KR20030070703A - Renewed alumina ceramics - Google Patents

Renewed alumina ceramics Download PDF

Info

Publication number
KR20030070703A
KR20030070703A KR1020020010209A KR20020010209A KR20030070703A KR 20030070703 A KR20030070703 A KR 20030070703A KR 1020020010209 A KR1020020010209 A KR 1020020010209A KR 20020010209 A KR20020010209 A KR 20020010209A KR 20030070703 A KR20030070703 A KR 20030070703A
Authority
KR
South Korea
Prior art keywords
powder
alumina
recycled
waste
particle size
Prior art date
Application number
KR1020020010209A
Other languages
Korean (ko)
Inventor
신대용
한상목
Original Assignee
신대용
한상목
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신대용, 한상목 filed Critical 신대용
Priority to KR1020020010209A priority Critical patent/KR20030070703A/en
Publication of KR20030070703A publication Critical patent/KR20030070703A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE: Provided are recycled alumina ceramics with low manufacturing costs by adding waste alumina ceramic powder used as structure materials and absorbents to conventional alumina powder. CONSTITUTION: The recycled alumina ceramics are manufactured by adding less than 30wt.% of waste alumina powder(recycled alumina, RA) with a size under 40micrometer, less than 20wt.% of waste alumina powder(recycled alumina, RA) with a size of more than 40micrometer, or less than 10wt.% of waste alumina adsorbent powder(WA) to alumina powder(PA) with a 10micrometer size. The RA powder, obtained by quenching alumina for structure materials sintered at 1650deg.C and grinding, has more than 95% of Al2O3 and alpha-Al2O3 crystal structure, and The WA powder, generated from oil refinery, has more than 97% of Al2O3 and gamma-Al2O3 crystal structure.

Description

재생 알루미나 세라믹스 {Renewed alumina ceramics}Regenerated Alumina Ceramics

본 발명은 재생 알루미나 세라믹스에 관한 것으로, 더욱 상세하게는 구조재료용 폐 알루미나 세라믹스 분말 및 폐 흡착제 알루미나 분말을 재활용하여 제조한 재생 알루미나 세라믹스에 관한 것이다.The present invention relates to regenerated alumina ceramics, and more particularly, to regenerated alumina ceramics produced by recycling waste alumina ceramic powder for structural materials and waste adsorbent alumina powder.

알루미나 세라믹스는 우수한 기계적, 전기적, 화학적 및 열적 특성을 가지므로 구조재료, 전기, 전자재료 및 생체재료 등 그 응용분야가 광범위하나, 고가 원료의 사용에 의한 제조원가의 상승과 1,500∼1,650℃의 높은 소결온도에 의한 에너지의 과다한 소비 등의 문제점으로 실용화에 어려움이 많다.Alumina Since ceramics have excellent mechanical, electrical, chemical and thermal properties, they have a wide range of applications such as structural materials, electrical, electronic materials, and biomaterials. Due to problems such as excessive consumption of energy, there are many difficulties in practical use.

현재, 구조재료용 알루미나세라믹스나 정유공장에서 공기의 정제를 위한 흡착제 및 촉매로 사용하는 알루미나세라믹스는 사용 후 주로 매립에 의하여 전량 폐기 처분되고 있는 실정이나, 일정기간 사용된 후 폐기되는 알루미나세라믹스에는 Al2O3의 함량이 95%이상이므로 중요한 자원이 될 수 있다.Currently, alumina ceramics used as structural adsorbents and catalysts for refining air in refineries or refineries are being disposed of entirely by landfill after use, but alumina ceramics that are discarded after a certain period of time are used. It can be an important resource because the content of 2 O 3 is over 95%.

더구나, 국내 사정상 매립지의 확보가 곤란하여 매립난 문제가 발생하므로, 이러한 매립난 해소와 외국으로부터 전량 수입하는 귀중한 유가자원의 폐기에 의한 경제력 손실을 해결하기 위하여 알루미나세라믹스의 재활용에 관한 연구가 요구된다.Moreover, due to domestic circumstances, it is difficult to secure landfills, which leads to problems with landfills. Therefore, research on recycling of alumina ceramics is required in order to solve such landfills and solve economic losses due to the disposal of valuable valuable resources imported from abroad. .

그러나, 유리, 슬래그 및 석분슬러지 등을 이용한 구조용 세라믹스의 재활용에 관한 연구는 광범위하게 연구되어 일부 실용화 단계에 이르렀으나, 구조용 알루미나세라믹스의 재활용에 관한 연구는 전무한 실정이다.However, the research on the recycling of structural ceramics using glass, slag and stone sludge has been extensively studied and some practical steps have been taken. However, there is no research on the recycling of structural alumina ceramics.

본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위해 안출된 것으로, 그 목적은 제조 원가 절감 및 에너지 감소로 제조 비용을 낮추어 저렴한 알루미나세라믹스를 제조하는 데 있다.The present invention has been made to solve the problems of the prior art as described above, the object is to produce a cheap alumina ceramics by lowering the manufacturing cost by reducing the manufacturing cost and energy.

본 발명의 다른 목적은 구조재료용 폐 알루미나세라믹스나 폐 알루미나흡착제를 재활용하는 데 있다.Another object of the present invention is to recycle waste alumina ceramics or waste alumina adsorbents for structural materials.

도 1a 및 1b는 본 발명의 실시예 1 및 실시예 4에 따른 재생 알루미나 세라믹스 시편의 소결온도에 따른 XRD 분석 결과를 도시한 그래프이다.1A and 1B are graphs showing the results of XRD analysis according to the sintering temperature of the regenerated alumina ceramic specimens according to Examples 1 and 4 of the present invention.

