KR20030060724A - Hydroxyl radical generator by ozone and electrolysis - Google Patents

Hydroxyl radical generator by ozone and electrolysis Download PDF

Info

Publication number
KR20030060724A
KR20030060724A KR1020020001941A KR20020001941A KR20030060724A KR 20030060724 A KR20030060724 A KR 20030060724A KR 1020020001941 A KR1020020001941 A KR 1020020001941A KR 20020001941 A KR20020001941 A KR 20020001941A KR 20030060724 A KR20030060724 A KR 20030060724A
Authority
KR
South Korea
Prior art keywords
ozone
radicals
ozone gas
electrolysis
hydroxyl
Prior art date
Application number
KR1020020001941A
Other languages
Korean (ko)
Other versions
KR100542270B1 (en
Inventor
임정아
Original Assignee
임정아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임정아 filed Critical 임정아
Priority to KR1020020001941A priority Critical patent/KR100542270B1/en
Publication of KR20030060724A publication Critical patent/KR20030060724A/en
Application granted granted Critical
Publication of KR100542270B1 publication Critical patent/KR100542270B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • C02F2101/366Dioxine; Furan
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4611Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4619Supplying gas to the electrolyte
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE: A hydroxyl radical generator by ozone and electrolysis is provided which is efficiently applied to wastewater by reducing sludge generation and chemical cost and solving problem of ultraviolet ray source, and increases treatment speed, reduces treatment cost and enables simple operation by promptly generating radicals irrespective of water quality. CONSTITUTION: The hydroxyl radical generator by ozone and electrolysis comprises a fluid inlet(1) and a fluid outlet(11) which are installed so that fluid flows downward; an electrode(2); a negative electric wire(3); a positive electric wire(9); an insulator(8); a semiconductor catalyst(4); an ozone gas diffuser(5); an ozone gas inlet(6) and an ozone gas outlet(7) installed in such a way that an ozone gas introduced flows upward to be easily contacted with the fluid flowing downward; and ozonized gas equalization tank(10), wherein ozone gas produced from an ozonizer is directly ionized into ozonide radical ions (O3¬-) by semiconductor catalyst filled by electric power supply, the ozonide radical ions (O3¬-) is reacted with H¬+ to produce HO3 radicals, the HO3 radicals are dissociated into OH radicals and O2, and wherein second step (O3¬- producing step) is proceeded without passing through rate limiting step, first step (HO2 producing step), so that general reaction rate is greatly increased to increase the production amount of hydroxyl radicals.

Description

오존과 전기분해에 의한 수산화 라디칼 발생기{Hydroxyl Radical Generator by Ozone and Electrolysis}Hydroxyl Radical Generator by Ozone and Electrolysis

고급 산화 공법(Advanced Oxidation Process-AOP)이란 수중에서 수산화(OH) 라디칼을 생성하여 유기물질을 산화ㆍ분해하는 것으로 화학적인 처리방법에서는 가장 진보된 기술이다. AOP에는 펜톤 산화 공정과 광촉매 공정(TiO2/UV), 오존 조합공정(O3/H2O2, O3/UV) 등이 있다.Advanced Oxidation Process (AOP) is the most advanced technology in chemical treatment method, which produces OH radicals in water to oxidize and decompose organic materials. AOP includes the Fenton oxidation process, the photocatalyst process (TiO 2 / UV), and the ozone combination process (O 3 / H 2 O 2 , O 3 / UV).

