KR20030075390A - Inhibitor of HMG-CoA reductase activity containing isoflavone - Google Patents

Inhibitor of HMG-CoA reductase activity containing isoflavone Download PDF

Info

Publication number
KR20030075390A
KR20030075390A KR1020020014577A KR20020014577A KR20030075390A KR 20030075390 A KR20030075390 A KR 20030075390A KR 1020020014577 A KR1020020014577 A KR 1020020014577A KR 20020014577 A KR20020014577 A KR 20020014577A KR 20030075390 A KR20030075390 A KR 20030075390A
Authority
KR
South Korea
Prior art keywords
hmg
coa reductase
isoflavones
inhibitor
genistin
Prior art date
Application number
KR1020020014577A
Other languages
Korean (ko)
Inventor
성장훈
문태화
Original Assignee
성장훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성장훈 filed Critical 성장훈
Priority to KR1020020014577A priority Critical patent/KR20030075390A/en
Publication of KR20030075390A publication Critical patent/KR20030075390A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)

Abstract

PURPOSE: An inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activities is provided which inhibits cholesterol synthesis and accumulation in body tissues. Therefore, it is used in the prevention and treatment of cardiovascular disease. CONSTITUTION: An inhibitor of HMG-CoA reductase contains isoflavones as an effective ingredient. The isoflavones are separated from fermented soybean paste(toenjang). The isoflavones are selected from the group consisting of genistein, daidzein, glycitein, daidzin, genistin, glycitin, 6'-0-acetyl-genistin, 6'-0-acetyl-daidzin, 6'-0-acetyl-glycitin, 6'-0-malonyl-genistin, 6'-0-malonyl-daidzin and 6'-0-malonyl-glycitin. Preferably daily dosage of isoflavones is in the range of 1 and 25mg/day.

Description

이소플라본을 함유하는 HMG-CoA 환원효소 활성 저해제{Inhibitor of HMG-CoA reductase activity containing isoflavone}Inhibitor of HMG-CoA reductase activity containing isoflavone}

본 발명은 HMG-CoA 환원효소 활성 저해제에 관한 것으로서, 보다 상세하게는, 콜레스테롤 생합성 과정에 관여하는 효소인 HMG-CoA 환원효소(3-hydroxy-3-methylglutaryl-CoA reductase)의 활성을 저해하는 효과를 갖는 이소플라본을 유효성분으로 포함하는 HMG-CoA 환원효소 활성 저해제에 관한 것이다.The present invention relates to an inhibitor of HMG-CoA reductase activity, and more particularly, to inhibit the activity of HMG-CoA reductase (3-hydroxy-3-methylglutaryl-CoA reductase), an enzyme involved in cholesterol biosynthesis. It relates to an HMG-CoA reductase activity inhibitor comprising an isoflavone having an active ingredient.

심혈관 질환(cardiovascular disease)은 미국 및 유럽에서 사망의 주된 원인으로 알려져 있으며, 한국인에게서도 빈번하게 발생되고 있는 질병의 하나이다. 심혈관 질환의 원인이 되는 인자로는 유전성 소인, 성별, 흡연, 생활 방식 및 연령 등을 들 수 있다. 특히, 저밀도 지단백질 콜레스테롤(Low Density Lipoprotein cholesterol; 이후 'LDL-콜레스테롤'이라 함) 및 총 콜레스테롤의 증가에 의한 고지혈증(hyperlipemia)과 고콜레스테롤혈증(hypercholesterolemia)은 심혈관 질환 발생의 주된 원인이 된다. 따라서, 혈중 LDL-콜레스테롤 및 총 콜레스테롤 수치를 저하시킨다면 동맥경화 및 심근경색과 같은 심혈관 질환의 발생을 감소시킬 수 있다.Cardiovascular disease is known as the leading cause of death in the United States and Europe, and is one of the diseases that frequently occurs in Koreans. Factors causing cardiovascular disease include hereditary predisposition, sex, smoking, lifestyle and age. In particular, hyperlipemia and hypercholesterolemia caused by low density lipoprotein cholesterol (hereinafter referred to as 'LDL-cholesterol') and total cholesterol are major causes of cardiovascular disease. Thus, lowering blood LDL-cholesterol and total cholesterol levels can reduce the incidence of cardiovascular diseases such as atherosclerosis and myocardial infarction.

혈중 LDL-콜레스테롤 및 총콜레스테롤 수치를 저하시키는 데 사용되는 콜레스테롤 저하제로 니코틴산(nicotinic acid), 콜레스티라민(cholestyramine), 클로피브레이트(clofibrate;CPIB), 네오마이신(neomycin), 식물 스테롤(plant sterols), 트리파라놀(triparanol;MER-29), D-티록신(D-thyroxine) 및 에스트로겐(estrogen) 등과 같은 약물들이 사용되어 왔다. 그러나, 이러한 약물들은 많은 문제점들이 보고되어지고 있다. 즉, 니코틴산의 경우 피부혈관확장, 발진, 위장관 이상, 요산혈증, 고혈당증, 간기능 이상과 같은 부작용을 유발한다고 알려져 있다. 또한, 콜레스티라민의 경우는 많은 환자들에게 효과적이기는 하나, 과량의 투여에 따른 불쾌감을 유발한다. 클로피브레이트는 대표적으로 사용되고 있는 콜레스테롤 저하제이지만 그 효과가 극미하고, 아직까지 생화학적 단계에서의 구체적 작용이 규명되지 않았다. 한편, 네오마이신은 메스꺼움, 설사, 식물 스테롤은 장관내 콜레스테롤 흡수의 방해, 트리파라놀은 백내장 등의 부작용, D-티록신은 부정맥, 협심증, 복합 경색과 같은 부작용이 있고, 에스트로겐 호르몬은 남성에게 사용할 경우 여성화 현상을 일으킨다는 문제점이 있기 때문에 사용이 제한되고 있다.Cholesterol lowering agents used to lower LDL-cholesterol and total cholesterol levels in the blood, including nicotinic acid, cholestyramine, clofibrate (CPIB), neomycin, and plant sterols. ), Drugs such as triparanol (MER-29), D-thyroxine and estrogen have been used. However, many problems have been reported with these drugs. In other words, nicotinic acid is known to cause side effects such as skin vasodilation, rash, gastrointestinal abnormalities, uric acidemia, hyperglycemia, liver dysfunction. In addition, cholestyramine, although effective for many patients, causes discomfort from overdose. Clofibrate is a cholesterol lowering agent that is typically used, but its effect is minimal and no specific action at the biochemical stage has yet been identified. Neomycin has side effects such as nausea, diarrhea, phytosterol disrupts the absorption of cholesterol in the intestinal tract, triparanol has cataracts, D-thyroxine has arrhythmias, angina pectoris, and complex infarction, and the estrogen hormone is used in men In this case, there is a problem that causes a feminization phenomenon has been limited use.