도 2a 내지 2c는 재활용 분말(RA) 및 폐 흡착제 분말(WA)의 첨가량과 소결온도에 따른 시편의 3점 곡강도 변화를 도시한 그래프이다.2A to 2C are graphs showing the three-point bending strength change of the specimen according to the addition amount of the recycled powder (RA) and the waste adsorbent powder (WA) and the sintering temperature.

도 3a 내지 3f는, 각각 P10 시편, 40㎛ 이상 입도의 RA를 사용한 실시예 1, 실시예 3, 비교예 2, 40㎛ 미만 입도의 RA를 사용한 실시예 1, 실시예 4 에 따라 제조된 시편의 미세구조를 도시한 주사전자현미경 사진이다.3A to 3F are specimens prepared according to Example 1, Example 3, and Comparative Example 2, and Examples 1 and 4 using RA having a particle size of less than 40 μm, respectively, using P10 specimens and particles having a particle size of 40 μm or more Scanning electron micrograph showing the microstructure of the.

상기한 목적을 달성하기 위해서 본 발명에서는, 입도가 40 ㎛ 미만인 재활용 알루미나의 경우 30 중량% 이하로, 입도가 40 ㎛ 이상인 재활용 알루미나의 경우 20 중량% 이하로, 폐 알루미나 흡착제의 경우 10 중량% 이하로 첨가하여 알루미나 세라믹스를 제조한다.In order to achieve the above object, in the present invention, 30 wt% or less for recycled alumina having a particle size of less than 40 μm, 20 wt% or less for recycled alumina having a particle size of 40 μm or more, and 10 wt% or less for waste alumina adsorbent. To add alumina ceramics.

이하, 본 발명에 따른 재생 알루미나 세라믹스 제조 방법에 대해 상세히 설명한다.Hereinafter, the method for producing regenerated alumina ceramics according to the present invention will be described in detail.

본 발명에서는 알루미나 분말에 재활용 분말과 폐 흡착제 등의 폐 알루미나 분말을 일정비율 혼합하여 재생 알루미나 세라믹스를 제조한다. 폐 알루미나 분말 중에서 재활용 분말이란 일반적인 알루미나 세라믹스를 분쇄한 것을 말하는데, 예를 들면 폐 구조재료용 알루미나 세라믹스를 분쇄한 것이 있으며, 분쇄한 재활용 분말은 입도분리하여 40 ㎛ 미만인 것과 40 ㎛ 이상인 것으로 구분하여 사용한다. 이러한 재활용 분말은 Al2O3의 함량이 95 중량%이상인 화학조성을 가지고 있다.In the present invention, recycled alumina powder is mixed with alumina powder and waste alumina powder such as waste adsorbent in a predetermined ratio to produce regenerated alumina ceramics. Among the waste alumina powders, recycled powder refers to the pulverization of general alumina ceramics. For example, alumina ceramics for waste structural materials are pulverized. do. This recycled powder has a chemical composition of more than 95% by weight of Al 2 O 3 content.

또 다른 폐 알루미나 분말인 폐 흡착제는 정유공장에서 공기의 정제를 위한 흡착제 및 촉매로 사용하였던 알루미나를 말하며, 여기에는 Al2O3의 함량이 88.76 중량%로서 강열감량 10.84 중량%를 제외하면 Al2O3의 함량은 97 중량%이상인 화학조성이다. 또한, 폐 흡착제는 사업장 폐기물에 함유된 오염물질이 매립처분 후, 용출되는 정도를 사전에 예측하는 검사방법으로서 9개 분야 폐기물에 대한 지정폐기물의 판정 또는 매립방법을 결정하기 위한 판단자료로 활용되는 중금속 용출 시험을 거쳐 중금속 용출량이 기준치 이하로서 중금속 오염 문제가 없는 것을 사용한다.Another closed-alumina powder of waste adsorbent refers to alumina previously used in refineries as adsorbent and catalyst for the purification of air, which includes when the content of Al 2 O 3 except for the loss on ignition 10.84% by weight in terms of 88.76% by weight Al 2 The content of O 3 is a chemical composition of at least 97% by weight. In addition, the waste adsorbent is a test method that predicts the degree of elution of contaminants contained in workplace wastes after landfill disposal, and is used as judgment data for determining designated wastes or landfill methods for nine field wastes. Heavy metal dissolution test is used, the heavy metal leaching amount is less than the reference value, heavy metal contamination problem should be used.

재활용 분말의 경우 40 ㎛ 미만인 것은 30 중량% 이하로 첨가하고, 40 ㎛ 이상인 것은 20 중량% 이하로 첨가하며, 폐 흡착제의 경우 10 중량% 이하로 첨가한다. 이 때, 이들 분말을 각각 30 중량% 이하, 20 중량% 이하, 및 10 중량% 이하로 한정하는 이유는, 이보다 더 많이 첨가할 경우 재생 알루미나 세라믹스의 강도가 구조재료용 알루미나 세라믹스의 실용화 강도보다 낮아지기 때문이다. 이 때, 알루미나 세라믹스의 구조재료용 실용화 강도란 소결온도 1650℃일 때 3점 곡강도가 200 MPa인 것을 의미한다.In the case of recycled powder, it is added at 30% by weight or less, in the case of recycled powder is added at 20% by weight or less, and in the case of waste adsorbent, at 10% by weight or less. At this time, the reason for limiting these powders to 30 wt% or less, 20 wt% or less, and 10 wt% or less, respectively, is that when more than this is added, the strength of the recycled alumina ceramics becomes lower than the practical strength of the structural alumina ceramics. Because. In this case, the practical strength for structural materials of alumina ceramics means that the three-point bending strength is 200 MPa at the sintering temperature of 1650 ° C.