펜톤 산화 공정은 과산화수소와 2가 철이온이 반응하여 발생한 수산화 라디칼의 강한 산화력을 이용하여 폐수내에 존재하는 난분해성 물질을 분해하는데 사용되었으나, 반응의 촉매로 사용되는 철로 인하여 철 수산화물 형태의 슬러지가 다량 발생하고, 과산화수소 등의 약품비가 컸다. 이에 슬러지의 발생이 적은 오존을 이용한 고도 산화 공법이 대두되었다. 오존은 수중에서 자가 분해하여 수산화 라디칼을 형성하여 유기물질을 산화시키므로 슬러지 발생이 없고 산화력이 염소보다 훨씬 크나 수중 중탄산 이온(HCO3 -)에 저해를 받으며, 수산화 라디칼 생성시 율속단계가 있어 오존 조합 공정이 대두되었다. 오존과 과산화수소 조합공정은 펜톤 산화 공정에 비해 슬러지의 발생량이 적으나, 역시 약품비 문제가 남았다. 오존과 자외선(Ultraviolet 254nm) 조합 공정은 오존이 자외선을 흡수하여 광분해되면서 분해 메카니즘을 통해 수산화 라디칼을 생성하므로 슬러지 발생이 적고, 약품비가 적으나, 폐수에 적용시 물의 탁도에 따른 자외선 강도의 현저한 감소로 효율이 떨어졌다.Fenton oxidation process was used to decompose hardly decomposable substances in wastewater by using strong oxidizing power of hydroxyl radical generated by reaction between hydrogen peroxide and divalent iron ions, but iron hydroxide type sludge has a large amount due to iron used as reaction catalyst. Generation | occurrence | production, and chemical costs, such as hydrogen peroxide, were large. As a result, an advanced oxidation method using ozone with little sludge generation has emerged. Ozone is by decomposing characters in water to form a hydroxyl radical because the oxidation of organic material there is no sludge oxidative much keuna underwater bicarbonate ions than chlorine (HCO 3 -) receives an inhibit on, there is a hydroxyl radical generated when the rate limiting step ozone combination The process has emerged. The ozone and hydrogen peroxide combination process produced less sludge than the Fenton oxidation process, but also remained a chemical cost problem. The combination process of ozone and ultraviolet (Ultraviolet 254nm) produces less radicals and chemicals due to the decomposition mechanism of ozone absorbing ultraviolet rays and decomposing ultraviolet rays, resulting in less sludge and lower chemical costs. The efficiency fell.

80년대 이후 많은 연구가 이루어진 광촉매 공정(TiO2/UV)은 광촉매에 자외선을 조사하여 수산화 라디칼을 생성하여 유기물질을 산화 분해하는 것으로 슬러지 발생량이 적고, 약품비가 적으나 공정의 반응속도가 느리고, 폐수에 적용시 자외선 강도의 현저한 저하로 효율이 떨어졌다.The photocatalytic process (TiO 2 / UV), which has been studied since the 1980s, produces oxidative decomposition of organic substances by irradiating ultraviolet rays to photocatalysts, resulting in small sludge generation, low chemical costs, and slow reaction rate. When applied to wastewater, the efficiency is reduced due to a significant decrease in the ultraviolet intensity.

본 발명의 오존과 전기분해에 의한 수산화 라디칼 발생기는 기존 고도 산화공법의 문제점인 슬러지 발생량이나 약품비, 자외선 광원의 문제를 해결하였다. 과산화수소의 주입대신 반도체 촉매에 의해 수산화 라디칼을 생성하므로 약품 유지비가 없으며, 자외선에 의한 수산화 라디칼 생성을 전기분해를 이용하므로 폐수에 적용하여도 효율 저하의 문제점을 극복하였다.Hydroxide radical generator by ozone and electrolysis of the present invention solved the problems of the sludge generation amount, the chemical cost, and the ultraviolet light source, which is a problem of the existing advanced oxidation method. There is no chemical maintenance cost because hydroxide radicals are produced by semiconductor catalysts instead of injection of hydrogen peroxide, and the generation of hydroxide radicals by ultraviolet light is used for electrolysis to overcome the problem of efficiency reduction even when applied to wastewater.