따라서, 최근에는 로바스타틴(lovastatin)류와 같은 HMG-CoA 환원효소(3-hydroxy-3-methylglutaryl-CoA reductase)의 활성을 억제하는 저해제가 개발되어 콜레스테롤 저하제로 사용되고 있다(Hunninghake,Curr. Opin. Lipidol., 3:22-28, 1992; Brownet al.,N. Engl. J. Med., 323:1289-1298, 1990).Therefore, recently, inhibitors that inhibit the activity of HMG-CoA reductase (3-hydroxy-3-methylglutaryl-CoA reductase) such as lovastatin have been developed and used as cholesterol lowering agents (Hunninghake, Curr. Opin. Lipidol , 3: 22-28, 1992; Brown et al ., N. Engl. J. Med ., 323: 1289-1298, 1990).

HMG-CoA 환원효소는 97kDa의 분자량을 갖고 있는 당단백질(glycoprotein)로서, 콜레스테롤 생합성 과정에서 중요한 역할을 담당하는 효소이다(Rodwellet al.,Adv. Lipid Res., 14:1-74, 1976). 콜레스테롤 생합성 과정에서 아세틸-CoA(acetyl-CoA)와 아세토아세틸-CoA(acetoacetyl-CoA)는 HMG 합성화효소(HMG synthase)에 의하여 HMG-CoA로 전환되며, HMG-CoA는 다시 HMG-CoA 환원효소에 의하여 메발로네이트(mevalonate)로 전환되는 과정을 거친 후, 여러 단계를 거쳐 최종 콜레스테롤이 합성된다(Goldstein and Brown,J. Lipid Res., 25:1450-1461, 1984). 이때, HMG-CoA 환원효소에 의한 HMG-CoA의 메발로네이트로의 전환과정은 콜레스테롤 합성 과정의 속도제한단계(rate-limiting step)라고 알려져 있기 때문에, HMG-CoA 환원효소의 작용을 저해할 수 있다면 콜레스테롤의 합성을 효과적으로 억제할 수 있다.HMG-CoA reductase is a glycoprotein with a molecular weight of 97 kDa and is an enzyme that plays an important role in cholesterol biosynthesis (Rodwell et al ., Adv. Lipid Res ., 14: 1-74, 1976). . During cholesterol biosynthesis, acetyl-CoA and acetoacetyl-CoA are converted to HMG-CoA by HMG synthase, which in turn converts HMG-CoA reductase. After conversion to mevalonate by means of several steps, the final cholesterol is synthesized (Goldstein and Brown, J. Lipid Res ., 25: 1450-1461, 1984). At this time, the conversion of HMG-CoA to mevalonate by HMG-CoA reductase is known as a rate-limiting step of the cholesterol synthesis process, and thus can inhibit the action of HMG-CoA reductase. If so, it can effectively inhibit the synthesis of cholesterol.

그러나, 로바스타틴류와 같은 기존의 HMG-CoA 환원효소 활성 저해제들은 강력한 저해효과가 있음에도 불구하고, 근병증(myopathy), 횡문근분해(rhabdomyolysis), 자살충동(suicidal tendency)의 증가, 노이로제(신경증, neurosis) 등과 같은 부작용을 유발한다고 알려져 있다(Corpieret al.,JAMA, 260:239-241, 1988; Pierceet al.,JAMA, 264:71-75, 1990; Reaven and Witztum,Ann. Intern. Med., 109:597-598, 1988; Duits and Bos,Lancet, 341:114, 1993; Engelberg,Lancet, 339:727-729,1992).However, conventional inhibitors of HMG-CoA reductase activity, such as lovastatin, have a strong inhibitory effect, despite myopathy, rhabdomyolysis, suicidal tendency, neurosis. It is known to cause side effects such as (Corpier et al ., JAMA , 260: 239-241, 1988; Pierce et al ., JAMA , 264: 71-75, 1990; Reaven and Witztum, Ann.Intern. Med ., 109: 597-598, 1988; Duits and Bos, Lancet , 341: 114, 1993; Engelberg, Lancet , 339: 727-729,1992).

따라서, 이러한 문제점을 극복하기 위하여 대한민국 특허출원 제 1998-37962호에는 감귤류에서 추출된 디오스민이라는 물질을 포함하는 조성물이 개시된 바 있고, 대한민국 특허출원 제 1997-55581호에는 비타민 C, 헤스페리딘 및 나린진을 포함하는 HMG-CoA 환원효소 활성 저해제가 개시된 바 있다. 그러나, 혈중 콜레스테롤 농도를 효과적으로 저하시키면서도 인체에는 부작용이 없는 HMG-CoA 환원효소 활성 저해제 및 이를 이용한 콜레스테롤 저해제에 대한 개발은 여전히 요구되고 있는 실정이다.Therefore, to overcome this problem, Korean Patent Application No. 1998-37962 discloses a composition comprising a substance called diosmin extracted from citrus fruits, and Korean Patent Application No. 1997-55581 discloses vitamin C, hesperidin and naringin. Including inhibitors of HMG-CoA reductase activity has been disclosed. However, there is still a need for the development of HMG-CoA reductase activity inhibitors and cholesterol inhibitors using the same while effectively lowering blood cholesterol levels and having no side effects on the human body.