재활용 분말 및 폐 흡착제 분말의 첨가량에 관계없이 재생 알루미나 세라믹스는 소결 온도가 1200℃에서 1650℃까지 증가할수록 밀도 및 3점 곡강도가 증가하지만, 동일 소결온도에서는 재활용 분말 및 폐 흡착제 분말의 첨가량이 증가함에 따라 밀도 및 3점 곡강도가 감소한다. 이는 첨가된 재활용 분말 및 폐 흡착제 분말의 입경이 일반적인 알루미나 분말의 입경에 비해 크기 때문에 성형시 성형체의 충전율이 감소하여 소결 후 시편 내에 기공이 잔존하게 되기 때문인 것으로 사료된다.Regardless of the amount of recycled powder and waste adsorbent powder added, the recycled alumina ceramics increased in density and three-point bending strength as the sintering temperature increased from 1200 ° C to 1650 ° C. As a result, density and three-point bending strength decrease. This is because the particle size of the recycled powder and the waste adsorbent powder added is larger than that of the general alumina powder, so that the filling rate of the molded body decreases during molding, and the pores remain in the specimen after sintering.

표 1에는 폐 알루미나 분말인 재활용 분말과 폐 흡착제 분말의 평균 입도가 일반적인 알루미나 분말의 평균 입도와 함께 나타나 있다.Table 1 shows the average particle size of the recycled powder, which is the waste alumina powder, and the waste adsorbent powder, together with the average particle size of the general alumina powder.

평균 입도(㎛)Average particle size (㎛) 알루미나 분말Alumina powder 10.510.5 폐 알루미나 분말Waste alumina powder 재활용 분말(40㎛ 미만)Recycled Powder (less than 40 μm) 33.833.8 재활용 분말(40㎛ 이상)Recycled Powder (40㎛ or More) 74.374.3 폐 흡착제 분말Waste adsorbent powder 32.532.5

표 1에 나타난 바와 같이, 재활용 분말 및 폐 흡착제 분말과 같은 폐 알루미나 분말은 일반 알루미나 분말에 비해 입경이 크기 때문에, 첨가되는 폐 알루미나 분말의 입경이 작을수록 입자의 비표면적 감소에 의한 치밀화가 진행되어 제조되는 재생 알루미나 세라믹스의 강도는 증가한다.As shown in Table 1, since waste alumina powders such as recycled powder and waste adsorbent powder have a larger particle size than general alumina powder, the smaller the particle diameter of the added waste alumina powder is, the densified by decreasing the specific surface area of the particles. The strength of the recycled alumina ceramics produced is increased.

특히, 폐 흡착제 분말은 일반 알루미나 분말과 재활용 분말의 주결정상이 α상인 것과는 달리 주결정상이 γ상이므로, 소결 중에 γ상이 θ상 및 α상으로 순차적으로 상전이하면서 입자 자체의 수축으로 인한 부피차이로 기공이 생성되고, 또한 10.84 중량%의 강열감량에 의해 소결 중에 기공이 형성된다. 이렇게 생성된 기공은 입계 내에 분포하여 쉽게 제거되지 않기 때문에 밀도를 감소시키며, 또한 폐 흡착제를 첨가한 경우가 강도 발현의 원인인 α상의 결정성 부족으로 재활용 분말을 사용한 경우에 비해 강도가 더 낮다.In particular, since the main crystalline phase of the waste adsorbent powder is the γ phase, unlike the main crystalline phase of the alumina powder and the recycled powder, the crystalline phase is sequentially phase-shifted into the θ phase and the α phase during sintering, resulting in volume differences due to shrinkage of the particles themselves. Pores are formed and also pores are formed during sintering by the loss of ignition of 10.84% by weight. Since the pores thus formed are distributed within the grain boundary and are not easily removed, the density is reduced. Also, the addition of the waste adsorbent has a lower strength than the case where recycled powder is used due to the lack of crystallinity of the α phase, which causes the development of strength.

상기한 바와 같은 이유로, 일반 알루미나 분말에, 입도가 40 ㎛ 미만인 재활용 알루미나 분말의 경우 30 중량% 이하로, 입도가 40 ㎛ 이상인 재활용 알루미나 분말의 경우 20 중량% 이하로, 폐 알루미나 흡착제 분말의 경우 10 중량% 이하로 첨가하여 혼합한 후, 성형 및 소결함으로써 본 발명에 따른 재생 알루미나 세라믹스를 제조한다.For the above reasons, in general alumina powder, up to 30% by weight for recycled alumina powder with a particle size of less than 40 μm, up to 20% by weight for recycled alumina powder with a particle size of 40 μm or more, and 10 for waste alumina adsorbent powder. The regenerated alumina ceramics according to the present invention are prepared by adding and mixing in an amount of up to% by weight, followed by molding and sintering.

이하, 실시예에 의해 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

본 발명의 실시예에서는 알루미나 분말로서 국내에서 시판되는 공업용 Al2O3분말(대정화학, 순도 96%, 평균입경 10 ㎛, 이하 PA로 명명)을 사용하였으며, 이러한 PA 분말을 이용하여 재활용 알루미나 분말을 준비하였다.In the embodiment of the present invention, commercially available industrial Al 2 O 3 powder (Daejeong Chemical, purity 96%, average particle diameter of 10 ㎛, hereinafter referred to as PA) was used as alumina powder, and recycled alumina powder using such PA powder. Was prepared.

즉, 먼저 PA 분말을 일축유압프레스를 이용하여 50 MPa의 압력으로 12×5×60 mm3의 각주상의 시편을 1차 성형한 후, 냉간정수압성형기(CIP, Reaction Eng. R.O.K)를 이용하여 150 MPa의 압력으로 2차 성형하였다. 2차 성형시편을 5℃/min의 승온속도로 1,200∼1,650℃에서 5시간 소결한 후 로냉하여 알루미나 세라믹스시편(P10)을 제조하였다.That is, PA powder is first molded into a columnar specimen of 12 × 5 × 60 mm 3 at a pressure of 50 MPa using a uniaxial hydraulic press, and then a cold hydrostatic molding machine (CIP, Reaction Eng. ROK) is used. Secondary molding was performed at a pressure of 150 MPa. The secondary molded specimen was sintered at 1,200 to 1,650 ° C. for 5 hours at a temperature increase rate of 5 ° C./min, and then cooled to prepare an alumina ceramic specimen (P10).

