정 폴리머(37)들이 동일한 방향으로 배열하게 된다.Accordingly, the liquid crystals are uniformly arranged in a predetermined direction by rubbing in the opposite direction and the horizontal alignment layers 12 and 22, and thus the liquid crystal polymers 37 are arranged in the same direction.

즉, 상기와 같은 구조에서는 광 스위칭 특성이 도 1과 반대의 특성을 보이게 된다.That is, in the structure as described above, the optical switching characteristics exhibit the characteristics opposite to those of FIG. 1.

초기 전압을 무인가 할 경우, 셀내 액정 및 폴리머들의 배열이 특정한 방향으로 균일하게 배열이 되고, 회절현상이 발생하지 않게 되어 셀의 사이드에 있는 라이트 소오스로부터 나온 빛은 회절 없이 상기 상부기판(10)과 하부기판(20)에서 모두 전반사가 발생하게 되고, 셀 외부로 빛이 나오지 않게 된다. 따라서, 빛이 통과하는 상태가 된다.When no initial voltage is applied, the arrangement of liquid crystals and polymers in the cell is uniformly arranged in a specific direction, and diffraction does not occur so that light from the light source at the side of the cell is not diffracted with the upper substrate 10. Total reflection occurs in the lower substrate 20, and light does not come out of the cell. Thus, light enters the state.

한편, 전압을 구동할 경우 액정들이 수직한 방향으로 트위스트하여 세워지게 되어 상기 액정층(33,34)곽 폴리머층(37)과의 굴절율 차이가 발생하여 회절상태가된다. 결국, 빛은 셀 외부의 관측자측으로 누설하게 된다.On the other hand, when the voltage is driven, the liquid crystals are twisted in the vertical direction to stand and the difference in refractive index with the polymer layer 37 around the liquid crystal layers 33 and 34 is caused to be in a diffraction state. As a result, light leaks to the observer outside the cell.

따라서, 등방성 폴리머를 사용한 HPLCD에 비해 색대비비가 향상된다. 또한, 광시야각을 실현할 수 있고, 동영상 구현에 전혀 무리가 없는 응답특성을 가지고 있으므로 훌륭한 전기광학 특성을 가지게 된다.Therefore, the color contrast ratio is improved compared to HPLCD using an isotropic polymer. In addition, since it can realize a wide viewing angle, and has a responsive characteristic that is not unreasonable in the video implementation, it has excellent electro-optic characteristics.

그러나 상기와 같은 종래의 HPDLC에 있어서는 다음과 같은 문제점이 있었다.However, the above-mentioned conventional HPDLC has the following problems.

수평배향된 HPDLC에 액정 폴리머를 사용한 경우, 등방성 폴리머를 사용한 HPDLC에 비해 추가공정이 실시된다. 즉, 수평 배향막을 형성함과 아울러 러빙 공정을 실시해야한다.When a liquid crystal polymer is used for the horizontally aligned HPDLC, an additional process is performed compared to the HPDLC using an isotropic polymer. That is, a rubbing process should be performed while forming a horizontal alignment film.

한편, 러빙 공정은 배향막 표면에 러빙포라는 물리적인 힘을 이용하여 특정방향으로 문지르는 공정으로 러빙 공정시 여러 가지 정전기등으로 셀이 파손되거나 혹을 불량들이 발생하며 파티클(Particle) 등에 취약하다.Meanwhile, the rubbing process is a process of rubbing in a specific direction by using a physical force of rubbing cloth on the surface of the alignment layer. In the rubbing process, cells are broken or defects are generated due to various static electricity, and are vulnerable to particles.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출한 것으로 편광판, 칼라필터를 사용하지 않으면서도 광 스위칭 특성 및 광효율과 빠른 응답시간 그리고 높은 색대비비를 갖는 HPDLCD를 제공하는데 그 목적이 있다.An object of the present invention is to provide an HPDLCD having light switching characteristics, light efficiency, fast response time, and high color contrast ratio without using a polarizing plate and a color filter.