한편, 이소플라본(isoflavone)은 식물로부터 분리되는 식물 호르몬의 일종으로서 골다공증 치료(대한민국 특허출원 제 2000-714485호)에 효과적이며, 항산화작용, 항암작용 등의 효과가 있다고 알려져 있는 물질이다. 또한, LDL-콜레스테롤 및 총 콜레스테롤의 혈중 농도를 감소시킴으로써, 동맥경화의 발생을 억제하거나 지연시킨다는 것이 밝혀진 바 있다. 즉, 대한민국 특허출원 제 1997-6053호에는 이소플라본류인 제니스테인(genistein)을 이용한 콜레스테롤 생합성 억제 방법이 개시된 바 있으며, 대한민국 특허출원 제 2000-21186호에는 콜레스테롤 농도를 낮추는 효과를 갖는, 제니스테인, 다이드제인, 글리시테인 등의 이소플라본을 포함하는 조성물이 개시된 바 있다. 그러나, 아직까지 이러한 이소플라본이 콜레스테롤 생합성을 어떠한 형태로 억제하는지에 대한 연구에 대해서는 연구된 바가 없다.On the other hand, isoflavone (isoflavone) is a kind of plant hormone that is separated from the plant is effective in the treatment of osteoporosis (Korean Patent Application No. 2000-714485), and is known to have effects such as antioxidant activity, anticancer action. It has also been found that by reducing blood levels of LDL-cholesterol and total cholesterol, it inhibits or delays the development of atherosclerosis. That is, Korean Patent Application No. 1997-6053 discloses a method for inhibiting cholesterol biosynthesis using isoflavones, genistein, and Korean Patent Application No. 2000-21186, which has an effect of lowering cholesterol concentration, genistein and die A composition comprising isoflavones such as zein, glycine, and the like has been disclosed. However, there is no research on how this isoflavone inhibits cholesterol biosynthesis.

이에 본 발명자들은 인체에 부작용이 없으면서도 효과적으로 콜레스테롤 생성을 억제할 수 있는 방법을 연구하던 중, 대두의 발효식품인 된장으로부터 분리된 이소플라본이 콜레스테롤 생합성 대사 과정에 작용하는 HMG-CoA 환원효소의 활성을 억제하고, 결과적으로 인체내 콜레스테롤 양을 저하시킬 수 있음을 밝힘으로써 본 발명을 완성하였다.Therefore, while the present inventors are studying a method that can effectively inhibit cholesterol production without side effects in the human body, the activity of HMG-CoA reductase in which isoflavones isolated from soybean fermented soybeans act on cholesterol biosynthesis metabolism The present invention was completed by revealing that it can suppress and, as a result, lower the amount of cholesterol in the human body.

본 발명이 이루고자 하는 기술적 과제는 HMG-CoA 환원효소의 활성을 저해함으로써 결과적으로 콜레스테롤 합성을 억제할 수 있는 기능을 갖는 HMG-CoA 환원효소 활성 저해제를 제공하는 것이다.The technical problem to be achieved by the present invention is to provide an inhibitor of HMG-CoA reductase activity having a function of inhibiting the activity of HMG-CoA reductase and consequently inhibiting cholesterol synthesis.

도 1은 제니스테인의 HMG-CoA 환원효소에 대한 저해활성을 측정하기 위한 그래프(Lineweaver-Burk plot)로서, 도 1a는 기질로 HMG-CoA를 사용한 것이고, 도 1b는 기질로 NADPH를 사용한 것이다.Figure 1 is a graph (Lineweaver-Burk plot) for measuring the inhibitory activity of Genistein HMG-CoA reductase, Figure 1a using HMG-CoA as a substrate, Figure 1b is used as a substrate NADPH.

도 2는 다이드제인의 HMG-CoA 환원효소에 대한 저해활성을 측정하기 위한 그래프(Lineweaver-Burk plot)로서, 도 2a는 기질로 HMG-CoA를 사용한 것이고, 도 2b는 기질로 NADPH를 사용한 것이다.Figure 2 is a graph (Lineweaver-Burk plot) for measuring the inhibitory activity of Dyzein against HMG-CoA reductase, Figure 2a is used as a substrate HMG-CoA, Figure 2b is used as a substrate NADPH .

도 3은 글리시테인의 HMG-CoA 환원효소에 대한 저해활성을 측정하기 위한 그래프(Lineweaver-Burk plot)로서, 도 3a는 기질로 HMG-CoA를 사용한 것이고, 도 3b는 기질로 NADPH를 사용한 것이다.3 is a graph for measuring the inhibitory activity of glycine HMG-CoA reductase (Lineweaver-Burk plot), Figure 3a is used as a substrate HMG-CoA, Figure 3b is used as a substrate NADPH .

도 4는 제니스틴의 HMG-CoA 환원효소에 대한 저해활성을 측정하기 위한 그래프(Lineweaver-Burk plot)로서, 도 4a는 기질로 HMG-CoA를 사용한 것이고, 도 4b는 기질로 NADPH를 사용한 것이다.Figure 4 is a graph (Lineweaver-Burk plot) for measuring the inhibitory activity of Genistin HMG-CoA reductase, Figure 4a is a substrate using HMG-CoA, Figure 4b is a substrate using NADPH.