폐 구조재료용 알루미나 세라믹스의 대체원료로서 1,650℃에서 5시간 소결한 P10 시편을 급랭하여 시편의 표면에 균열을 발생시킨 후, 40 ㎛ 미만의 입도와 40 ㎛ 이상의 입도로 분쇄하여 재활용 알루미나 분말(이하, RA로 명명)을 준비하였다.As an alternative raw material of alumina ceramics for waste structural materials, P10 specimens sintered at 1,650 ° C for 5 hours were quenched to generate cracks on the surface of the specimens, and then pulverized to a particle size of less than 40 µm and a particle size of 40 µm or larger (hereinafter referred to as recycled alumina powder). , Named RA).

실시예 1 내지 3에서는 이러한 재활용 알루미나 분말(RA)을 각각 10, 20, 30 중량%, 알루미나 분말(PA)를 각각 90, 80, 70 중량% 혼합하여 P10 시편의 제조방법과 동일한 방법으로 재생 알루미나 세라믹스를 제조하였으며, 각각의 함량을 표 2에 정리하여 나타내었다.In Examples 1 to 3, 10, 20, 30 wt% of such recycled alumina powder (RA) and 90, 80, 70 wt% of alumina powder (PA) were mixed, respectively, and regenerated alumina was prepared in the same manner as in the preparation method of the P10 specimen. Ceramics were prepared, and the content of each is summarized in Table 2.

실시예 4에서는 표 2에 나타난 바와 같이 국내 정유공장에서 발생하는 폐 알루미나 흡착제 분말(WA로 명명) 10 중량%와 알루미나 분말(PA) 90 중량%를 혼합하여 P10 시편의 제조방법과 동일한 방법으로 재생 알루미나 세라믹스를 제조하였다.In Example 4, as shown in Table 2, 10% by weight of waste alumina adsorbent powder (named WA) and 90% by weight of alumina powder (PA) generated in a domestic refinery were mixed and regenerated in the same manner as in the preparation method of the P10 specimen. Alumina ceramics were prepared.

알루미나 분말(PA)Alumina Powder (PA) 재활용 알루미나 분말(RA)Recycled Alumina Powder (RA) 폐 흡착제 분말(WA)Waste Adsorbent Powder (WA) 실시예 1 (P9R1)Example 1 (P9R1) 9090 1010 -- 실시예 2 (P8R2)Example 2 (P8R2) 8080 2020 -- 실시예 3 (P7R3)Example 3 (P7R3) 7070 3030 -- 실시예 4 (P9W1)Example 4 (P9W1) 9090 -- 1010 비교예 1 (P6R4)Comparative Example 1 (P6R4) 6060 4040 -- 비교예 2 (P5R5)Comparative Example 2 (P5R5) 5050 5050 -- 비교예 3 (P8W2)Comparative Example 3 (P8W2) 8080 -- 2020 비교예 4 (P7W3)Comparative Example 4 (P7W3) 7070 -- 3030 비교예 5 (P6W4)Comparative Example 5 (P6W4) 6060 -- 4040 비교예 6 (P5W5)Comparative Example 6 (P5W5) 5050 -- 5050 P10P10 100100 --

한편, 비교예 1 내지 6에서는 RA 또는 WA를 본 발명에서의 범위 보다 초과한 함량으로 첨가하여 재생 알루미나 세라믹스를 제조하였으며, 그 함량을 표 2에 함께 나타내었다.Meanwhile, in Comparative Examples 1 to 6, RA or WA was added in an amount exceeding the range in the present invention to prepare regenerated alumina ceramics, and the content thereof is shown in Table 2 together.

본 발명의 실시예에서 사용된 원료인 PA, RA 및 WA의 특성분석을 수행하였는데, 먼저 화학조성은 XRF(Philips, PW 140, Holland)를 이용하여 분석하였고 그 결과를 표 3에 나타내었다.Characterization of the raw materials used in the examples of the present invention, PA, RA and WA was performed, first chemical composition was analyzed using XRF (Philips, PW 140, Holland) and the results are shown in Table 3.

(중량%)(weight%) SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO TiO2 TiO 2 K2OK 2 O Na2ONa 2 O P2O5 P 2 O 5 LOILOI 알루미나 분말(PA)Alumina Powder (PA) 1.421.42 95.4595.45 0.330.33 0.480.48 0.450.45 0.440.44 0.480.48 0.400.40 -- 0.550.55 재활용 분말(RA)Recycled Powder (RA) 1.401.40 95.7795.77 0.160.16 0.450.45 0.390.39 0.410.41 0.460.46 0.430.43 -- 0.560.56 폐 흡착제 분말(WA)Waste Adsorbent Powder (WA) 0.120.12 88.7688.76 0.050.05 0.040.04 0.070.07 0.020.02 -- 0.100.10 -- 10.8410.84

표 3에 나타난 바와 같이, PA과 RA의 화학조성은 Al2O3의 함량이 95 중량% 이상이었으며, WA는 Al2O3의 함량이 88.76 중량%로서 강열감량 10.84 중량%를 제외하면 Al2O3의 함량은 97 중량%이상이었다.As shown in Table 3, the chemical composition of PA and RA is was the content of Al 2 O 3 less than 95% by weight, WA is if the content of Al 2 O 3 except for the loss on ignition 10.84% by weight in terms of 88.76% by weight Al 2 The content of O 3 was at least 97% by weight.