현재 적용되고 있는 고도 산화 공법은 펜톤 산화 공정, 광촉매(TiO2/UV) 공정과 오존과 과산화 수소, 오존과 자외선 조합 공정이다. 이들 공정의 장단점을 요약하면, 펜톤 산화 공정은 폐수에 적용시 유기물질 산화ㆍ분해는 잘되나 슬러지가 다량 발생하고, 과산화수소 등의 약품비가 크다. 광촉매(TiO2/UV) 공정은 슬러지 발생량이 적고, 약품비가 적으나 공정의 반응속도가 느리고, 폐수에 적용시 자외선 강도의 현저한 저하로 효율이 떨어졌다. 오존과 과산화 수소 조합 공정은 폐수에도 적용 가능하고, 슬러지의 발생량도 적으나, 약품비 문제가 남았다. 오존과 자외선(Ultraviolet 254nm) 조합 공정은 오존이 자외선을 흡수하는 광분해 메카니즘을 통해 수산화 라디칼을 생성하므로 슬러지 발생이 적고, 약품비가 적으나, 폐수에 적용시 물의 탁도에 따른 자외선 강도의 현저한 감소로 효율이 떨어졌다. 그러므로 본 발명은 슬러지의 발생량이 적고, 약품비가 적으며, 자외선 광원의 문제점을 해결하여, 폐수에도 효율적으로 적용할 수 있는 고도 산화 공법을 개발하였다. 이는 오존과 반도체 촉매, 그리고 전기분해에 의한 라디칼 발생기로 수질의 성상에 관계없이 빠른 라디칼 발생으로 처리속도와 비용, 간편한 운전을 할 수 있도록 하였다.The advanced oxidation processes currently applied are Fenton oxidation process, photocatalyst (TiO 2 / UV) process and ozone and hydrogen peroxide, ozone and ultraviolet combination process. Summarizing the advantages and disadvantages of these processes, the fenton oxidation process oxidizes and decomposes organic substances well when applied to wastewater, but generates a large amount of sludge and a large chemical cost such as hydrogen peroxide. The photocatalyst (TiO 2 / UV) process has a low sludge generation rate, a low chemical cost, but a slow reaction rate, and when applied to wastewater, the efficiency decreases due to a significant decrease in ultraviolet intensity. The combination of ozone and hydrogen peroxide can be applied to waste water, and the amount of sludge generated is small, but the chemical cost problem remains. Ozone and UV (Ultraviolet 254nm) combination process generates ozone radical through the photolysis mechanism that ozone absorbs UV light, so sludge generation is low and chemical cost is low. Fell. Therefore, the present invention has developed an advanced oxidation method that can be applied to wastewater efficiently by reducing the amount of sludge, low chemical cost, and solve the problem of the ultraviolet light source. It is a radical generator by ozone, semiconductor catalyst, and electrolysis, which makes it possible to operate at high speed and cost and easy operation with rapid radical generation regardless of water quality.

도면 1은 오존과 전기분해에 의한 수산화 라디칼 발생기의 전체 단면도이다.1 is an overall cross-sectional view of a hydroxyl radical generator by ozone and electrolysis.

〈도면의 부호설명〉〈Description of Drawings〉

1. 유체 유입구 7. 오존 유출구1. Fluid inlet 7. Ozone outlet

2. 전극 8. 절연체2. Electrode 8. Insulator

3. 전선(음극) 9. 전선(양극)3. Electric wire (cathode) 9. Electric wire (anode)

4. 촉매 10. 균등조4. Catalyst 10. Equalizer

5. 가스확산석 11. 유체 유출구5. Gas Diffusion Stone 11. Fluid Outlet

6. 오존 유입구6. Ozone Inlet

본 발명은 오존과 전기분해에 의해 수산화 라디칼을 발생하는 원리와 장치에 관한 것이다. 장치는 세부분으로 구성되며 오존 발생기, 전기 분해장치와 반도체 촉매이다. 오존 발생기에서 생성된 오존 가스는 유기물과 두가지 방법으로 반응한다. 첫째는 오존과 유기물이 직접 결합하여 산화 분해하는 직접반응이며, 둘째는 오존이 자가 분해되어 OH 라디칼을 생성하여 생성된 OH 라디칼과 유기물이 결합하여 산화 분해하는 간접반응이다. 직접 반응은 반응속도는 빠르나 특정 화합물에 대해 제한되는 단점이 있으며, 간접반응은 직접반응에 비해 느리나 대부분의 화합물에 대해 적용되는 비제한성의 장점이 있다. 오존이 자가 분해되면서 생성되는, 간접반응을 지배하는 핵심산물은 수산화 라디칼이다. 오존의 수중에서의 분해 메카니즘을 반응식으로 나타내면 다음과 같다(Hoigne, Staehelin, and Bader mechanism)The present invention relates to principles and apparatus for generating hydroxyl radicals by ozone and electrolysis. The device consists of three parts: an ozone generator, an electrolysis device and a semiconductor catalyst. The ozone gas produced by the ozone generator reacts with organic materials in two ways. The first is a direct reaction in which ozone and organics are directly bonded to oxidatively decompose, and the second is an indirect reaction in which OH radicals and organics are produced by oxidizing and decomposing ozone to decompose itself. The direct reaction is fast but has a disadvantage of being limited for certain compounds. The indirect reaction is slower than the direct reaction, but has the advantage of non-limiting application to most compounds. The key product that governs the indirect reaction produced by the self-decomposition of ozone is the hydroxyl radical. The reaction mechanism of the decomposition of ozone in water is as follows (Hoigne, Staehelin, and Bader mechanism).