도 5는 베로 세포(vero cell)에서 이소플라본에 의한 HMG-CoA 환원효소 활성 저해 효과를 현미경으로 관찰한 것으로서, 도 5a는 제니스테인 2㎍을 처리한 세포,도 5b는 제니스테인과 메발로네이트를 동시에 처리한 세포, 도 5c는 아무것도 처리하지 않은 대조군 세포를 관찰한 사진이다.5 is a microscopic observation of the inhibitory effect of HMG-CoA reductase activity by isoflavones in vero cells, FIG. 5A shows cells treated with 2 μg of genistein, and FIG. 5B simultaneously shows genistein and mevalonate. Treated cells, FIG. 5C is a photograph of observation of control cells treated with nothing.

상기와 같은 목적을 달성하기 위하여, 본 발명은 이소플라본을 유효성분으로 포함하는 HMG-CoA 환원효소 활성 저해제를 제공한다.In order to achieve the above object, the present invention provides an HMG-CoA reductase activity inhibitor comprising isoflavones as an active ingredient.

또한, 본 발명은 상기 HMG-CoA 환원효소 활성 저해제를 포함하는 심혈관 질환 치료제를 제공한다.In addition, the present invention provides a cardiovascular disease treatment agent comprising the HMG-CoA reductase activity inhibitor.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

이소플라본(isoflavone)은 콩에 함유되어 있는 플라보노이드(flavonoid) 계통의 화합물로서 여성 호르몬인 에스트로겐과 화학구조가 유사하기 때문에 식물성 에스트로겐(phyto estrogen)이라고 불린다. 본 발명에서는 상기 이소플라본을 유효성분으로 포함하는 HMG-CoA 환원효소(3-hydroxy-3-methylglutaryl-CoA reductase) 활성 저해제를 제공하는 것을 특징으로 한다.Isoflavone is a flavonoid family of soybeans and is called phyto estrogen because it has a similar chemical structure to the female hormone estrogen. The present invention is characterized by providing an HMG-CoA reductase (3-hydroxy-3-methylglutaryl-CoA reductase) activity inhibitor comprising the isoflavone as an active ingredient.

일반적으로 이소플라본은 자연계에서 배당체 형태로 존재하며, β-글루코시다아제(β-glucosidase)에 의하여 비배당체 형태로 전환되는데, 상기 배당체의 형태는 인체내 흡수가 어렵다. 그러나, 발효식품의 경우 발효과정에서 이소플라본의배당체들 대부분이 비배당체 형태로 변형되며, 이소플라본을 배당체 형태로 섭취하는 경우에도 소화흡수과정 중에 많은 부분이 비배당체 형태로 변환되어 흡수되므로, 결과적으로 이소플라본 비배당체 형태와 동일한 효과를 보일 수 있다. 따라서, 본 발명에 따른 HMG-CoA 환원효소 활성 저해제로는 글리코시드기가 제거된 비배당체 형태의 이소플라본 및 배당체 형태의 이소플라본이 모두 사용될 수 있다.In general, isoflavones exist in glycoside form in nature, and are converted into nonglycoside forms by β-glucosidase, which is difficult to absorb in the human body. However, in the case of fermented foods, most of the glycosides of isoflavones are transformed into non-glycoside forms during fermentation, and even when ingesting isoflavones in the form of glycosides, many of them are converted into non-glycoside forms during digestion and absorption. Thus, the same effect as the isoflavone nonglycoside form can be obtained. Therefore, as an inhibitor of HMG-CoA reductase activity according to the present invention, both isoflavones in the form of glycosides and isoflavones in the form of glycosides can be used.

상기에서 비배당체 형태의 이소플라본은 제니스테인(genistein), 다이드제인(daidzein) 및 글리시테인(glycitein)으로 이루어진 군에서 선택되는 것이 바람직하다.The isoflavone in the non-glycoside form is preferably selected from the group consisting of genistein, diedzein, and glycidin.

또한, 상기에서 배당체 형태의 이소플라본은 제니스틴(genistin), 다이드진(daidzin), 글리시틴(glycitin), 6'-O-아세틸제니스틴(6'-O-acetyl-genistin), 6'-O-아세틸다이드진(6'-O-acetyl-daidzin), 6'-O-아세틸글리시틴(6'-O-acetyl-glycitin), 6'-O-말로닐제니스틴(6'-O-malonyl-genistin), 6'-O-말로닐다이드진(6'-O-malonyl-daidzin), 및 6'-O-말로닐글리시틴(6'-O-malonyl-glycitin)으로 이루어진 군에서 선택되는 것이 바람직하다.In addition, the isoflavone in the glycoside form is genistin, didzin, glycidin, 6'-O-acetyl-genistin, 6'- 6'-O-acetyl-daidzin, 6'-O-acetyl-glycitin, 6'-O-malonylzenistin (6'-O) group consisting of -malonyl-genistin, 6'-O-malonyl-daidzin, and 6'-O-malonylglycitin (6'-O-malonyl-glycitin) It is preferred to be selected from.

상기 이소플라본은 천연 식물로부터 분리되거나, 공지된 방법에 의하여 화학적으로 합성될 수도 있으나, 구체적으로 대두로부터 분리되는 것이 바람직하며, 된장과 같은 대두의 발효된 형태로부터 분리되는 것이 가장 바람직하다. 상기 된장으로부터 이소플라본의 분리는 당업계에 공지된 방법인 크로마토그래피 방법에 의하여 분리될 수 있다.The isoflavones may be isolated from natural plants or chemically synthesized by known methods. Specifically, the isoflavones are preferably separated from soybeans, most preferably from fermented forms of soybeans such as soybean paste. Separation of isoflavones from the doenjang can be separated by chromatography methods which are known in the art.

본 발명에 따른 HMG-CoA 환원효소 활성 저해제로 이소플라본을 직접 사용할수도 있으나, 당업계에 공지된 의약품 제조방법에 따라 약학적으로 허용 가능한 담체를 첨가하여 가공 및 제조된 물질을 사용할 수 있다.Although isoflavone may be used directly as an inhibitor of HMG-CoA reductase activity according to the present invention, a material processed and manufactured by adding a pharmaceutically acceptable carrier may be used according to a pharmaceutical preparation method known in the art.