또한, 각 분말 원료의 입도를 입도분석기(SA-CP3, Shimazu, Japan)를 이용하여 측정하였으며 그 결과를 표 4에 나타내었다.In addition, the particle size of each powder raw material was measured using a particle size analyzer (SA-CP3, Shimazu, Japan) and the results are shown in Table 4.

평균 입도(㎛)Average particle size (㎛) 입도 분포(㎛)Particle Size Distribution (㎛) 알루미나 분말(PA)Alumina Powder (PA) 10.510.5 3∼503-50 재활용 분말(RA, 40㎛ 미만)Recycled powder (RA, less than 40 μm) 33.833.8 3∼2003 to 200 재활용 분말(RA,40㎛ 이상)Recycled powder (RA, 40㎛ or more) 74.374.3 5∼2505 to 250 폐 흡착제 분말(WA)Waste Adsorbent Powder (WA) 32.532.5 3∼3003 to 300

또한, 폐 알루미나 흡착제의 중금속 용출은 환경처 고시 폐기물공정시험법에 따라 시료 1g을 증류수 100 ml에 45일간 담지시킨 후, HNO3을 첨가하여 제조한 용액을 ICP/MS(HP-4500 series, USA)를 이용하여 Mg, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, 및 Pb의 중금속 성분을 측정하였으며, 그 결과를 표 5에 나타내었다.In addition, pulmonary alumina heavy metals of the adsorbent after 45 days the sample 1g of distilled water 100 ml bearing according to hwangyeongcheo Notice waste process test, a solution prepared by the addition of HNO 3 ICP / MS (HP- 4500 series, USA) The heavy metal components of Mg, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, and Pb were measured using the results, and the results are shown in Table 5.

(ppm)(ppm) AsAs CdCD PbPb T-CrT-Cr Cr6+ Cr 6+ HgHg ZnZn FeFe CuCu 기준치Reference value 1.51.5 0.30.3 33 1.51.5 1.51.5 0.0050.005 -- -- 33 폐 흡착제 분말(WA)Waste Adsorbent Powder (WA) NDND 0.0030.003 0.1940.194 0.0770.077 NDND NDND 0.0340.034 0.0150.015 0.0040.004

표 5에 나타난 바와 같이, 본 발명의 실시예에서 사용한 WA는 중금속의 용출량이 극미량이므로 이를 이용한 재생 알루미나 세라믹스 사용시 중금속에 의한 오염은 문제가 없음을 알 수 있었다.As shown in Table 5, WA was used in the embodiment of the present invention, so the amount of heavy metal elution was very low, when using the recycled alumina ceramics using it was found that there is no problem of heavy metal contamination.

다음으로, 본 발명의 실시예에 따라 제조된 재생 알루미나 세라믹스 시편의 특성 분석을 수행하였으며, 먼저 결정상 분석은 X-선회절분석장치(Philips. Co. Pw1720, Holland)를 이용하여 Cu Kα, Ni filter, 30 kV, 20 mA의 조건으로 측정하였다. 실시예 1 및 실시예 4에 의해 제조된 재생 알루미나 세라믹스 시편의 소결온도에 따른 XRD 분석 결과를 각각 도 1a 및 1b에 나타내었다. 여기서, ●는 α-Al2O3, ○는 γ-Al2O3, ■는 θ-Al2O3.피크이다.Next, the characterization of the regenerated alumina ceramics specimen prepared according to the embodiment of the present invention was carried out. First, the crystal phase analysis was performed using a Cu Kα, Ni filter using an X-ray diffraction analyzer (Philips. Co. Pw1720, Holland). , 30 kV, 20 mA. XRD analysis results according to the sintering temperature of the regenerated alumina ceramic specimens prepared in Examples 1 and 4 are shown in FIGS. 1A and 1B, respectively. Where? Is α-Al 2 O 3 , ○ is γ-Al 2 O 3 , and ■ are θ-Al 2 O 3. Peaks.

도 1a에 도시된 바와 같이 PA 및 RA의 주결정상은 α-Al2O3로서, 1,500 및 1,650℃에서의 실시예 1에 따른 시편에서도 α-Al2O3의 피크만 확인되었다.As shown in FIG. 1A, the main crystal phases of PA and RA are α-Al 2 O 3 , and only peaks of α-Al 2 O 3 were confirmed in the specimens according to Example 1 at 1,500 and 1,650 ° C. As shown in FIG.

한편, 도 1b에 도시된 바와 같이 WA은 주결정상이 γ-Al2O3이었으며, 실시예 4에 따른 시펀은 700℃에서 α-Al2O3와 γ-Al2O3의 피크가 관찰되었고, 800℃에서는 α-Al2O3와 γ-Al2O3이외에 γ-Al2O3의 전이에 의한 θ-Al2O3의 피크가 관찰되었다. 1,000℃에서는 α-Al2O3와 θ-Al2O3의 피크만 관찰되었으며, 1,100℃의 시편에는 θ-Al2O3의 α-Al2O3로의 전이에 의해 α-Al2O3의 피크만 관찰되었다.Meanwhile, as shown in FIG. 1B, the main crystal phase of WA was γ-Al 2 O 3, and in the siphon according to Example 4, peaks of α-Al 2 O 3 and γ-Al 2 O 3 were observed at 700 ° C. FIG. , in addition to α-Al 2 O 3 and γ-Al 2 O 3 is in the θ-Al 2 O 3 peaks due to the transition of the γ-Al 2 O 3 were observed in the 800 ℃. 1,000 ℃ the α-Al 2 O 3 and θ-Al 2 O was only observed in the third peak, is of 1,100 ℃ specimen θ-Al 2 O 3 of α-Al by a transition to the 2 O 3 α-Al 2 O 3 Only the peak of was observed.