도 1은 일반적인 홀로그래피 고분자 분사형 액정표시장치를 나타낸 단면도1 is a cross-sectional view showing a general holographic polymer injection type liquid crystal display device

도 2는 종래의 등방성 폴리머를 사용한 홀로그래피 고분자 분사형 액정표시장치의 구조를 나타낸 사시도Figure 2 is a perspective view showing the structure of a conventional holographic polymer injection type liquid crystal display using an isotropic polymer

도 3은 종래의 액정 폴리머를 사용한 홀로그래피 고분자 분사형 액정표시장치 구조를 나타낸 사시도3 is a perspective view showing the structure of a holographic polymer injection type liquid crystal display device using a conventional liquid crystal polymer

도 4는 본 발명의 일실시예에 따른 홀로그래피 고분자 분사형 액정표시장치 구조를 나타낸 사시도4 is a perspective view showing the structure of a holographic polymer injection type liquid crystal display device according to an embodiment of the present invention;

도 5는 도 4의 측면에 라이트 소오스를 설치하기 위한 단면도5 is a cross-sectional view for installing a light source on the side of FIG.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

100 : 상부기판 200 : 하부기판100: upper substrate 200: lower substrate

110, 210 : 투명전극 120, 220 : 수직 배향막110, 210: transparent electrode 120, 220: vertical alignment layer

300 : HPDLC 310, 320 : 정렬 액정층300: HPDLC 310, 320: alignment liquid crystal layer

350 : 액정 폴리머층 400 : 라이트 소오스350: liquid crystal polymer layer 400: light source

500 : HPDLC 셀500: HPDLC Cell

상기와 같은 목적을 달성하기 위한 본 발명의 HPLCD은 상부기판과 하부기판 내측면에 각각에 형성되어 전계를 인가하여 액정층의 액정을 구동하기 위한 투명전극과, 상기 각각의 투명전극상에 각각 형성되어 액정을 정렬하기 위한 배향막과, 상기 각각의 배향막상에 액정층과 폴리머층이 각각 경사지게 인접하여 있으며, 셀의 측면에서 라이트 소오스를 구비한 HPDLCD에 있어서, 상기 배향막을 수직 배향막을 사용하고, 상기 폴리머를 액정 폴리머로 사용하여 상기 액정층을 초기에 수직하게 배열하고, 상기 폴리머가 초기 액정층과 동일하게 수직하게 배열되어 지는 것을 특징으로 한다.HPLCD of the present invention for achieving the above object is formed on the inner surface of the upper substrate and the lower substrate, respectively, is formed on the transparent electrode for driving the liquid crystal of the liquid crystal layer by applying an electric field, respectively on the transparent electrode In the HPDLCD having an alignment film for aligning the liquid crystal and a liquid crystal layer and a polymer layer inclined adjacent to each of the alignment films, respectively, and having a light source at the side of the cell, the alignment film is a vertical alignment film. The liquid crystal layer is initially vertically aligned using a polymer as a liquid crystal polymer, and the polymer is vertically aligned with the initial liquid crystal layer.

또한, 상기 라이트 소오스로는 LED, 형광등중 어는 하나를 사용하고, 상기 라이트 소오스 설치시 출사각이 90∼140°가 되도록 하기 위해 입사각은 40∼90°인 것이 바람직하다.In addition, as the light source, any one of an LED and a fluorescent lamp is used, and the angle of incidence is preferably 40 to 90 ° so that the emission angle is 90 to 140 ° when the light source is installed.

또한, 상기 액정층 및 폴리머층의 경사각이 수평면을 기준으로 25∼40°인 것이 바람직하다.In addition, the inclination angle of the liquid crystal layer and the polymer layer is preferably 25 to 40 ° based on the horizontal plane.

또한, 상기 HPDLCD의 셀 갭은 2∼20㎛이고, 상기 액정의 굴절율 이방성 값은 0.05∼0.2인 것이 바람직하다.The cell gap of the HPDLCD is 2 to 20 µm, and the refractive index anisotropy value of the liquid crystal is 0.05 to 0.2.

이하, 첨부된 도면을 참조하여 본 발명의 HPDLCD에 대하여 보다 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in more detail with respect to the HPDLCD of the present invention.

도 4는 본 발명의 일실시예에 따른 HPLCD 구조를 나타낸 도면이다.4 is a diagram showing an HPLCD structure according to an embodiment of the present invention.