제 1단계는 오존발생기에서 생성된 오존가스와 수중의 OH-와 반응하여 HO2와 superoxide(O2 -)를 생성한다. 여기서 HO2는 H+와 O2 -로 해리된다(1-2단계). 제 2단계는 O2 -와 오존이 반응하여 O2와 ozonide(O3 -)를 생성한다. 제 3단계는 O3 -와 H+이 반응하여 HO3라디칼을 생성한다. 제 4단계는 HO3가 OH 라디칼과 O2로 해리된다.The first step is the OH of the ozone gas and water generated by the ozone generator-reacted with HO 2 and superoxide (O 2 -) to generate a. HO 2 is dissociated into H + and O 2 (step 1-2). The second step is O 2-generates - and O 2 and the ozonide (O 3) to the ozone reaction. In the third step, O 3 and H + react to generate HO 3 radicals. In the fourth step, HO 3 dissociates into OH radicals and O 2 .

도면의 상세한 설명은 다음과 같다.Detailed description of the drawings is as follows.

1)은 유체 유입구, 11)은 유체 유출구이다. 유체는 하향류 방식이다.1) is the fluid inlet, 11) is the fluid outlet. The fluid is in downflow mode.

2)는 전극이며, 3)은 전선(-), 9)는 전선(+), 8)은 절연체이다. 4)는 반도체 촉매이다. 오존 발생기에서 생성된 오존가스는 전기 공급장치에 의해 충진된 반도체 촉매에 의해 ozonide(O3 -)로 바로 이온화되고, 이 O3 -와 H+이 반응하여 HO3라디칼을 생성하며, 이 HO3라디칼은 OH 라디칼과 O2로 해리된다. 즉 율속단계인 제 1단계(HO2생성단계)를 거치지 않고 제 2단계(O3 -생성단계) 진행하여 총괄 반응속도를 크게 하여 수산화 라디칼의 생성량을 증대시킨다.2) is an electrode, 3) is a wire (-), 9 is a wire (+), and 8) is an insulator. 4) is a semiconductor catalyst. The ozone gas generated in the ozone generator is ionized directly into ozonide (O 3 ) by a semiconductor catalyst charged by an electric supply, and the O 3 and H + react to generate HO 3 radicals, which is HO 3 The radical dissociates into OH radicals and O 2 . That is, the second step (O 3 generation step) is performed without going through the first step (HO 2 generation step), which is a rate step, to increase the overall reaction rate to increase the amount of hydroxyl radicals.

5)는 유입되는 오존 가스의 확산석이며, 6)은 오존 가스 유입구, 7)은 오존 가스 유출구이다. 유입되는 오존 가스는 상향류 방식으로 하여 유체(하향류)와의 접촉을 용이하도록 하였다. 10)은 오존화 가스 균등조이다. 오존화 가스를 골고루 균일하게 유입될 수 있도록 한다.5) is the diffusion stone of the incoming ozone gas, 6) is the ozone gas inlet, and 7) is the ozone gas outlet. Inflowing ozone gas was made in an upflow manner to facilitate contact with the fluid (downflow). 10) is ozonation gas equalization tank. Ensure that the ozone gas is evenly introduced.