다음, 재생 알루미나 세라믹스 시편의 밀도는 아르키메데스(Archimedes)법을 이용하여 측정하였다(신뢰구간 95.45%, 표준불확도 k=2, 확장불확도=0.002). 그 결과, 소결온도가 증가함에 따라 RA 및 WA의 첨가량과 입경에 관계없이 시편의 밀도는 증가함을 알 수 있었고, 실시예 1 시편의 밀도는 3.89 g/cm3으로 관측되었으며, 이는 알루미나 세라믹스의 이론밀도인 3.93 g/cm3의 99%의 높은 상대밀도를 나타내었다.Next, the density of the regenerated alumina ceramic specimens was measured using the Archimedes method (confidence interval 95.45%, standard uncertainty k = 2, expansion uncertainty = 0.002). As a result, as the sintering temperature was increased, it was found that the density of the specimen increased regardless of the amount and particle size of RA and WA, and the density of Example 1 was observed to be 3.89 g / cm 3 . It showed a high relative density of 99% of the theoretical density of 3.93 g / cm 3 .

그러나, 동일 소결온도에서는 RA 및 WA의 첨가량이 증가함에 따라 밀도는 감소하였으며, 이는 첨가된 RA 및 WA의 평균입경이 PA의 평균입경에 비하여 크기 때문에 냉간정수압성형시 성형체의 충전율이 감소하여 소결 후 시편 내에 잔존하는 기공 때문이라 사료된다.However, at the same sintering temperature, the density decreased as the amount of RA and WA added increased. Since the average particle diameter of RA and WA added was larger than that of PA, the filling rate of the molded body decreased during cold hydrostatic molding, This may be due to the pores remaining in the specimen.

RA을 사용한 경우 40 ㎛ 이상의 입도를 가진 것을 첨가한 시편의 밀도는 40 ㎛ 미만의 입도를 가진 것을 첨가한 시편에 비하여 밀도가 감소하였는데, 이는 평균입경의 증가에 따른 입자의 비표면적 감소에 의하여 시편의 치밀화가 완전히 진행되지 않았기 때문이라 사료된다. 따라서, 재생 알루미나 세라믹스의 물리적 특성은 사용한 원료의 입경이 작을수록 향상됨을 알 수 있었다.In the case of RA, the density of the specimens added with a particle size of 40 μm or more was decreased compared to the specimens added with a particle size of less than 40 μm, which was caused by the decrease of the specific surface area of the particle due to the increase of the average particle diameter. This is because the densification of the was not completed completely. Therefore, it was found that the physical properties of the recycled alumina ceramics improved as the particle size of the used raw material was smaller.

WA을 첨가한 실시예 4 시편의 밀도는 3.86 g/cm3이었으며 재활용 분말을 사용한 실시예 1의 경우보다는 밀도가 낮았지만, 여전히 알루미나 세라믹스의 이론밀도인 3.93 g/cm3의 98%의 높은 상대밀도를 나타내었다.The density of Example 4 specimens with WA was 3.86 g / cm 3 and lower than that of Example 1 with recycled powder, but still high relative density of 98% of 3.93 g / cm 3 , the theoretical density of alumina ceramics. Indicated.

다음, 재생 알루미나 세라믹스 시편의 3점 곡강도는 KS L 1591에 의하여 각주형 시편을 만능시험기(Universiall Testing Machine, SFM, United Co., U.S.A)를 사용하여 0.5 mm/min의 크로스 헤드 스피드(cross head speed)로 측정하였으며(신뢰구간 95.45%, 표준불확도 k=2, 확장불확도=0.009), 시편의 미세구조는 3점곡강도 시험을 행한 시편의 파단면에 Au를 코팅하여 주사전자현미경(Akashi Co. SS130, Japan)을 이용하여 관찰하였다.Next, the three-point bending strength of the regenerated alumina ceramics specimens was measured using a cross-section speed of 0.5 mm / min using a universal testing machine (SFM, United Co., USA) according to KS L 1591. ) (Confidence interval 95.45%, standard uncertainty k = 2, extended uncertainty = 0.009), The microstructure of the specimen was observed using a scanning electron microscope (Akashi Co. SS130, Japan) by coating Au on the fracture surface of the specimen subjected to the three-point bending strength test.

RA 및 WA의 첨가량과 소결온도에 따른 시편의 3점 곡강도 변화를 도 2a 내지 2c에 도시하였다. 여기서, 도 2a는 입도가 40 ㎛ 미만인 RA을 사용한 경우이고, 도 2b는 입도가 40 ㎛ 이상인 RA을 사용한 경우이며, 도 2c는 WA을 사용한 경우이다. 각각의 시편은 소결온도가 증가함에 따라 3점곡강도가 증가하였으나, 동일 소결 온도에서는 RA 및 WA분말의 첨가량이 증가함에 따라 3점 곡강도는 감소하였다. 또한, RA 및 WA분말의 입경과 3점곡강도간에는 소결온도와 RA 및 WA분말의 첨가량이 같다면 입경이 작을수록 입자의 비표면적 감소에 의한 치밀화가 진행되어 3점곡강도는 증가하였다. 이와 같이, RA 및 WA분말의 입경이 작을수록 3점곡강도가 증가하는 것은 PA분말의 평균입경에 근접하여 일정 이상의 강도를 유지할 수 있기 때문이라 사료된다.The three-point bending strength change of the specimen according to the addition amount of RA and WA and the sintering temperature is shown in FIGS. 2A to 2C. Here, FIG. 2A is a case where RA having a particle size of less than 40 μm is used, FIG. 2B is a case where RA having a particle size of 40 μm or more is used, and FIG. 2C is a case where WA is used. In each specimen, the three-point bending strength increased with increasing sintering temperature, but at the same sintering temperature, the three-point bending strength decreased with increasing amounts of RA and WA powders. In addition, if the sintering temperature and the addition amount of RA and WA powder were the same between the particle size of RA and WA powder and the addition amount of RA and WA powder, the smaller the particle diameter was, the densified by decreasing the specific surface area of the particles, the three point bending strength increased. As described above, the smaller the particle diameters of the RA and WA powders, the higher the three-point bending strength is considered to be because it is possible to maintain a certain strength or more close to the average particle diameter of the PA powder.