도 4에 도시한 바와 같이 상부기판(100)과 하부기판(200) 내측면에 각각 투명전극(110)(210)을 형성하고, 상기 투명전극(110)(210)상에 각각 수직 배향막(120)(220)을 형성한 후, 상기 수직 배향막(110)(220) 사이에 각각 정렬 액정층(310)(320)을 삽입한다. 그리고 상기 정렬 액정층(310)(320) 사이에 액정 폴리머(350)를 개재한다.As shown in FIG. 4, transparent electrodes 110 and 210 are formed on inner surfaces of the upper substrate 100 and the lower substrate 200, respectively, and vertical alignment layers 120 are formed on the transparent electrodes 110 and 210, respectively. After forming the 220, the alignment liquid crystal layers 310 and 320 are inserted between the vertical alignment layers 110 and 220, respectively. The liquid crystal polymer 350 is interposed between the alignment liquid crystal layers 310 and 320.

이때, 상기 투명전극(110)(210)은 전계를 인가하여 상기 액정층(310,320)의액정을 구동하고, 상기 수직 배향막(120,220)은 상기 액정층(310,320)의 액정을 정렬한다. 그리고 상기 액정층(310,320)과 액정 폴리머층(350)은 각각 경사지게 인접하여 있다. 이때, 상기 액정층(310,320)과 액정 폴리머층(350)의 경사각은 수평면을 기준으로 하여 25∼45°이다.In this case, the transparent electrodes 110 and 210 apply an electric field to drive the liquid crystals of the liquid crystal layers 310 and 320, and the vertical alignment layers 120 and 220 align the liquid crystals of the liquid crystal layers 310 and 320. The liquid crystal layers 310 and 320 and the liquid crystal polymer layer 350 are inclined adjacent to each other. In this case, the inclination angles of the liquid crystal layers 310 and 320 and the liquid crystal polymer layer 350 are 25 to 45 ° based on the horizontal plane.

한편, 상기와 같이 구성된 HPDLCD 셀(500)의 측면에 라이트 소오스(도면에 도시하지 않았음)를 구비한다.On the other hand, a light source (not shown) is provided on the side of the HPDLCD cell 500 configured as described above.

여기서, 상기와 같이 구성된 HPLCD의 광 스위칭 소자로서의 역할은 다음과 같다.Here, the role of the optical switching element of HPLCD comprised as mentioned above is as follows.

상기 HPDLCD 셀(500)에 전압을 인가하지 전 상태는 액정층(310,320)의 액정 및 액정 폴리머(350)들이 수직하게 배열이 되어 있다. 이때, 셀(500) 측면에 있는 라이트 소오스에서 나온 빛이 액정층(310,320)과 폴리머층(350) 사이에서 굴절율 차이가 발생하지 않으므로 빛이 직진하게 되어 상기 상부기판(100)고 하부기판(200)에 의해 빛의 전반사가 이루어지게 된다. 즉, 빛이 셀(500) 외부로 나가지 않는 완벽한 빛이 투과한 상태가 된다.Before the voltage is applied to the HPDLCD cell 500, the liquid crystal and liquid crystal polymer 350 of the liquid crystal layers 310 and 320 are vertically arranged. In this case, since the difference in refractive index does not occur between the liquid crystal layers 310 and 320 and the polymer layer 350, the light from the light source on the side of the cell 500 is moved straight to the upper substrate 100 and the lower substrate 200. ), Total reflection of light is achieved. That is, perfect light that does not go out of the cell 500 is transmitted.

이후, 전압을 인가할 경우 상기 액정 폴리머층(350)의 폴리머들은 그대로 있으나 상기 액정층(310,320)의 액정들이 필드에 의해 눕게 되므로 상기 액정층(310,320)과 폴리머층(350) 사이에서 굴절율 차이가 발생되어 회절상태가 된다. 따라서, 빛의 회절로 인해 상기 셀(500) 밖의 관측자측으로 빛이 진행하게 된다.Subsequently, when the voltage is applied, the polymers of the liquid crystal polymer layer 350 are intact, but the liquid crystals of the liquid crystal layers 310 and 320 are laid down by the field, so the difference in refractive index between the liquid crystal layers 310 and 320 and the polymer layer 350 is different. Is generated and becomes a diffraction state. Therefore, the light propagates toward the observer outside the cell 500 due to the diffraction of the light.

한편, 도 6은 도 5의 측면에 라이트 소오스를 설치하기 위한 측면도이다.6 is a side view for installing a light source on the side of FIG. 5.

도 6에 도시한 바와 같이 상부기판(100)과 하부기판(200) 사이에 HPLC(300)가 개재된 HPDLC 셀(500)의 라이트 소오스(400) 설치를 위해 Snell's Law에 의해As shown in FIG. 6 by Snell's Law for the installation of the light source 400 of the HPDLC cell 500 with the HPLC 300 interposed between the upper substrate 100 and the lower substrate 200.