현재 국내외에서 이용되는 고도 산화 공법은 펜톤 산화 공정, TiO2/UV, O3/H2O2, O3/UV 공정에 의한 것으로, 이의 핵심은 유기물질을 산화 분해하는 능력이 가장 우수한 수산화 라디칼의 생성과 제어이다. 본 발명은 오존 발생기, 전기 분해장치와 반도체 촉매 공정으로 율속단계 제어를 통한 반응속도 증가로 수산화 라디칼 생성량을 크게 할 수 있는, 선진 유럽과 미국에서도 개발되지 않은 독창적인 기술이다. 하루 수백만톤의 정수를 생산하는 정수장에 적용시 빠른 수산화 라디칼 생성은 시설비와 유지비, 그리고 청정수질을 보장하는 가장 이상적이고 경제적인 방법일 될 것이다. 또한 아파트의 중앙 정수처리, 농어촌 지역의 간이 상수도 처리, 중수도 처리, 하수 고도처리 및 석유화학 폐수 처리, 난분해성 유기 폐수처리, 염소계 유기폐수, 합성세제 처리, 살균과 침출수의 다이옥신 등의 독성 유기물질의 분해에도 적용할 수 있는 고부가 가치 기술이 될 것이다.Currently, the advanced oxidation method used at home and abroad is by Fenton oxidation process, TiO 2 / UV, O 3 / H 2 O 2 , O 3 / UV process, the core of which is the hydroxyl radical with the best ability to oxidatively decompose organic materials Creation and control. The present invention is a unique technology that has not been developed in advanced Europe and the United States, which can increase the amount of hydroxyl radicals by increasing the reaction rate by controlling the rate step by the ozone generator, the electrolysis device and the semiconductor catalyst process. When applied to a plant that produces millions of tons of purified water per day, rapid generation of hydroxyl radicals will be the most ideal and economic way to ensure facility costs, maintenance costs and clean water quality. In addition, toxic organic substances such as central water treatment in apartments, simple tap water treatment in rural areas, heavy water treatment, advanced sewage treatment and petrochemical wastewater treatment, non-degradable organic wastewater treatment, chlorine-based organic wastewater, synthetic detergent treatment, sterilization and dioxins in leachate It will be a high value technology that can be applied to decomposition of.

Claims (2)

본 발명은 오존과 반도체 촉매, 전기 공급장치로 구성된 수산화 라디칼 발생기로서 그 발생원리는 다음과 같다. 오존 발생기에서 생성된 오존 가스는 전기 공급장치에 의해 충진된 반도체 촉매에 의해 ozonide(O3 -)로 바로 이온화되고, 이 O3 -와 H+이 반응하여 HO3라디칼을 생성하며, 이 HO3라디칼은 OH 라디칼과 O2로 해리된다. 즉 율속단계인 제 1단계(HO2생성단계)를 거치지 않고 제 2단계(O3 -생성단계) 진행하여 총괄 반응속도를 크게 하여 수산화 라디칼의 생성량을 증대시키는 원리이다.The present invention is a hydroxyl radical generator composed of ozone, a semiconductor catalyst, and an electric supply device. The ozone gas produced in the ozone generator is ionized directly into ozonide (O 3 ) by a semiconductor catalyst charged by an electric supply, and the O 3 and H + react to generate HO 3 radicals, which is HO 3 The radical dissociates into OH radicals and O 2 . That is, it is a principle to increase the amount of hydroxyl radicals by increasing the overall reaction rate by performing the second step (O 3 generation step) without going through the first step (HO 2 generation step), which is the rate step step. 수산화 라디칼 발생기의 구성은 오존 발생기, 반도체 촉매, 전기 공급장치로 이루어진다.The hydroxyl radical generator consists of an ozone generator, a semiconductor catalyst, and an electric supply device.
KR1020020001941A 2002-01-09 2002-01-09 Hydroxyl Radical Generator by Ozone, TiO2 Catalyst and Electrolysis KR100542270B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020001941A KR100542270B1 (en) 2002-01-09 2002-01-09 Hydroxyl Radical Generator by Ozone, TiO2 Catalyst and Electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020001941A KR100542270B1 (en) 2002-01-09 2002-01-09 Hydroxyl Radical Generator by Ozone, TiO2 Catalyst and Electrolysis

Publications (2)

Publication Number Publication Date
KR20030060724A true KR20030060724A (en) 2003-07-16
KR100542270B1 KR100542270B1 (en) 2006-01-20

Family

ID=32217897

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020001941A KR100542270B1 (en) 2002-01-09 2002-01-09 Hydroxyl Radical Generator by Ozone, TiO2 Catalyst and Electrolysis

Country Status (1)

Country Link
KR (1) KR100542270B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805378B1 (en) * 2006-05-25 2008-02-25 (주)지피엔이 The Combined Process Method and Unit Equipment using Ozone-Electrolysis/Semiconductor Catalysis for Treatment of Non-degradable Waste
CN108328838A (en) * 2018-03-15 2018-07-27 北京燕山翔宇环保工程技术有限公司 A kind of fluorine-contained wastewater treatment system and its treatment process
CN112239303A (en) * 2019-07-17 2021-01-19 南京凯旋化学科技有限公司 Industrial wastewater catalytic oxidation treatment device
KR102235746B1 (en) * 2020-09-14 2021-04-02 주식회사 목간 Air purification device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370105B1 (en) 2010-06-16 2014-03-04 임정아 High-Performance Hydroxyl Radical Generator Consists of Micro-nano Bubble Ozone Contactor, Photocatalyst·Electrode and Fluid Recycling System