구조재료용 알루미나세라믹스의 실용화 강도를 200 MPa로 예상한다면, 도 2a에 도시된 바와 같이 40 ㎛ 미만 입도의 RA분말을 이용하여 1,650℃로 소결한 시편은 PA 분말 대신에 RA 분말을 30 중량%까지 대체하는 것이 가능함을 알 수 있었고, 도 2b에 도시된 바와 같이 40 ㎛ 이상 입도의분말을 이용할 경우에는 RA 분말을 20 중량%까지 대체가능함을 알 수 있었다.If the practical strength of the alumina ceramics for structural materials is expected to be 200 MPa, the specimen sintered at 1,650 ° C. using RA powder having a particle size of less than 40 μm, as shown in FIG. 2A, may contain up to 30% by weight of RA powder instead of PA powder. It can be seen that it is possible to replace, when using a powder having a particle size of 40 ㎛ or more as shown in Figure 2b it can be seen that up to 20% by weight of RA powder can be replaced.

WA 분말을 첨가한 시편은 WA 분말의 주결정상인 γ-Al2O3의 상전이에 의하여 강도발현의 원인인 α-Al2O3의 결정성 부족으로 3점 곡강도는 RA 분말을 첨가한 시편에 비하여 감소하였다. 도 2c에 도시된 바와 같이, WA 분말을 첨가하여 1,650℃에서 소결한 시편은 PA 분말 대신에 WA 분말을 10 중량%까지 대체하는 것이 가능함을 알 수 있었다.Specimen with WA powder added three-point bending strength due to lack of crystallinity of α-Al 2 O 3 , which is the cause of strength due to phase transition of γ-Al 2 O 3 , the main crystal phase of WA powder. It decreased compared with that. As shown in Figure 2c, it was found that the specimen sintered at 1,650 ℃ by adding the WA powder can replace the WA powder by up to 10% by weight instead of the PA powder.

한편, 재생 알루미나 세라믹스 시편의 미세구조가 도 3a 내지 3f에 도시되어 있는데, 도 3a는 P10 시편의 미세구조를 도시한 것이고, 도 3b는 40㎛ 이상 입도의 RA를 사용한 실시예 1 시편의 미세구조를 도 3e는 실시예 3 시편의 미세구조를, 도3d는 비교예 2 시편의 미세구조를, 도 3e는 40㎛ 미만 입도의 RA를 사용한 실시예 1 시편의 미세구조를, 도 3f는 실시예 4 시편의 미세구조를 도시한 것이다.On the other hand, the microstructure of the regenerated alumina ceramic specimens is shown in Figures 3a to 3f, Figure 3a shows the microstructure of the P10 specimen, Figure 3b is a microstructure of Example 1 specimen using a RA having a particle size of 40㎛ or more 3e shows the microstructure of Example 3 specimens, FIG. 3d shows the microstructure of Comparative Example 2 specimens, FIG. 3e shows the microstructure of Example 1 specimens with RA having a particle size of less than 40 μm, and FIG. 4 shows the microstructure of the specimen.

도 3b에 도시된 실시예 1의 시편은 도 3a의 P10 시편의 미세구조와 비교하여 큰 변화는 관찰되지 않았으나, 도 3c 및 3d에서는 RA 분말의 첨가량이 증가함에 따라 시편 내에 기공이 증가함을 확인할 수 있었으며, 비교예 2 시편인 도 3d에서는 기공이 지나치게 큼을 관측하였다. 또한, 도 3e 및 3f에서는 도 3b에 비해 기공의 증가가 관찰되었으며, 이는 동일한 함량일지라도 입경이 큰 RA 및 WA을 사용할 경우 기공이 증가함을 의미한다.In the specimen of Example 1 shown in FIG. 3B, no significant change was observed in comparison with the microstructure of the P10 specimen of FIG. 3A, but in FIG. 3C and 3D, the pores in the specimen increased as the amount of RA powder increased. In FIG. 3d, Comparative Example 2, the pores were observed to be too large. In addition, an increase in pores was observed in FIGS. 3E and 3F compared to FIG. 3B, which means that pores increase when RA and WA having a large particle size are used even with the same amount.

이러한 미세구조 관측을 통해, RA 및 WA분말의 첨가량이 증가함에 따라 3점곡강도가 감소하는 것은 이와 같이 시편 내에 형성된 기공의 연결에 의한 내부결함의 크기 및 형상 차이에 의한 것으로 사료된다.Through observation of these microstructures, it is believed that the decrease in three-point bending strength as the amount of RA and WA powder is increased is due to the size and shape of internal defects caused by the connection of pores formed in the specimen.

이상에서 살펴본 바와 같이, 본 발명에서는 구조재료용으로 사용되었던 폐 알루미나 세라믹스 또는 폐 알루미나 흡착제를 일반 알루미나 분말에 첨가하여 재생 알루미나 세라믹스를 제조하므로, 제조 원가가 절감되는 효과가 있다.As described above, in the present invention, since recycled alumina ceramics are manufactured by adding waste alumina ceramics or waste alumina adsorbents used for structural materials to general alumina powder, manufacturing cost is reduced.

또한, 폐 알루미나 분말을 재활용하므로 매립난 문제가 해소되고, 귀중한 유가자원의 폐기에 의한 경제력 손실을 해결하는 효과가 있다. 특히, 구조재료용으로 사용되었던 알루미나 세라믹스의 재활용을 실현시킨 효과가 있다.In addition, since the waste alumina powder is recycled, the landfill shortage problem is solved, and the economic power loss due to the disposal of valuable valuable resources is solved. In particular, it is effective to realize the recycling of alumina ceramics used for structural materials.

Claims (1)

입도가 40 ㎛ 미만이고 30 중량% 이하인 재활용 알루미나와, 입도가 40 ㎛ 이상이고 20 중량% 이하인 재활용 알루미나, 및 10 중량% 이하의 폐 알루미나 흡착제 중의 어느 하나가 포함된 재생 알루미나 세라믹스.A recycled alumina ceramics comprising any one of recycled alumina having a particle size of less than 40 μm and up to 30 wt%, recycled alumina having a particle size of at least 40 μm and up to 20 wt%, and up to 10 wt% of spent alumina adsorbent.
KR1020020010209A 2002-02-26 2002-02-26 Renewed alumina ceramics KR20030070703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020010209A KR20030070703A (en) 2002-02-26 2002-02-26 Renewed alumina ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020010209A KR20030070703A (en) 2002-02-26 2002-02-26 Renewed alumina ceramics

Publications (1)

Publication Number Publication Date
KR20030070703A true KR20030070703A (en) 2003-09-02

Family

ID=32222641

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020010209A KR20030070703A (en) 2002-02-26 2002-02-26 Renewed alumina ceramics

Country Status (1)

Country Link
KR (1) KR20030070703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688839B1 (en) * 2002-08-19 2007-02-28 에스케이 주식회사 Cordierite ceramic article using waste catalyst and preparing method for the same
CN117383911A (en) * 2023-12-12 2024-01-12 苏州芯合半导体材料有限公司 Ceramic magnetic disk prepared from ceramic chopper waste and production granulating waste powder and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4348366A (en) * 1981-04-06 1982-09-07 Brown Raymond J Process for the production of alumina and alumina compounds from wastes
KR970069160A (en) * 1996-04-09 1997-11-07 윤용혁 Aluminum pressed body, deoxidizer for steel using it, and raw material for re-dissolved aluminum
KR19990054156A (en) * 1997-12-26 1999-07-15 김의현 Method for producing aluminum sulfate aqueous solution using waste catalyst alumina
KR20000043668A (en) * 1998-12-29 2000-07-15 신현준 Block molded product using alumina-spinel waste castable
KR20000041663A (en) * 1998-12-23 2000-07-15 이구택 Method for reducing expansibility of electric furnace slag using waste refractories

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4348366A (en) * 1981-04-06 1982-09-07 Brown Raymond J Process for the production of alumina and alumina compounds from wastes
KR970069160A (en) * 1996-04-09 1997-11-07 윤용혁 Aluminum pressed body, deoxidizer for steel using it, and raw material for re-dissolved aluminum
KR19990054156A (en) * 1997-12-26 1999-07-15 김의현 Method for producing aluminum sulfate aqueous solution using waste catalyst alumina
KR20000041663A (en) * 1998-12-23 2000-07-15 이구택 Method for reducing expansibility of electric furnace slag using waste refractories
KR20000043668A (en) * 1998-12-29 2000-07-15 신현준 Block molded product using alumina-spinel waste castable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688839B1 (en) * 2002-08-19 2007-02-28 에스케이 주식회사 Cordierite ceramic article using waste catalyst and preparing method for the same
CN117383911A (en) * 2023-12-12 2024-01-12 苏州芯合半导体材料有限公司 Ceramic magnetic disk prepared from ceramic chopper waste and production granulating waste powder and preparation method thereof

Similar Documents

Publication Publication Date Title
Luo et al. Ceramic tiles derived from coal fly ash: Preparation and mechanical characterization
Raupp-Pereira et al. Ceramic formulations prepared with industrial wastes and natural sub-products
Liu et al. Fabrication and characterization of porous cordierite ceramics prepared from ferrochromium slag
Andreola et al. Technological properties of glass-ceramic tiles obtained using rice husk ash as silica precursor
CN100503508C (en) Composite magnesia alumina spinel/Sialon ceramic material and its preparation process
CN100406411C (en) A composite electro-fusing refractory material and method for preparing the same
CN1173897C (en) Porous sintered article and its mfg. method
US5916511A (en) Production method of cordierite ceramic honeycomb structure
Abdrakhimov Use of aluminum-containing waste in production of ceramic materials for various purposes
Zhang et al. Effects of palygorskite on physical properties and mechanical performances of bone china
Gao et al. Realizing translucency in aluminosilicate glass at ultralow temperature via cold sintering process
JPWO2013183646A1 (en) Method for producing zeolite A using aluminoborosilicate glass as a raw material
Xu et al. Preparation of foamed ceramics from steel slag with high calcium and iron content
KR20030070703A (en) Renewed alumina ceramics
Acchar et al. Using granite rejects to aid densification and improve mechanical properties of alumina bodies
Muliawan et al. Preparation and characterization of phosphate-sludge kaolin mixture for ceramics bricks
Zawrah et al. Advanced Ceramics: Stages of Development
Satapathy A study on the mechanical, abrasion and microstructural properties of zirconia-flyash material
He et al. Effect of nickel slag wastes on the properties of cordierite ceramics
Wang et al. Effects of ammonium molybdate additive and sintering temperature on the properties of foam ceramics based on ceramic tile polishing waste
De Aza et al. Reactive coating of dolomite on alumina substrates
Zeng et al. Novel Lead‐free Glass/Ceramics System with Low Permittivity, Low Loss for LTCC Application
Mostafa et al. Role of borate frit as co-flux in tile bodies
Ikhmayies Advanced Ceramics
Rama Krishna Satish Functional glasses and glass-ceramics derived from industrial waste

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application