상기에서 담체의 예로는, 락토오즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸 하이드록시벤조에이트, 프로필 하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 또한, 본 발명에 따른 HMG-CoA 환원효소 활성 저해제에는 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 또는 방부제 등이 추가로 포함될 수 있다.Examples of the carrier in the above, lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose And polyvinylpyrrolidone, water, methyl hydroxybenzoate, propyl hydroxybenzoate, talc, magnesium stearate and mineral oil. In addition, the HMG-CoA reductase activity inhibitor according to the present invention may further include fillers, anti-coagulants, lubricants, wetting agents, fragrances, emulsifiers or preservatives.

본 발명에 따른 HMG-CoA 환원효소 활성 저해제는 투여 후, 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 잘 알려진 방법을 사용하여 제형화될 수 있다. 제형은 정제, 알약, 분말, 새세이(sachet), 엘릭서(elixir), 현탁액, 에멀젼, 용액, 시럽, 에어로졸, 연질 또는 경질 젤라틴 캅셀, 멸균 주사용액, 멸균 분말 등의 형태일 수 있다.HMG-CoA reductase activity inhibitors according to the present invention may be formulated using methods well known in the art to provide rapid, sustained or delayed release of the active ingredient after administration. The formulations may be in the form of tablets, pills, powders, sachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, sterile powders and the like.

또한, 본 발명에 따른 HMG-CoA 환원효소 활성 저해제는 경구, 경피, 피하, 정맥 또는 근육을 포함한 여러 경로를 통하여 투여될 수 있다.In addition, the HMG-CoA reductase activity inhibitor according to the present invention can be administered via various routes including oral, transdermal, subcutaneous, intravenous or intramuscular.

본 발명에 따른 HMG-CoA 환원효소 활성 저해제로 사용되는 이소플라본의 1일 투여량은 1 내지 25㎎/㎏의 범위가 바람직하다. 그러나, 실제 투여량은 투여 경로, 환자의 연령, 성별, 체중 및 환자의 중증도 등과 같은 여러 관련 인자를 고려하여 결정되어야 하며, 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는것은 아니다.The daily dose of isoflavone used as the inhibitor of HMG-CoA reductase activity according to the present invention is preferably in the range of 1 to 25 mg / kg. However, the actual dosage should be determined in consideration of several relevant factors such as the route of administration, the age, sex, weight of the patient and the severity of the patient and the like does not limit the scope of the invention in any aspect.

한편, 본 발명에서는 상기 이소플라본이 함유된 HMG-CoA 활성 저해제를 포함하는 심혈관 질환 치료제를 제공한다.On the other hand, the present invention provides a cardiovascular disease treatment comprising the HMG-CoA activity inhibitor containing the isoflavones.

이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.

<실시예 1><Example 1>

된장으로부터 이소플라본의 분리 및 정제Isolation and Purification of Isoflavones from Doenjang

된장으로부터 당업계에 공지된 방법인 크로마토그래피 방법에 의하여 이소플라본을 분리 및 정제하였다.Isoflavones were isolated and purified from the doenjang by chromatography, a method known in the art.

먼저, 냉동건조된 된장을 잘게 부순 후 35 메쉬(mesh) 망으로 걸러 분말화하였다. 상기 분말화된 된장 30g을 메탄올과 다이클로로포름의 혼합액(1:1, v/v)과 1:30(w/v)의 비율로 혼합하고 10,000rpm에서 5분 동안 균질화(homogenize)하였다. 균질화된 혼합액을 분액여두(Rotary Separatory Funnel)에 담아 18시간 동안 진탕시킨 후 와트만 페이퍼(Whatman paper)를 사용하여 여과하고, 회전 농축기(rotary evaporator)로 농축하여 된장 추출물을 얻었다.First, lyophilized doenjang was crushed finely, and then powdered by filtering with a 35 mesh (mesh). 30 g of the powdered doenjang was mixed at a ratio of 1:30 (w / v) with a mixture of methanol and dichloroform (1: 1, v / v) and homogenized at 10,000 rpm for 5 minutes. The homogenized mixture was shaken for 18 hours in a Rotary Separatory Funnel, filtered using Whatman paper, and concentrated using a rotary evaporator to obtain miso extract.

상기 농축된 추출물을 실리카겔에 흡착시킨후 VLC(vaccum liquid chromatography)를 수행하였다. VLC는 TLC급 실리카겔 패킹(Thin layer chromatography grade packing, Silica gel 60H, Merck, Germany)을 이용한 신터드글래스 퍼넬(sintered glass funnel, Iwaki glass, Japan, 25G4, porosity:5-10㎛, diameter:90mm, column height:50mm)에서 수행되었다. 실리카겔에 흡착된 농축물을 TLC(thin layer chromatography) 플레이트에서 클로로포름-메탄올-아세트산(85:10:5, v/v)의 전개용매로 전개시킨 후, 발색양상은 UV 램프를 이용하여 확인하였고, 같은 UV 흡광도를 보이는 분획들을 합쳐 이후 VLC(vaccum liquid chromatography)를 수행하였다. 두 번에 걸쳐 VLC를 수행한 후 얻은 물질들을 메탄올에 녹였고, 리포필릭 세파덱스(Lipophilic Sepadex LH-20, 20 X 400mm, Sigma Chemical Co., St. Louis, MO) 컬럼을 이용하여 크로마토그래피를 수행하였다.The concentrated extract was adsorbed onto silica gel and subjected to VLC (vaccum liquid chromatography). VLC is a sintered glass funnel using thin layer chromatography grade packing (Silica gel 60H, Merck, Germany), Iwaki glass, Japan, 25G4, porosity: 5-10㎛, diameter: 90mm, column height: 50mm). The concentrate adsorbed on silica gel was developed in a thin layer chromatography (TLC) plate with a developing solvent of chloroform-methanol-acetic acid (85: 10: 5, v / v), and the color development was confirmed using a UV lamp. The fractions showing the same UV absorbance were combined and then subjected to VLC (vaccum liquid chromatography). After performing VLC twice, the obtained materials were dissolved in methanol, and chromatography was performed using a Lipophilic Sepadex LH-20, 20 × 400 mm, Sigma Chemical Co., St. Louis, MO. Was performed.