식 n1×sin(Θ1)=n2×sin(Θ2)이다. (이때, n1:기판의 굴절율, n2:공기의 굴절율, Θ1:입사각, Θ2:출사각이다.)The formula n1 × sin (Θ1) = n2 × sin (Θ2). (N1: refractive index of the substrate, n2: refractive index of the air, Θ1: incident angle, Θ2: exit angle.)

여기서, 출사각 Θ2가 90∼140°이어야 하므로 sin90°=1을 대입하면,Here, the exit angle Θ2 should be 90 to 140 °, so if you substitute sin90 ° = 1,

Θ1=sin(n2/n1), 만약 기판의 굴절율 n1이 1.5, 공기의 굴절율을 1이라 하면, Θ1은 41.8°가 된다. 따라서, 이 경우는 Θ1을 41.8°이상 크게 하여 상기 상부기판(100)과 하부기판(200) 내부로 전반사가 이루어질 수 있도록 라이트 소오스(400)를 사이드(side)면에 배치하여야 한다. 한편, 입사각 Θ1은 40∼90°가 바람직하다.Θ1 = sin (n2 / n1), if the refractive index n1 of the substrate is 1.5 and the refractive index of air is 1, Θ1 becomes 41.8 °. Therefore, in this case, the light source 400 should be disposed on the side surface so that Θ1 may be greater than 41.8 ° to allow total internal reflection into the upper substrate 100 and the lower substrate 200. On the other hand, the incident angle Θ1 is preferably 40 to 90 degrees.

이상에서 설명한 바와 같이 본 발명의 HPDLCD에 있어서는 광을 흡수하여 광효율을 떨어뜨리는 역할을 하는 편광판 및 칼라필터 등을 사용하지 않으므로 상대적으로 높은 광효율 특성을 가짐과 아울러 대략 3ms 정도의 빠른 응답시간 특성을 가질 수 있는 효과가 있다.As described above, the HPDLCD of the present invention does not use a polarizing plate and a color filter, which absorbs light and reduces light efficiency, and thus has a relatively high light efficiency and a fast response time of about 3 ms. It can be effective.

그리고 종래의 HPDLCD에 비해 높은 색대비비 특성을 가질 수 있고, 러빙을 하지 않아도 되므로 러빙으로 인한 정정기, 파티클(particle) 등의 불량을 줄일 수 있어 공정을 단순화시킬 수 있다.In addition, compared to the conventional HPDLCD, it may have a high color contrast ratio characteristic and does not need rubbing, thereby reducing defects such as correcting particles and particles due to rubbing, thereby simplifying the process.

Claims (4)

상부기판과 하부기판 내측면에 각각에 형성되어 전계를 인가하여 액정층의 액정을 구동하기 위한 투명전극과, 상기 각각의 투명전극상에 각각 형성되어 액정을 정렬하기 위한 배향막과, 상기 각각의 배향막상에 액정층과 폴리머층이 각각 경사지게 인접하여 있으며, 셀의 측면에서 라이트 소오스를 구비한 홀로그래피 고분자 분사형 액정표시장치에 있어서,A transparent electrode formed on each of the upper and lower substrate inner surfaces to apply an electric field to drive the liquid crystal of the liquid crystal layer, an alignment film formed on each of the transparent electrodes to align the liquid crystal, and the respective alignments In the holographic polymer injection type liquid crystal display device having a liquid crystal layer and a polymer layer obliquely adjacent to each other on the film, and having a light source at the side of the cell, 상기 배향막은 수직 배향막을 사용하고, 상기 폴리머층은 액정 폴리머를 사용하여 상기 액정층을 초기에 수직하게 배열하고, 상기 폴리머층이 초기 액정층과 동일하게 수직하게 배열되어 지는 것을 특징으로 하는 홀로그래피 고분자 분사형 액정표시장치.The alignment layer is a vertical alignment layer, the polymer layer is a liquid crystal polymer using the liquid crystal layer is initially arranged vertically, the polymer layer is holographic polymer, characterized in that the same as the initial liquid crystal layer Jet liquid crystal display device. 제 1 항에 있어서,The method of claim 1, 상기 라이트 소오스로는 LED, 형광등 중 어느 하나를 사용하고, 상기 라이트 소오스의 입사각은 40∼90°, 출사각은 90∼140°의 범위를 갖는 것을 특징으로 하는 홀로그래피 고분자 분사형 액정표시장치.The light source may be any one of an LED and a fluorescent lamp. The light source has an incidence angle of 40 to 90 ° and an emission angle of 90 to 140 °. 제 1 항에 있어서,The method of claim 1, 상기 액정층 및 폴리머층의 경사각이 수평면을 기준으로 25∼40°인 것을 특징으로 하는 홀로그래피 고분자 분사형 액정표시장치.And an inclination angle of the liquid crystal layer and the polymer layer is 25 to 40 degrees with respect to the horizontal plane. 제 1 항에 있어서,The method of claim 1, 상기 HPDLCD의 셀 갭은 2∼20㎛이고, 상기 액정의 굴절율 이방성 값은 0.05∼0.2인 것을 특징으로 하는 홀로그래피 고분자 분사형 액정표시장치.The cell gap of said HPDLCD is 2-20 micrometers, and the refractive index anisotropy value of the said liquid crystal is 0.05-0.2, The holographic polymer injection type liquid crystal display device.
KR10-2002-0016751A 2002-03-27 2002-03-27 Holographic polymer dispersed liquid crystal display KR100476057B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0016751A KR100476057B1 (en) 2002-03-27 2002-03-27 Holographic polymer dispersed liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0016751A KR100476057B1 (en) 2002-03-27 2002-03-27 Holographic polymer dispersed liquid crystal display

Publications (2)

Publication Number Publication Date
KR20030077820A true KR20030077820A (en) 2003-10-04
KR100476057B1 KR100476057B1 (en) 2005-03-10

Family

ID=32376842

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0016751A KR100476057B1 (en) 2002-03-27 2002-03-27 Holographic polymer dispersed liquid crystal display

Country Status (1)

Country Link
KR (1) KR100476057B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654687A (en) * 2012-02-29 2012-09-05 京东方科技集团股份有限公司 Transparent display device
US9429787B2 (en) 2012-02-29 2016-08-30 Boe Technology Group Co., Ltd. Transparent display unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654687A (en) * 2012-02-29 2012-09-05 京东方科技集团股份有限公司 Transparent display device
WO2013127181A1 (en) * 2012-02-29 2013-09-06 京东方科技集团股份有限公司 Transparent display device
US9429787B2 (en) 2012-02-29 2016-08-30 Boe Technology Group Co., Ltd. Transparent display unit

Also Published As

Publication number Publication date
KR100476057B1 (en) 2005-03-10

Similar Documents

Publication Publication Date Title
KR100891609B1 (en) Liquid crystal display device
JP5467389B2 (en) Illumination device and display device
JP5954097B2 (en) Display device
EP2204690A1 (en) Illuminating device and display device
CN106526951A (en) Mirror display device and control method thereof
JP2012151081A (en) Lighting device, and display device
WO2014183397A1 (en) Display apparatus
US8253888B2 (en) Liquid crystal display device
JP2006171681A (en) Liquid crystal display and method of manufacturing the same
JPH11142831A (en) High polymer dispersion type liquid crystal display device
EP1599758B1 (en) Vertically aligned nematic mode liquid crystal display having large tilt angles and high contrast
US11604373B2 (en) Electrically controllable viewing angle switch device and display apparatus
KR101963560B1 (en) Transflective blue phase liquid crystal display and its liquid crystal display module
KR20120132961A (en) Liquid Crystal Display
CN208721825U (en) Polarizer, display panel and display device
KR100476057B1 (en) Holographic polymer dispersed liquid crystal display
KR20100080058A (en) Back light unit and liquid crystal display device having thereof
US9007548B2 (en) Wide view angle liquid crystal display device operating in normally white mode
US20100271567A1 (en) Illumination device and liquid crystal display device
US20110134375A1 (en) Vertically aligned liquid crystal display device
JPH11337922A (en) Liquid crystal display device
KR20120015010A (en) Transparent liquid crystal display device having high brightness
KR20050000958A (en) In Plane Switching mode Liquid Crystal Display Device
CN109597238B (en) Optical film layer and display device
US20230129697A1 (en) Liquid crystal panel and display device

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130305

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140218

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150216

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160222

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170220

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180222

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190226

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20200226

Year of fee payment: 16