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364508A (en) * 1992-11-12 1994-11-15 Oleh Weres Electrochemical method and device for generating hydroxyl free radicals and oxidizing chemical substances dissolved in water
KR100253999B1 (en) * 1994-10-06 2000-04-15 서순기 Method for purifying waste water
JPH10230286A (en) * 1997-02-21 1998-09-02 Isuzu Motors Ltd Hydroxyl radical forming vessel
KR100423142B1 (en) * 1998-12-28 2004-06-23 주식회사 대우일렉트로닉스 Integrated Radial Generator for Washing Machine
KR100345611B1 (en) * 1999-12-28 2002-07-27 대우전자주식회사 Radical generating system
KR20010105537A (en) * 2000-05-15 2001-11-29 박성호 Ceramic catalyst for producing the radicals and method of prepartion for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805378B1 (en) * 2006-05-25 2008-02-25 (주)지피엔이 The Combined Process Method and Unit Equipment using Ozone-Electrolysis/Semiconductor Catalysis for Treatment of Non-degradable Waste
CN108328838A (en) * 2018-03-15 2018-07-27 北京燕山翔宇环保工程技术有限公司 A kind of fluorine-contained wastewater treatment system and its treatment process
CN108328838B (en) * 2018-03-15 2023-12-22 北京燕山翔宇环保工程技术有限公司 Fluorine-containing wastewater treatment system and treatment process thereof
CN112239303A (en) * 2019-07-17 2021-01-19 南京凯旋化学科技有限公司 Industrial wastewater catalytic oxidation treatment device
KR102235746B1 (en) * 2020-09-14 2021-04-02 주식회사 목간 Air purification device

Also Published As

Publication number Publication date
KR100542270B1 (en) 2006-01-20

Similar Documents

Publication Publication Date Title
CN101786756B (en) Process method for treating hardly-biodegradable organic wastewater
Kalra et al. Advanced oxidation processes for treatment of textile and dye wastewater: a review
Agustina et al. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment
KR100754526B1 (en) Apparatus for treating water by multiplex oxidation and method for treating water using the same
KR100541573B1 (en) Apparatus and method for treating water using advanced oxidation process
US10662095B2 (en) Ozone-photocatalysis reactor and water treatment method
CN101492200A (en) Method for photoelectrocatalysis oxidization of organic waste water with ozone
CN102690005A (en) Method for treating organic wastewater through photoelectric catalytic oxidation
CN102826693A (en) Method and system for catalytic oxidation of high-salt organic waste water by electrical assistance combined with ultraviolet light
KR100805378B1 (en) The Combined Process Method and Unit Equipment using Ozone-Electrolysis/Semiconductor Catalysis for Treatment of Non-degradable Waste
CN108862774B (en) High-difficulty wastewater treatment equipment
KR100808935B1 (en) Waste water treating apparatus using plasma and photocatalyst
Shikuku et al. Advanced oxidation processes for dye removal from wastewater
WO2020020389A1 (en) Process to treat waste brine
KR20030060724A (en) Hydroxyl radical generator by ozone and electrolysis
KR20010044325A (en) A waste water treatment apparatus by the advanced oxidation processing method
KR100454260B1 (en) Advanced water and wastewater treatment apparatus and method
KR20030076931A (en) Sop system
KR102525217B1 (en) Non-degradable Waste Water Treatment System
KR100399153B1 (en) Water treatment system for production of industrial water from secondary effluent by gamma irradiation and TiO2
KR100368837B1 (en) Reactor for reclamation of dffluent from sewage treatment facility by irradiation combined with TiO2
Thombre Advanced Oxidation in Water and Used Water Purification
Ogundele et al. Advanced oxidation processes for sustainable remediation and waste water treatment
JP2011200844A (en) Apparatus and method for treating waste water
CN211972020U (en) Electrochemical reaction device for cyanide degradation of cyanide-containing wastewater

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E801 Decision on dismissal of amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
E902 Notification of reason for refusal
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121105

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140110

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141210

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151104

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180103

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200103

Year of fee payment: 15