상기에서 얻은 성분들을 각각 HPLC(High performance liquid chromatography)를 이용하여 정제하였고, NMR(Nuclear Magnetic Resonance)을 수행하여 상기 정제된 물질에 포함된 이소플라본의 종류를 확인하였다. 그 결과, 이소플라본에서 분리, 정제된 각 성분들이 제니스테인, 다이드제인, 글리시테인, 다이드진, 제니스틴, 글리시틴, 6'-O-아세틸다이드진, 6'-O-아세틸제니스틴, 6'-O-아세틸글리시틴, 6'-O-말로닐다이드진, 6'-O-말로닐제니스틴 및 6'-O-말로닐글리시틴임을 확인할 수 있었다.Each of the components obtained above was purified using HPLC (High performance liquid chromatography), NMR (Nuclear Magnetic Resonance) was performed to determine the type of isoflavones contained in the purified material. As a result, each component isolated and purified from isoflavones is genistein, dyedzein, glycidine, dydazine, genistin, glycidine, 6'-O-acetylidazine, 6'-O-acetylgeninistin , 6'-O-acetylglycithin, 6'-O-malonyldide, 6'-O-malonylgenistin and 6'-O-malonylglycitin was confirmed.

<실시예 2><Example 2>

이소플라본에 의한 HMG-CoA 환원효소 활성 저해 효과Inhibitory Effect of HMG-CoA Reductase Activity by Isoflavones

시리안 햄스터 HMG-CoA 환원효소(Syrian Hamster HMG-CoA reductase, fromprofessor Rodwell in Department of Biochemistry, Purdue University, USA)에 대한 이소플라본들의 저해 효과를 검증하였다.The inhibitory effect of isoflavones on Syrian Hamster HMG-CoA reductase (fromprofessor Rodwell in Department of Biochemistry, Purdue University, USA) was verified.

효소의 기질로서 HMG-CoA(Sigma Co., USA), NADPH(ICN Biochemicals, Inc., USA)를 사용하였고, 저해제로서 상기 실시예 1에서와 같이 분리한 이소플라본 중 제니스테인, 다이드제인, 글리시테인 및 제니스테인의 배당체인 제니스틴을 사용하였다. 각 이소플라본들은 0.1N NaOH를 사용하여 알칼리상태에서 녹여 농도를 달리하여 실험에 사용하였다.HMG-CoA (Sigma Co., USA) and NADPH (ICN Biochemicals, Inc., USA) were used as substrates of the enzyme, and genistein, dydane, glycine in isoflavones isolated as in Example 1 above as inhibitors. Genistin, a glycoside of cysteine and genistein, was used. Each isoflavones were dissolved in alkaline state using 0.1 N NaOH and used in experiments with different concentrations.

저해 활성 특성(Kinetic parameters; Vmax, Km, Ki)을 알아보기 위하여 더글비 등(Duggleby and Leonard, DNRPEASY, a data analysis computer program, 1992)의 수식에 기초한 비선형 회귀분석 방법(non-linear regression method)을 이용하였으며, 기질의 농도 변화에 따른 반응속도를 측정하여, 이중역수 도표(Lineweaver-Burk's plot)로 나타냈다.Non-linear regression method based on the formula of Duggleby and Leonard, DNRPEASY, a data analysis computer program (1992) to determine the inhibitory activity characteristics (V max , K m , K i ) regression method) was used, and the reaction rate was measured according to the change of the concentration of the substrate, and represented by a double-reverse plot (Lineweaver-Burk's plot).

먼저, 사용된 효소인 HMG-CoA 환원효소의 특성을 측정한 결과, Vmax값(μmol NADPH/min/mg)은 15±5이었고, Km값은 NADPH에 대하여 141±12μM, HMG-CoA에 대하여 32±5μM로 각각 측정되었다.First, as a result of measuring the characteristics of the enzyme HMG-CoA reductase used, V max value (μmol NADPH / min / mg) was 15 ± 5, K m value was 141 ± 12 μM for NADPH, HMG-CoA Were measured at 32 ± 5 μM, respectively.

HMG-CoA 환원효소의 기질인 HMG-CoA에 대한 이소플라본들의 저해효과를 관찰하기 위하여, NADPH 농도를 200μM로 고정하고, HMG-CoA 농도는 9-50μM로 변화시켰다. 또한, NADPH에 대한 이소플라본들의 저해효과를 관찰하기 위하여, HMG-CoA 농도를 200μM로 고정하고, NADPH농도는 28-150μM로 변화시켰다.In order to observe the inhibitory effect of isoflavones on HMG-CoA, the substrate of HMG-CoA reductase, the NADPH concentration was fixed at 200 μM and the HMG-CoA concentration was changed to 9-50 μM. In addition, to observe the inhibitory effect of isoflavones on NADPH, HMG-CoA concentration was fixed at 200 μM and NADPH concentration was changed to 28-150 μM.

그 결과, 도 1 내지 도 4에 도시된 바와 같이, 각 이소플라본들은 HMG-CoA에 대하여 경쟁적 저해제로 작용하고, NADPH에 대하여 비경쟁적 저해제로 작용함을 확인할 수 있었다. 또한, 각각의 Ki값을 계산하여 본 결과, 제니스테인은 27.7±4.3 μM(도 1), 다이드제인은 49.5±4.5 μM(도 2), 글리시테인은 94.7±11.9 μM(도 3), 제니스틴은 40.0±3.4 μM(도 4)임을 확인할 수 있었다. 즉, 상기 이소플라본들이 HMG-CoA 환원효소의 기질인 HMG-CoA에 대해 경쟁적 저해활성을 가짐으로써 결과적으로 콜레스테롤 생합성 과정을 억제할 수 있음을 확인할 수 있었다.As a result, as shown in Figures 1 to 4, it was confirmed that each isoflavones act as a competitive inhibitor against HMG-CoA, and a non-competitive inhibitor against NADPH. In addition, as a result of calculating each K i value, Genistein is 27.7 ± 4.3 μM (Fig. 1), Dyzedein is 49.5 ± 4.5 μM (Fig. 2), Glycsteine is 94.7 ± 11.9 μM (Fig. 3), Genistin was confirmed to be 40.0 ± 3.4 μM (FIG. 4). That is, the isoflavones were found to have a competitive inhibitory activity against HMG-CoA, a substrate of HMG-CoA reductase, and as a result, it was confirmed that the cholesterol biosynthesis process could be inhibited.

<실시예 3><Example 3>

동물세포에서 이소플라본에 의한 HMG-CoA 환원효소 활성저해 효과Isoflavone-induced HMG-CoA Reductase Inhibitory Activity in Animal Cells

동물세포를 이용하여 이소플라본의 HMG-CoA 환원효소 활성저해 효과를 측정하였다.Animal cells were used to measure HMG-CoA reductase inhibitory effect of isoflavones.

HMG-CoA 환원효소 활성 저해제의 탐색에 사용되는 대표적 세포주인 베로세포(Vero cell, KCLB 10081)를 사용하여 이소플라본에 의한 HMG-CoA 환원효소 활성 저해를 확인하였다. 베로세포를 2% 송아지 혈청을 포함한 이글의 최소기본배지(2% Calf serum-minimal eagles's media; CS-MEM) 100㎕가 포함된 96-웰 플레이트에 각각 3×104세포수의 농도로 접종하였다. 1시간 배양 한 후 메탄올에 녹인 제니스테인을 다양한 농도로 함유하는 종이 디스크들을 두 쌍으로 투여하였다. 각 농도별로 한 쌍에는 HMG-CoA 환원효소에 의해 생성되는 산물인메발로네이트(mevalonate) 1mM을 동시에 투여하여 이소플라본의 HMG-CoA 환원효소 저해에 의한 세포형태 변화를 회복시키는 것을 현미경으로 관찰하였다. 대조군으로는 종이디스크만을 투여하여 비교 관찰하였다.Inhibition of HMG-CoA reductase activity by isoflavones was confirmed using Vero cells (KCLB 10081), a representative cell line used to search for HMG-CoA reductase activity inhibitors. Vero cells were seeded in 96-well plates containing 100 μl of Eagle's minimal basal medium (2% Calf serum-minimal eagles's media; CS-MEM) at a concentration of 3 × 10 4 cells each. . After 1 hour of incubation, two pairs of paper disks containing various concentrations of xenstein dissolved in methanol were administered. At each concentration, a pair of 1 mg of mevalonate, a product produced by HMG-CoA reductase, was simultaneously administered to recover the cell morphological changes caused by HMG-CoA reductase inhibition of isoflavones. . As a control, only paper discs were administered and compared.

그 결과, 도 5a에 도시된 바와 같이, 이소플라본의 비배당체 형태인 제니스테인을 각 웰 당 2㎍ 투여하였을 경우 세포내 대사체계의 변화가 이루어져 형태가 변화되면서 세포의 성장이 대조군(도 5c 참조)과 비교하여 억제됨을 확인할 수 있었다. 또한, 도 5b에 도시된 바와 같이, HMG-CoA 환원효소의 촉매작용에 의해 생산되는 결과물인 메발로네이트의 첨가에 의해 세포의 형태가 다시 회복됨을 확인할 수 있었다. 즉, 메발로네이트의 첨가에 의하여 콜레스테롤 생합성 대사가 다시 회복되어 세포의 성장이 회복되었음을 확인할 수 있었다.As a result, as shown in Figure 5a, when the administration of 2μg of the non-glycoside form of isoflavone genistein in each well changes the intracellular metabolic system to change the shape of the cell growth control (see Figure 5c) It was confirmed that the inhibition compared with the. In addition, as shown in Figure 5b, it was confirmed that the morphology of the cells is restored by the addition of mevalonate, a result produced by the catalysis of HMG-CoA reductase. That is, the cholesterol biosynthesis metabolism was restored by the addition of mevalonate to confirm that the growth of the cells was recovered.

이러한 결과는 세포 환경에서 이소플라본이 HMG-CoA 환원효소의 저해제로 작용한다는 것을 보여준다.These results show that isoflavones act as inhibitors of HMG-CoA reductase in the cellular environment.

본 발명에 따른 이소플라본을 함유하는 HMG-CoA 환원효소 활성 저해제는 콜레스테롤 생합성 과정에서 주요한 기능을 하는 HMG-CoA 환원효소에 대한 경쟁적 저해제로 작용한다. 따라서, 본 발명의 HMG-CoA 환원효소 활성 저해제를 사용하면, 혈중 콜레스테롤 함량을 저하시킬 수 있고, 결과적으로 심혈관계 질환을 예방 및 치료할 수 있다.The HMG-CoA reductase activity inhibitor containing isoflavones according to the present invention acts as a competitive inhibitor for HMG-CoA reductase, which plays a major role in cholesterol biosynthesis. Therefore, by using the HMG-CoA reductase activity inhibitor of the present invention, blood cholesterol content can be lowered, and as a result, cardiovascular diseases can be prevented and treated.

Claims (4)

이소플라본을 유효성분으로 포함하는 HMG-CoA 환원효소(3-hydroxy-3-methylglutaryl-CoA reductase) 활성 저해제.HMG-CoA reductase (3-hydroxy-3-methylglutaryl-CoA reductase) activity inhibitor comprising isoflavone as an active ingredient. 제 1항에 있어서, 상기 이소플라본은 제니스테인(genistein), 다이드제인(daidzein), 글리시테인(glycitein), 다이드진(daidzin), 제니스틴(genistin), 글리시틴(glycitin), 6'-O-아세틸제니스틴(6'-O-acetyl-genistin), 6'-O-아세틸다이드진(6'-O-acetyl-daidzin), 6'-O-아세틸글리시틴(6'-O-acetyl-glycitin), 6'-O-말로닐제니스틴(6'-O-malonyl-genistin), 6'-O-말로닐다이드진(6'-O-malonyl-daidzin), 및 6'-O-말로닐글리시틴(6'-O-malonyl-glycitin)으로 이루어진 군에서 선택되는 것을 특징으로 하는 HMG-CoA 환원효소 활성 저해제.The method of claim 1, wherein the isoflavone is genistein, diedzein, glycidin, diidzin, genistin, glycidin, 6 '. 6'-O-acetyl-genistin, 6'-O-acetylidazine, 6'-O-acetyl-glycithin (6'-O) -acetyl-glycitin), 6'-O-malonyl-genistin, 6'-O-malonylidezin (6'-O-malonyl-daidzin), and 6'-O -HMG-CoA reductase activity inhibitor, characterized in that selected from the group consisting of malonyl glycidin (6'-O-malonyl-glycitin). 제 1항에 있어서, 상기 이소플라본은 된장으로부터 분리된 것을 특징으로 하는 HMG-CoA 환원효소 활성 저해제.The HMG-CoA reductase activity inhibitor according to claim 1, wherein the isoflavone is isolated from doenjang. 제 1항에 따른 HMG-CoA 환원효소 활성 저해제를 포함하는 심혈관 질환 치료제.A cardiovascular disease treatment comprising the HMG-CoA reductase activity inhibitor according to claim 1.
KR1020020014577A 2002-03-18 2002-03-18 Inhibitor of HMG-CoA reductase activity containing isoflavone KR20030075390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020014577A KR20030075390A (en) 2002-03-18 2002-03-18 Inhibitor of HMG-CoA reductase activity containing isoflavone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020014577A KR20030075390A (en) 2002-03-18 2002-03-18 Inhibitor of HMG-CoA reductase activity containing isoflavone

Publications (1)

Publication Number Publication Date
KR20030075390A true KR20030075390A (en) 2003-09-26

Family

ID=32225219

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020014577A KR20030075390A (en) 2002-03-18 2002-03-18 Inhibitor of HMG-CoA reductase activity containing isoflavone

Country Status (1)

Country Link
KR (1) KR20030075390A (en)

Similar Documents

Publication Publication Date Title
Hendrich et al. Isoflavone metabolism and bioavailability
Wang et al. α-Glucosidase and α-amylase inhibitory activities of guava leaves
Wang et al. Antioxidant polyphenols from tart cherries (Prunus cerasus)
Lin et al. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells
K Jain et al. Cyclin-dependent kinase inhibition by flavoalkaloids
Jin et al. Caffeic acid phenyl ester in propolis is a strong inhibitor of matrix metalloproteinase-9 and invasion inhibitor: isolation and identification
AU2003259220B2 (en) Compositions and products containing enantiomeric equol, and methods for their making
Mark et al. Effects of a novel 2, 3-oxidosqualene cyclase inhibitor on the regulation of cholesterol biosynthesis in HepG2 cells.
CA2682143C (en) Method for extracting secoisolariciresinol and dihydroquercetin from wood
Ichikawa et al. Retrodihydrochalcones and homoisoflavones isolated from Thai medicinal plant Dracaena loureiri and their estrogen agonist activity
JP2007508317A (en) COMPOSITION COMPRISING XANTHOCERASSORBIFOLIA EXTRACT, COMPOUND ISOLATED FROM THE EXTRACT, METHOD FOR PREPARING THEM, AND USES THEREOF
US6326366B1 (en) Hormone replacement therapy
Renda et al. α-Glucosidase inhibitory effects of polyphenols from Geranium asphodeloides: inhibition kinetics and mechanistic insights through in vitro and in silico studies
Ma et al. Violacin A, a new chromanone produced by Streptomyces violaceoruber and its anti-inflammatory activity
Bock et al. Mangiferin and hesperidin metabolites are absorbed from the gastrointestinal tract of pigs after oral ingestion of a Cyclopia genistoides (honeybush tea) extract
TWI580689B (en) A sterol derivatives, preparation method and use thereof
JP6130303B2 (en) Compound isolated from fermented rice of Monascus, its preparation method and use
Albulescu et al. Isoflavones-biochemistry, pharmacology and therapeutic use
KR20030075390A (en) Inhibitor of HMG-CoA reductase activity containing isoflavone
EP3639817B1 (en) Compositions containing pterosin compound and derivatives thereof active ingredients for prevention or treatment of degenerative brain diseases
Cassidy Dietary phyto-oestrogens: molecular mechanisms, bioavailability and importance to menopausal health
Thomas-Oates et al. Cell protective antioxidants from the root bark of Lannea velutina A. Rich., a Malian medicinal plant
Kristanty et al. Isolation of antioxidant and xanthine oxidase inhibitor from n-butanol extract of andaliman fruit (Zanthoxylum acanthopodium DC.).
EP2705047B1 (en) Bioactive fractions and compounds from dalbergia sissoo for the prevention or treatment of osteo-health related disorders
B Lopes et al. Bioconversion of isoflavones into bioactive equol: state of the art

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid