KR20030059837A - Process for hydrotreating a heavy hydrocarbon fraction with permutable reactors and reactors that can be short-circuited - Google Patents

Process for hydrotreating a heavy hydrocarbon fraction with permutable reactors and reactors that can be short-circuited Download PDF

Info

Publication number
KR20030059837A
KR20030059837A KR10-2003-7007692A KR20037007692A KR20030059837A KR 20030059837 A KR20030059837 A KR 20030059837A KR 20037007692 A KR20037007692 A KR 20037007692A KR 20030059837 A KR20030059837 A KR 20030059837A
Authority
KR
South Korea
Prior art keywords
guard
zone
catalyst
hydrodesulfurization
section
Prior art date
Application number
KR10-2003-7007692A
Other languages
Korean (ko)
Other versions
KR100783448B1 (en
Inventor
트로뫼르파스칼
크레스만스테판
Original Assignee
앵스띠뛰 프랑세 뒤 뻬뜨롤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 앵스띠뛰 프랑세 뒤 뻬뜨롤 filed Critical 앵스띠뛰 프랑세 뒤 뻬뜨롤
Publication of KR20030059837A publication Critical patent/KR20030059837A/en
Application granted granted Critical
Publication of KR100783448B1 publication Critical patent/KR100783448B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

본 발명에 따른 수소화 처리 공정에서는, 제1 수소화 탈금속 섹션에서 탄화수소 중질 분류를 수소화 처리한 후, 이 제1 수소화 탈금속 섹션으로부터의 유출물을 제2 수소화 탈황 섹션으로 유입시킨다. 수소화 탈금속 섹션 앞에는 적어도 하나의 가드 구역이 위치한다. 상기 수소화 처리 공정은,In the hydroprocessing process according to the invention, after hydrotreating the hydrocarbon heavy fractionation in the first hydrometallurgical section, the effluent from the first hydrometallurgical section is introduced into the second hydrodesulfurization section. At least one guard zone is located before the hydrodemetallization section. The hydrogenation treatment step,

a) 가드 구역을 사용하는 단계;a) using a guard zone;

b) 가드 구역을 단락시키고, 가드 구역에 수용되어 있는 촉매를 재생 및/또는 교체하는 단계;b) shorting the guard zone and regenerating and / or replacing the catalyst contained in the guard zone;

c) 촉매가 재생 및/또는 교체된 가드 구역을 재연결하는 단계; 그리고c) reconnecting the guard zone where the catalyst has been regenerated and / or replaced; And

d) 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션으로부터의 반응기 중 적어도 하나를 단락시킬 수 있고, 그 반응기에 수용되어 있는 촉매를 재생 및/또는 교체하는 단계d) shorting at least one of the reactors from the hydrodesulfurization section and / or the hydrodesulfurization section and regenerating and / or replacing the catalyst contained in the reactor

를 포함한다.It includes.

Description

교체 가능한 반응기와 단락될 수 있는 반응기로 탄화수소 중질 분류를 수소화 처리하는 공정 {PROCESS FOR HYDROTREATING A HEAVY HYDROCARBON FRACTION WITH PERMUTABLE REACTORS AND REACTORS THAT CAN BE SHORT-CIRCUITED}PROCESS FOR HYDROTREATING A HEAVY HYDROCARBON FRACTION WITH PERMUTABLE REACTORS AND REACTORS THAT CAN BE SHORT-CIRCUITED}

이러한 원료의 접촉 수소화 처리와 관련된 문제들은, 그러한 불순물들이 금속 및 코우크의 형태로 촉매에 점차 퇴적되어, 촉매계의 활성을 빠르게 소실시켜 촉매계를 폐색시키기 때문에, 교체를 위해서 촉매계를 정지시켜야 한다는 사실로부터 기인한다.The problems associated with the catalytic hydrogenation of such raw materials stem from the fact that such impurities gradually accumulate in the catalyst in the form of metals and coke, rapidly dissipating the catalyst system and thus obstructing the catalyst system and thus stopping the catalyst system for replacement. Is caused.

따라서, 상기 형태의 원료를 수소화 처리하기 위한 공정은, 유닛을 멈추는 일 없이 조작 사이클을 가능한 한 길게 할 수 있도록 설계되어야 하며, 목표는 최소한 1년의 조작 사이클을 얻는 것이다.Therefore, the process for hydroprocessing the raw material of this type should be designed to make the operation cycle as long as possible without stopping the unit, and the goal is to obtain an operation cycle of at least one year.

이 형태의 원료를 위한 처리는 여러 가지 종류가 있다. 지금까지 그러한 처리는,There are several types of treatments for this type of raw material. Until now, such processing,

·고정 촉매상을 사용하는 공정(예를 들면, Institut Francais du Petrole사의 HYVAHL-F 공정)으로, 또는In a process using a fixed catalyst bed (e.g. HYVAHL-F from Institut Francais du Petrole), or

·촉매가 준연속적으로 교체될 수 있는 적어도 하나의 반응기를 포함하는 공정(예를 들면, Institut Francais du Petrole사의 HYVAHL-M 이동상 공정)으로A process comprising at least one reactor in which the catalyst can be replaced semi-continuously (eg HYVAHL-M mobile phase process from Institut Francais du Petrole)

실시되어 왔다.Has been implemented.

본 발명의 공정은 선행 기술 공정, 특히 고정상 공정 또는 비등상(ebullated bed) 공정을 개량하는 것이다. 그러한 공정에서, 원료는 직렬로 배치된 복수 개의 반응기(바람직하게는, 고정상 반응기 또는 비등상 반응기)를 통해 순환한다. 복수 개의 반응기 중 최초 반응기는, 특히 원료의 수소화 탈금속(HDM)과, 수소화 탈황의 일부를 실시하는 데에 사용된다. 최종 반응기는 원료의 심도 정제(deep refining)를 실시하는 데에, 그리고 특히 수소화 탈황에 사용된다(HDS 단계). 유출물은 최종 HDS 반응기로부터 취출된다.The process of the present invention is an improvement on prior art processes, in particular fixed bed processes or ebullated bed processes. In such a process, the raw material is circulated through a plurality of reactors (preferably fixed bed reactors or boiling phase reactors) arranged in series. The first of the plurality of reactors is used in particular to carry out part of the hydrodesulfurization (HDM) of the raw materials and hydrodesulfurization. The final reactor is used for performing deep refining of the raw materials and in particular for hydrodesulfurization (HDS step). The effluent is withdrawn from the final HDS reactor.

그러한 공정에서는 각 단계에 맞게 특정화된 촉매가 보통 사용되며, 이 경우의 평균 조작 조건은 약 5 MPa 내지 약 25 MPa이고, 바람직하게는 약 10 MPa 내지 약 20 MPa이며, 온도는 약 370℃ 내지 420℃이다.In such a process, a catalyst specified for each stage is usually used, in which case the average operating conditions are from about 5 MPa to about 25 MPa, preferably from about 10 MPa to about 20 MPa, and the temperature is from about 370 ° C. to 420 ℃.

HDM 단계에서 이상적인 촉매는, 아스팔텐이 풍부한 원료의 처리에 적합해야 하고, 높은 금속 유지 능력과 연관된 높은 탈금속 능력을 갖추어야 하며, 코우킹에 대한 저항이 강해야 한다. 본 출원인은 특별한 매크로 기공 담체(macroporous support)("성게" 구조) 상의 촉매를 개발하였는데, 상기 담체는 이 단계에 필요한 다음과 같은 특질을 촉매에 정확하게 부여한다(유럽 특허 EP-B-0 113 297 및 EP-B-0 113 284).The ideal catalyst in the HDM stage should be suitable for the processing of asphaltene-rich raw materials, have a high demetallic capacity associated with high metal retention and a strong resistance to coking. The Applicant has developed a catalyst on a special macroporous support ("sea urchin" structure), which gives the catalyst the following characteristics exactly required for this step (European Patent EP-B-0 113 297). And EP-B-0 113 284).

·HDM 단계에서 탈금속 비율이 적어도 10% 내지 90%일 것.Demetallization rate in the HDM step is at least 10% to 90%.

·금속 유지 능력이 새로운 촉매의 중량에 대해 10%를 초과할 것. 이는 조작 사이클을 연장시킨다.Metal holding capacity exceeding 10% by weight of new catalyst. This extends the operating cycle.

·390℃를 넘는 온도에서도 코우킹에 대한 저항성이 우수할 것. 이는 사이클 기간을 연장시키는 데에 기여하는데, 사이클 기간은 코우크 생산으로 인한 활성 소실 및 압력 강하의 증가에 의해 종종 제한된다. 이렇게 저항성이 우수하면 열전환의 대부분이 이 단계에서 이루어질 수 있게 된다.· Excellent resistance to coking at temperatures over 390 ℃. This contributes to extending the cycle duration, which is often limited by the loss of activity and increased pressure drop due to coke production. This excellent resistance allows most of the thermal conversion to be done at this stage.

HDS 단계에 이상적인 촉매는 생성물에 심도 정제[탈황, 지속적인 탈금속 반응으로 콘라드슨(Conradson) 탄소 및 가능하게는 아스팔텐의 양을 감소시킴])를 수행할 수 있도록 수소화력이 뛰어나야 한다. 본 출원인은 그러한 형태의 원료에 특히 적합한 촉매(EP-B-0 113 297 및 EP-B-0 113 284)를 개발하였다.The ideal catalyst for the HDS step should be hydrogenated so that the product can be subjected to depth purification (desulfurization, reducing the amount of Conradson carbon and possibly asphaltenes with continuous demetallization). Applicant has developed catalysts (EP-B-0 113 297 and EP-B-0 113 284) which are particularly suitable for such types of raw materials.

수소화력이 뛰어난 전술한 형태의 촉매의 불리한 점은, 금속이나 코우크가 존재하게 되면 활성이 빨리 소실된다는 점이다. 이 때문에, 비교적 높은 온도에서 작용하여 대부분의 전환과 탈금속을 행할 수 있는 적절한 HDM 촉매와, 이 HDM 촉매에 의해 금속 및 기타 불순물로부터 보호되어 비교적 낮은 온도에서 작용할 수 있는 적절한 HDS 촉매를 조합하면, 심도 수소화가 촉진되고 코우킹을 제한되며, 결국, 단일 촉매계를 사용하는 경우나, HDS 촉매의 신속한 코우킹을 초래하는 증가식 온도 프로파일을 이용하는 유사한 HDM/HDS 구성을 사용하는 경우보다 전체적인 정제 성능이 더 뛰어나다.The disadvantage of the catalyst of the above-described type, which is excellent in hydrogenation power, is that the presence of metal or coke leads to rapid loss of activity. For this reason, a combination of a suitable HDM catalyst capable of operating at relatively high temperatures and carrying out most of the conversion and demetallization and a suitable HDS catalyst protected from metals and other impurities by this HDM catalyst and capable of operating at relatively low temperatures, Depth hydrogenation is promoted and coking is limited, resulting in overall purification performance than using a single catalyst system or similar HDM / HDS configurations with increased temperature profiles resulting in rapid coking of HDS catalysts. Better

고정상 공정의 중요성은 고정상의 높은 촉매 효능으로 인해 높은 정제 성능을 얻는다는 데에 있다. 그러나, 원료중 금속의 양이 어느 수준을 초과하면(예컨대 50 내지 150 ppm), 더 우수한 촉매를 사용하더라도 그러한 공정의 성능(또한, 특히 조작 기간)이 불충분해진다. 반응기(특히 제1 HDM 반응기)가 금속으로 곧 채워져 활성이 소실되기 때문이다. 그러한 활성 소실을 보상하기 위해서는 온도를 상승시켜 코우크 형성을 촉진하고 압력 강하를 증가시킨다. 또한, 원료 중에 함유되어 있는 아스팔틴과 침전물으로 인해, 또는 조작상 문제로 인하여 제1 촉매상이 매우 빨리 폐색될 수 있다고 알려져 있다.The importance of the stationary bed process is to obtain high purification performance due to the high catalytic efficacy of the stationary bed. However, if the amount of metal in the raw material exceeds a certain level (eg 50 to 150 ppm), even better catalysts will result in insufficient performance (also in particular operating periods) of such processes. This is because the reactor (particularly the first HDM reactor) is soon filled with metal and the activity is lost. To compensate for such loss of activity, the temperature is raised to promote coke formation and increase pressure drop. It is also known that the first catalyst phase can be blocked very quickly due to the asphaltenes and precipitates contained in the raw materials or due to operational problems.

그 결과, 활성이 소실되었거나 폐색된 제1 촉매상을 교체하기 위해 최소한 2개월 내지 6개월마다 유닛을 정지해야 하며, 이러한 조작은 3주까지 걸릴 수 있어서 유닛의 사용률을 더욱 단축시킨다.As a result, the unit must be shut down at least every two to six months to replace the lost or occluded first catalyst phase, which can take up to three weeks, further reducing the unit's utilization rate.

비등상 공정의 중요성은 고온에서의 작업 가능성으로 인해 전환 성능이 뛰어나다는 점에 있다. 본 출원인은 통상적인 중질 원료의 처리에 매우 적합한 공정을 개발하였다(캐나다 특허 CA-2 171 894, 프랑스 특허 출원 FR-98/00530).The importance of the boiling phase process lies in the excellent conversion performance due to the possibility of working at high temperatures. Applicant has developed a process that is very suitable for the processing of conventional heavy raw materials (Canada patent CA-2 171 894, French patent application FR-98 / 00530).

비록 최고의 촉매계를 사용하더라도, 조작에 문제가 생긴 때 및/또는 적합하지 않은 원료에 사용될 때에는 조작 시간이 줄어들 수 있다. 그러면, 반응기에 얼마나 많은 코우크가 있느냐에 따라 유닛을 중지해야 한다. 본 출원인은 그러한 조작 문제 및 촉매 사용과 관련된 문제를 해결하고자 하였다.Although the best catalyst system is used, the operation time can be reduced when problems arise with the operation and / or when used on unsuitable raw materials. The unit must then be stopped depending on how much coke is in the reactor. Applicants have attempted to solve such manipulation problems and problems associated with the use of catalysts.

또한, 본 출원인은 고정상 방식의 불리한 점을 다른 방식으로 극복하기 위해 노력하였다.In addition, Applicants have endeavored to overcome the disadvantages of the fixed phase approach in other ways.

따라서, HDM 단계의 초기에 하나 이상의 이동상 반응기를 설치하는 것이 제안되었다(미국 특허 US-A-3 910 834 또는 영국 특허 GB-B-2 124 252). 그러한 이동상은 병류 모드(co-current mode)로 조작되거나(예를 들면, SHELL사의 HYCON 공정) 향류 모드(counter-current mode)로 조작될 수 있다(예를 들면, 본 출원인의 HYVAHL-M 공정). 이는 탈금속 반응의 일부를 행함으로써, 또한 폐색의 원인이 될 수 있는 원료 중에 함유된 입자를 여과함으로써 반응기, 예컨대 고정상 반응기를 보호한다. 또한, 상기 이동상 반응기에서는 촉매가 준연속적으로 교체되어, 3개월 내지 6개월마다 유닛을 정지할 필요가 없다.Therefore, it has been proposed to install one or more mobile phase reactors early in the HDM stage (US Pat. No. US-A-3 910 834 or UK Pat. GB-B-2 124 252). Such mobile phases can be operated in co-current mode (eg SHELL's HYCON process) or in counter-current mode (eg Applicant's HYVAHL-M process). . This protects the reactor, such as a fixed bed reactor, by performing part of the demetallic reaction and by filtering the particles contained in the raw material which may cause the blockage. In addition, in the mobile phase reactor the catalyst is replaced semi-continuously, eliminating the need to shut down the unit every three to six months.

그러한 이동상 기법의 불리한 점은, 동일한 규모의 고정상 기법에 비해 전체적인 성능과 효율이 다소 떨어지고, 순환하는 촉매를 마모시켜 하류의 고정상을 폐색시킬 수 있으며, 무엇보다도 중질 원료를 사용할 때 사용 중인 조작 조건 하에서 코우킹 위험이 있어, 촉매 응집물이 형성될 가능성이 무시할 수 있는 수준을 초과한다는 점이며, 이는 문제 발생 시에 더욱 그러하다. 그러한 촉매 응집체는 촉매가 반응기 또는 사용 중인 촉매 취출 라인 내부에서 순환하는 것을 방해하며, 마침내는 반응기와 촉매 취출 라인을 세척하도록 유닛을 정지하게 만든다.Disadvantages of such mobile phase techniques are that their overall performance and efficiency are somewhat lower than those of fixed-size techniques of the same scale, which can cause wear of the circulating catalyst to occlude downstream stationary phases and, above all, under the operating conditions in use when using heavy raw materials. There is a risk of coking, which means that the probability of catalyst agglomerations forming is beyond negligible levels, even more so in case of problems. Such catalyst agglomerates prevent the catalyst from circulating inside the reactor or the catalyst take-off line in use and eventually cause the unit to shut down to clean the reactor and the catalyst take-off line.

허용 가능한 수준의 사용률을 유지하면서 뛰어난 성능을 보유하기 위해서, 바람직하게는 고정상 반응기인 가드 반응기(guard reactor)(공간 속도 HSV = 2 내지 4)를 HDM 반응기 앞에 추가하는 것이 고려되었다(US-A-4 118 310 및 US-A-3 968 026). 통상적으로, 이 가드 반응기는 특히 격리 밸브를 사용함으로써 단락될 수 있다. 그러면 주반응기가 폐색으로부터 일시적으로 보호된다. 가드 반응기가 폐색되면 단락되지만, 그렇게 되면 후속 주반응기가 폐색될 수 있으며, 결과적으로 유닛이 정지하게 된다. 또한, 가드 반응기는 크기가 작아 원료의 고도의 탈금속에는 불충분하므로, 금속이 풍부한 원료(예를 들면, 100 ppm 이상)의 경우에 주 HDM 반응기를 금속 퇴적으로부터 보호하지 못한다. 따라서, 이들 반응기는 활성이 소실되는 빈도가 가속되어 유닛이 너무 자주 정지하게 되므로, 사용률이 여전히 불충분하다.In order to maintain excellent performance while maintaining acceptable levels of utilization, it has been considered to add a guard reactor (space velocity HSV = 2 to 4), which is preferably a fixed bed reactor, before the HDM reactor (US-A- 4 118 310 and US-A-3 968 026). Typically, this guard reactor can be shorted, in particular by using an isolation valve. The main reactor is then temporarily protected from occlusion. If the guard reactor is closed, it will be shorted, but then the main reactor may be blocked, resulting in the unit shutting down. In addition, the guard reactors are small in size and insufficient for the high demetalization of the raw materials, and thus do not protect the main HDM reactors from metal deposition in the case of metal-rich raw materials (eg, 100 ppm or more). Thus, these reactors still have insufficient utilization because the frequency of loss of activity is accelerated, causing the unit to shut down too frequently.

FR-B1-2 681 871에는, 금속 함량이 높은(1 내지 1500 ppm이지만, 주로 100 내지 1000 ppm이며, 바람직하게는 150 내지 350 ppm) 원료의 처리에 있어서, 양호한 고정상 성능과 높은 사용률이 조합된 시스템이 개시되어 있다. 이 시스템에서는 수소화 처리 공정이 적어도 2 단계로 실시되어, 황함유 불순물과 금속 불순물을함유하는 탄화수소 중질 분류를 수소화 처리한다. 제1 수소화 탈금속 섹션에서는 탄화수소 원료 및 수소가 수소화 탈금속 조건 하에서 수소화 탈금속 촉매를 통과하고, 이어서 제2 단계에서는 제1 섹션으로부터의 유출물이 수소화 탈황 조건 하에서 수소화 탈황 촉매를 통과한다. 이 공정에서, 제1 수소화 탈금속 섹션은, 고정상을 구비하는 것이 바람직한 하나 이상의 수소화 탈금속 구역을 포함하며, 이 수소화 탈금속 구역 앞에는, 마찬가지로 고정상을 구비하는 것이 바람직한 적어도 2개의 수소화 탈금속 가드 구역이 위치하고, 이들 수소화 탈금속 가드 구역은 이하와 같이 정의되는 b) 단계 및 c) 단계의 연속적인 반복으로 이루어지는 주기적인 사용을 위해 직렬로 배치되어 있다.FR-B1-2 681 871 has a combination of good stationary phase performance and high utilization in the treatment of raw materials with a high metal content (1-1500 ppm but mainly 100-1000 ppm, preferably 150-350 ppm). System is disclosed. In this system, the hydrotreatment process is carried out in at least two stages to hydrogenate hydrocarbon heavy fractions containing sulfur-containing impurities and metal impurities. In the first hydrodesulfurization section the hydrocarbon feedstock and hydrogen pass through the hydrodesulfurization catalyst under hydrodesulfurization conditions, and in the second stage the effluent from the first section passes through the hydrodesulfurization catalyst under hydrodesulfurization conditions. In this process, the first hydrodemetallization section comprises at least one hydrodemetallization zone, preferably having a stationary phase, and in front of this hydrodemetallurgical zone, at least two hydrodemetallurgical guard zones which likewise have a stationary phase. Located and these hydrodemetallization guard zones are arranged in series for periodic use, consisting of successive repetitions of steps b) and c) defined as follows.

a) 가드 구역 중 하나의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 가드 구역이 함께 사용되는 단계.a) the guard zone is used together for a period of time less than the active dissipation time and / or occlusion time of one of the guard zones.

b) 활성 소실 및/또는 폐색 가드 구역이 단락되고, 그 가드 구역에 수용되어 있는 촉매가 재생 및/또는 새로운 촉매로 교체되는 단계.b) the loss of activity and / or occlusion guard zone is short-circuited and the catalyst contained in the guard zone is regenerated and / or replaced with a new catalyst.

c) 모든 가드 구역이 함께 사용되는 단계로서, 선행 단계에서 촉매가 재생된 가드 구역이 재연결되며, 가드 구역 중 하나의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 실행되는 것인 단계.c) a step in which all guard zones are used together, wherein the guard zone in which the catalyst has been regenerated in the preceding step is reconnected and is run for a period of time less than the activity loss time and / or occlusion time of one of the guard zones.

이 공정은 주 HDM 및 HDS 반응기에 대한 사이클 기간이 일반적으로 적어도 11개월이고, 정제 및 전환 성능이 우수하며, 생성물의 안정성을 유지시킨다. 전체적인 탈황은 90% 정도이고, 전체적인 탈금속은 95% 정도이다.This process typically has a cycle period of at least 11 months for the main HDM and HDS reactors, good purification and conversion performance, and maintains product stability. The overall desulfurization is about 90% and the overall demetallization is about 95%.

이 기술의 단점은, 약 90%를 초과하는 전체 탈황 성능 및/또는 약 95%를 초과하는 전체 탈금속 성능을 얻기 힘들다는 점과, 성능 수준과 관계없이 11개월을 초과하는 사이클 시간을 얻기 힘들다는 점이다. 놀랍게도, 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션의 하나 이상의 반응기를 단락시키면, 각 단계 동안 촉매의 활성 유지 및/또는 사이클 시간 개선이 가능하다는 것이 발견되었다.The disadvantages of this technique are that it is difficult to achieve total desulfurization performance of greater than about 90% and / or total demetallization performance of greater than about 95%, and cycle times of more than 11 months, regardless of performance levels. Is the point. Surprisingly, it has been found that shorting one or more reactors of the hydrodesulfurization section and / or hydrodesulfurization section allows for maintaining the activity of the catalyst and / or improving cycle time during each step.

본 발명은 특히 황함유 불순물과 금속 불순물(예컨대, 상압 잔류물, 감압 잔류물, 탈아스팔트유, 피치, 방향족 유분과 혼합된 아스팔트, 석탄 수소화물, 임의 계통의 중유, 특히 역청질 편암 또는 모래로부터 얻은 중유)을 함유하는 탄화수소 중질 분류의 정제 및 전환에 관한 것이다. 구체적으로, 본 발명은 액체 원료의 처리에 관한 것이다. 또한, 본 발명의 범위는 액체 원료 중에도 함유되어 있는 아스팔텐을 포함한다.The invention particularly relates to sulfur-containing impurities and metal impurities (e.g., atmospheric residues, reduced pressure residues, deasphalted oils, pitches, asphalt mixed with aromatics, coal hydrides, heavy oils of any type, in particular bituminous schist or sand). Purification and conversion of hydrocarbon heavy fractions containing heavy oils obtained). Specifically, the present invention relates to the treatment of liquid raw materials. In addition, the scope of the present invention includes asphaltenes also contained in the liquid raw material.

본 발명에 따라 처리될 수 있는 원료는, 적어도 0.5 중량ppm의 금속(니켈 및/또는 바나듐)과 적어도 0.5 중량%의 황을 보통 포함한다.Raw materials that can be treated according to the invention usually comprise at least 0.5 ppm by weight of metals (nickel and / or vanadium) and at least 0.5% by weight of sulfur.

그러한 원료를 접촉 수소화 처리하는 목적은 원료를 정제하려는 것으로, 다시 말하면 수소 대 탄소의 비율(H/C)을 증가시키면서 금속 성분, 황 성분 및 기타 불순물 성분을 크게 감소시키는 동시에, 원료를 경질 유분으로 어느 정도 변환하는 것이다. 이 과정에서 얻게 되는 여러 유출물들은 고품질 연료, 가스 오일 및 가솔린의 생산에 기초를 제공하거나, 잔류물 분해 또는 분해 감압 유분과 같이 그 밖의 유닛을 위한 원료의 역할을 할 수 있다.The purpose of catalytic hydrogenation of such raw materials is to purify the raw materials, that is, they significantly reduce metals, sulfur and other impurity components while increasing the ratio of hydrogen to carbon (H / C), while converting the raw materials to light oil. To some extent. The various effluents obtained in this process can provide the basis for the production of high quality fuels, gas oils and gasoline or can serve as raw materials for other units, such as residue cracking or cracking decompression fractions.

도 1은 본 발명을 간략히 예시한 도면이다.1 is a diagram briefly illustrating the present invention.

본 발명은 촉매의 활성 소실 및/또는 침전물 또는 코우크에 의한 폐색 시에 촉매를 재생 및/또는 새로운 촉매나 재생된 촉매로 교체하기 위하여 하나 이상의 반응기를 단락시킬 수 있는 가능성에 관계된다. 본 발명은 수소화 탈금속 섹션으로부터의 반응기와, 수소화 탈황 섹션으로부터의 반응기에 모두 관계된다.The present invention relates to the possibility of shorting one or more reactors in order to regenerate the catalyst and / or replace it with a new or regenerated catalyst upon loss of activity of the catalyst and / or blockage by precipitate or coke. The present invention relates both to reactors from hydrodesulfurization sections and to reactors from hydrodesulfurization sections.

본 발명에 따르면, 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션으로부터의 반응기는, 활성이 소실되었거나 폐색된 촉매상을 교체하기 위해, 예컨대 6개월마다 단락되며, 이 조작은 유닛의 사용률을 향상시킨다.According to the invention, the reactor from the hydrodemetallization section and / or hydrodesulfurization section is shorted, eg every 6 months, to replace the lost or occluded catalyst phase, and this operation improves the utilization of the unit.

본 발명에 따른 수소화 처리 공정에서는, 제1 수소화 탈금속 섹션에서 탄화수소 중질 분류를 수소화 처리한 후, 이 제1 수소화 탈금속 섹션으로부터의 유출물을 제2 수소화 탈황 섹션으로 유입시킨다. 수소화 탈금속 섹션 앞에는 적어도 하나의 가드 구역이 위치한다. 상기 수소화 처리 공정은,In the hydroprocessing process according to the invention, after hydrotreating the hydrocarbon heavy fractionation in the first hydrometallurgical section, the effluent from the first hydrometallurgical section is introduced into the second hydrodesulfurization section. At least one guard zone is located before the hydrodemetallization section. The hydrogenation treatment step,

a) 가드 구역을 사용하는 단계;a) using a guard zone;

b) 가드 구역을 단락시키고, 가드 구역에 수용되어 있는 촉매를 재생 및/또는 교체하는 단계;b) shorting the guard zone and regenerating and / or replacing the catalyst contained in the guard zone;

c) 촉매가 재생 및/또는 교체된 가드 구역을 재연결하는 단계; 그리고c) reconnecting the guard zone where the catalyst has been regenerated and / or replaced; And

d) 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션으로부터의 반응기 중 적어도 하나를 단락시킬 수 있고, 그 반응기에 수용되어 있는 촉매를 재생 및/또는 교체하는 단계d) shorting at least one of the reactors from the hydrodesulfurization section and / or the hydrodesulfurization section and regenerating and / or replacing the catalyst contained in the reactor

를 포함한다.It includes.

이하에도 요약되어 있는, 고정상의 성능을 개량하기 위한 한 가지 경로는 본 출원인의 FR-A-2 784 687에도 기재되어 있다. 그 개념은 본 발명에도 적용될 수 있다.One route for improving the performance of the stationary phase, also summarized below, is also described in Applicant's FR-A-2 784 687. The concept can also be applied to the present invention.

그러나, 반응기에서 큰 압력 강하를 초래할 수 있는 원료 및 전체 액체 유출물의 높은 점성과 관련된 어려움과, 종종 수소 압력이 다소 낮아지게 하여 수소화 탈금속 또는 수소화 탈황이 잘 이루어지지 않게 하는 재순환 압축기의 조작상 어려움이 있다. 또한, 얻게 되는 가스 오일 분류는, 황 성분이 현재 허용되는 규격보다 높기 때문에, 보통 직접 사용할 수 없다는 것으로 판명되었다.However, difficulties associated with high viscosities of the raw material and the entire liquid effluent, which can result in large pressure drops in the reactor, and operational difficulties in recycling compressors, which often lead to a somewhat low hydrogen pressure, which leads to poor hydrodemetallization or hydrodesulfurization. There is this. In addition, the gas oil fraction obtained has been found to be usually not directly usable since the sulfur component is higher than currently accepted specifications.

본 출원인의 프랑스 출원 FR-B1-2 681 871 및 FR-A-2 784 687에 개시된 바와 같은 공정의 성능을 개량할 필요가 있으며, 또 그렇게 할 수 있다. 구체적으로, 본 발명의 공정은 액체 유출물의 점도를 매우 크게 감소시켜, 반응기 내의 압력 강하를 상당히 감소시키고, 재순환 압축기가 더 잘 조작되게 하며, 수소 압력이 더 높아지게 할 수 있다. 그 결과, 전체적인 탈황이 증가하고 가스 오일 분류 중의 황 성분이 더 낮아져 현재 규격을 충족시키므로, 정유소의 가스 오일 풀(pool)에 직접 사용될 수 있다. 또한, 본 발명의 공정에서는 양호한 열전도로 인하여 예열로의 기능이 개량되어 예열로의 표면 온도가 더 낮기 때문에, 예열로의 사용 수명연장에 도움이 되고 유닛의 조작 비용 감소에 기여한다.There is a need to improve the performance of the process as disclosed in the applicant's French applications FR-B1-2 681 871 and FR-A-2 784 687 and can do so. In particular, the process of the present invention can greatly reduce the viscosity of the liquid effluent, significantly reducing the pressure drop in the reactor, allowing the recycle compressor to operate better, and to increase the hydrogen pressure. As a result, the overall desulfurization is increased and the sulfur content in the gas oil fractionation is lower to meet the current specifications, which can be used directly in the gas oil pool of refineries. In addition, in the process of the present invention, since the function of the preheating furnace is improved due to good thermal conductivity, and the surface temperature of the preheating furnace is lower, it helps to extend the service life of the preheating furnace and contribute to the reduction of the operating cost of the unit.

고정상 반응기 또는 비등상 반응기인 것이 바람직한 반응기의 높은 성능과, 금속 성분이 많은 원료(1 내지 1500 ppm이지만, 보통은 100 내지 1000 ppm이고, 바람직하게는 150 내지 350 ppm)을 처리하기 위한 높은 사용률을 조합한 본 발명의 공정은, 그 변형례 중 하나로서, 황함유 불순물과 금속 불순물을 함유하는 탄화수소 중질 분류를 적어도 2개의 섹션에서 수소화 처리하기 위한 공정으로서 정의될 수 있다. 이 공정에 따르면, 제1 수소화 탈금속 섹션에서 탄화수소 원료 및 수소가 수소화 탈금속 조건 하에서 수소화 탈금속 촉매를 통과하고, 이 제1 수소화 탈금속 섹션으로부터의 유출물이 수소화 탈황 조건 하의 후속 제2 섹션에서 수소화 탈황 촉매를 통과한다. 상기 제1 수소화 탈금속 섹션은, 고정상 구역 또는 비등상 구역인 것이 바람직한 하나 이상의 수소화 탈금속 구역을 포함하며, 상기 수소화 탈금속 구역의 앞에는, 마찬가지로 고정상 구역 또는 비등상 구역인 것이 바람직한 적어도 하나의, 또는 가능하게는 2개의 수소화 탈금속 가드 구역이 위치한다. 이들 수소화 탈금속 가드 구역은 이하에서 정의되는 b) 단계와 c) 단계의 연속적인 반복으로 이루어지는 사이클에 사용하기 위해 직렬로 배치된다. 상기 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션은, 고정상 또는 비등상 반응기인 것이 바람직한 하나 이상의 반응기로 구성되며, 이들 반응기는 이하에서 정의되는 d) 단계 이후에 개별적으로 또는 기타의 다른 방식으로 단락될 수 있다. 2개의 가드 구역이 사용되는 경우, 본 발명의 공정은,The high performance of the reactor, which is preferably a fixed bed reactor or a boiling phase reactor, and a high utilization rate for processing a raw material rich in metal (1 to 1500 ppm, but usually 100 to 1000 ppm, preferably 150 to 350 ppm) The combined process of the present invention, as one of its variants, may be defined as a process for hydrogenating hydrocarbon heavy fractions containing sulfur-containing impurities and metal impurities in at least two sections. According to this process, the hydrocarbon feedstock and hydrogen pass through a hydrodemetallurgical catalyst under hydrodemetallization conditions in a first hydrodemetallization section, and the effluent from the first hydrodemetallization section is subjected to a subsequent second section under hydrodesulfurization conditions. Pass the hydrodesulfurization catalyst at The first hydrodemetallization section comprises at least one hydrodemetallization zone, which is preferably a stationary bed or boiling phase zone, and at least one of which, in front of the hydrodemetallization zone, likewise is preferably a stationary bed or boiling phase zone, Or possibly two hydrogenated demetallization guard zones. These hydrodemetallization guard zones are arranged in series for use in a cycle consisting of successive repetitions of steps b) and c) defined below. The hydrodesulfurization section and / or hydrodesulfurization section consists of one or more reactors which are preferably stationary or boiling phase reactors, which may be shorted individually or in other ways after step d) as defined below. Can be. If two guard zones are used, the process of the present invention,

a) 가드 구역 중 하나의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 모든 가드 구역이 함께 사용되는 단계;a) all guard zones are used together for a period of time less than the active dissipation time and / or occlusion time of one of the guard zones;

b) 활성 소실 및/또는 폐색 가드 구역이 단락되고, 그 가드 구역에 수용되어 있는 촉매가 재생 및/또는 새로운 촉매나 재생된 촉매로 교체되는 단계;b) short-circuit activity and / or occlusion guard zone, and the catalyst contained in the guard zone is regenerated and / or replaced with new or regenerated catalyst;

c) 모든 가드 구역이 함께 사용되는 단계로서, 선행 단계에서 촉매가 재생 및/또는 교체된 가드 구역이 재연결되며, 가드 구역 중 하나의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 실행되는 것인 단계; 그리고c) a step in which all guard zones are used together, wherein the guard zone where the catalyst has been regenerated and / or replaced in the preceding step is reconnected, and is run for a period of time less than the active disappearance time and / or occlusion time of one of the guard zones. Phosphorus step; And

d) 촉매의 활성 소실 및/또는 폐색시 촉매의 재생 및/또는 새로운 촉매나 재생된 촉매로의 교체를 위한 사이클 동안, 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션으로부터의 반응기 중 적어도 하나를 단락시킬 수 있는 단계d) shorting at least one of the reactor from the hydrodemetallization section and / or hydrodesulfurization section during a cycle for the loss of activity and / or occlusion of the catalyst during regeneration and / or replacement of the catalyst with a new or regenerated catalyst. Steps

를 포함하는 수소화 처리 공정이다.It is a hydrogenation process process containing.

본 발명의 공정의 또 다른 변형례는, 황함유 불순물과 금속 불순물을 함유하는 탄화수소 중질 분류를 적어도 2개의 섹션에서 수소화 처리하기 위한 공정으로서, 제1 수소화 탈금속 섹션에서 탄화수소 원료 및 수소가 수소화 탈금속 조건 하에서 수소화 탈금속 촉매를 통과하며, 이 제1 단계로부터의 유출물은 수소화 탈황 조건 하의 후속 제2 섹션에서 수소화 탈황 촉매를 통과한다. 상기 제1 수소화 탈금속 섹션은 하나 이상의 수소화 탈금속 구역을 포함하고, 이 수소화 탈금속 구역의 앞에는 적어도 하나의 수소화 탈금속 가드 구역이 위치한다. 상기 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션은, 이하에서 정의되는 d) 구역 이후에 개별적으로 또는 기타 방식으로 단락될 수 있는 하나 이상의 반응기로 구성한다. 상기 수소화 처리 공정은,Another variant of the process of the present invention is a process for hydrotreating a hydrocarbon heavy fraction containing sulfur-containing impurities and metal impurities in at least two sections, wherein the hydrocarbon raw material and the hydrogen in the first hydrodemetallization section are hydrodegraded. Under metal conditions is passed through a hydrodesulfurization catalyst, and the effluent from this first step is passed through a hydrodesulfurization catalyst in a subsequent second section under hydrodesulfurization conditions. The first hydrodemetallization section includes one or more hydrodemetallization zones, and at least one hydrodemetallization guard zone is located in front of the hydrodemetallization zone. The hydrodesulfurization section and / or hydrodesulfurization section consists of one or more reactors which can be shorted individually or in other ways after zone d) defined below. The hydrogenation treatment step,

a) 가드 구역의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 가드 구역이 사용되는 단계;a) the guard zone is used for a period of time that is less than the time of active disappearance and / or occlusion of the guard zone;

b) 활성 소실 및/또는 폐색 가드 구역이 단락되고, 그 가드 구역에 수용되어 있는 촉매가 재생 및/또는 새로운 촉매나 재생된 촉매로 교체되는 단계;b) short-circuit activity and / or occlusion guard zone, and the catalyst contained in the guard zone is regenerated and / or replaced with new or regenerated catalyst;

c) 선행 단계에서 촉매가 재생 및/또는 교체된 가드 구역이 재연결되는 단계로서, 가드 구역 중 하나의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 실행되는 것인 단계; 그리고c) reattaching the guard zone in which the catalyst has been regenerated and / or replaced in a preceding step, wherein the run is carried out for a period of time less than the active disappearance time and / or the occlusion time of one of the guard zones; And

d) 촉매의 활성 소실 및/또는 폐색시 촉매의 재생 및/또는 새로운 촉매나 재생된 촉매로의 교체를 위한 사이클 동안, 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션으로부터의 반응기 중 적어도 하나를 단락시킬 수 있는 단계d) shorting at least one of the reactor from the hydrodemetallization section and / or hydrodesulfurization section during a cycle for the loss of activity and / or occlusion of the catalyst during regeneration and / or replacement of the catalyst with a new or regenerated catalyst. Steps

를 포함한다.It includes.

본 발명의 공정의 한 가지 변형례에서, 공정에 사용되는 원료는 황함유 불순물과 금속 불순물을 일반적으로 금속의 적어도 0.5 중량ppm 함유하는 탄화수소 중질 분류[예를 들면, 감압 증류에 의해 얻는 분류, 즉 감압 유분(VD)]이다.In one variant of the process of the invention, the raw materials used in the process are hydrocarbon heavy fractions containing sulfur content impurities and metal impurities generally at least 0.5 ppm by weight of the metal [eg, fractions obtained by vacuum distillation, ie Reduced pressure (VD)].

본 발명의 공정 중에는, 탄화수소 원료 중량의 약 0.5% 내지 80%에 해당하는 것이 일반적인 중간 유분이 작동 중인 제1 가드 구역으로 일정량 도입되는 것이 바람직하다.During the process of the present invention, it is preferred that an amount corresponding to about 0.5% to 80% of the weight of the hydrocarbon feedstock is introduced into the first guard zone in which the common intermediate fraction is operating.

도입되는 중간 유분의 양은 탄화수소 원료 중량의 약 1% 내지 약 50%에 해당하는 것이 더욱 바람직하고, 약 5% 내지 약 25%에 해당하는 것이 매우 바람직하다.The amount of intermediate fraction introduced is more preferably from about 1% to about 50% of the weight of the hydrocarbon feedstock, very preferably from about 5% to about 25%.

한 가지 구체적인 실시 형태에 있어서, 탄화수소 원료와 함께 도입되는 상압유분은 직류 가스 오일이다.In one specific embodiment, the atmospheric pressure introduced with the hydrocarbon raw material is a direct gas oil.

또 다른 실시 형태에서는, 수소화 탈황 단계로부터의 생성물이 상압 증류 구역으로 이송되며, 이 구역으로부터 상압 유분과 상압 잔류물이 회수되고, 상압 유분의 적어도 일부는 작동 중인 제1 가드 구역의 유입구로 재순환된다.In yet another embodiment, the product from the hydrodesulfurization step is sent to an atmospheric distillation zone from which atmospheric oil and atmospheric residues are recovered and at least a portion of the atmospheric oil is recycled to the inlet of the first guard zone in operation. .

한 가지 특별한 변형례에서는, 상압 유분으로부터의 가스 오일 분류의 적어도 일부가 재순환된다. 이 경우, 재순환되는 가스 오일 유분은, 최초 비등점이 약 140℃이고 최종 비등점이 약 400℃인 유분인 것이 보통이다. 이 유분은 통상적으로 150-370℃ 유분이거나 170-350℃ 유분이다.In one particular variant, at least a portion of the gas oil fraction from the atmospheric fraction is recycled. In this case, the gas oil fraction to be recycled is usually an oil having an initial boiling point of about 140 ° C and a final boiling point of about 400 ° C. This fraction is typically a 150-370 ° C. fraction or a 170-350 ° C. fraction.

본 발명의 공정의 또 다른 가능한 변형례에서는, HYVAHL 공정을 이용하여 작동하는 유닛으로부터의 가스 오일이 재순환될 수 있다. 또는, 최초 비등점이 일반적으로 약 140℃ 내지 약 220℃의 범위에 있고, 최종 비등점이 일반적으로 약 340℃ 내지 약 400℃의 범위에 있는, 보통 LCO(경사이클 오일)라고 부르는 접촉 분해 유닛으로부터의 경질 가스 오일이 재순환 될 수도 있다. 또한, 최초 비등점이 약 340℃ 내지 약 380℃의 범위에 있고, 최종 비등점이 일반적으로 약 350℃ 내지 약 550℃의 범위에 있는, 보통 HCO(고사이클 오일)라고 부르는, 접촉 분해로부터의 중질 가스 오일의 분류를 재순환시킬 수도 있다.In another possible variant of the process of the invention, the gas oil from the unit operating using the HYVAHL process can be recycled. Or from a catalytic cracking unit, commonly referred to as LCO (light cycle oil), where the initial boiling point is generally in the range of about 140 ° C to about 220 ° C and the final boiling point is generally in the range of about 340 ° C to about 400 ° C. Light gas oil may also be recycled. Also, heavy gas from catalytic cracking, commonly referred to as HCO (high cycle oil), where the initial boiling point is in the range of about 340 ° C to about 380 ° C, and the final boiling point is generally in the range of about 350 ° C to about 550 ° C. The oil fraction can also be recycled.

재순환되는 상압 유분 및/또는 가스 오일의 양은, 원료 중량의 약 1% 내지 50%이고, 바람직하게는 5% 내지 25%이며, 더욱 바람직하게는 약 10% 내지 20%이다.The amount of atmospheric oil and / or gas oil to be recycled is about 1% to 50% of the raw material weight, preferably 5% to 25%, and more preferably about 10% to 20%.

또 다른 변형례에서는, 상압 증류 구역으로부터의 상압 유분의 적어도 일부가 감압 증류 구역으로 이송되며, 이 감압 증류 구역으로부터 회수된 감압 유분의적어도 일부는 작동 중인 제1 가드 구역의 유입구로 재순환되고, 정유소 연료 풀로 이송될 수 있는 감압 잔류물도 상기 감압 증류 구역으로부터 회수된다.In another variant, at least a portion of the atmospheric fraction from the atmospheric distillation zone is transferred to the vacuum distillation zone and at least a portion of the vacuum fraction recovered from this vacuum distillation zone is recycled to the inlet of the first guard zone in operation and the refinery Decompression residues that can be transferred to the fuel pool are also recovered from the reduced pressure distillation zone.

또 다른 변형례에 있어서, 상압 유분 및/또는 감압 유분의 적어도 일부는, 유동상 접촉 분해 유닛인 것이 바람직한 접촉 분해 유닛으로 이송되며, 이 접촉 분해 유닛은, 예를 들면 본 출원인이 개발한 R2R 공정을 이용하는 유닛이다. 이 접촉 분해 유닛으로부터, 특히 LCO 분류 및 HCO 분류가 회수되며, 이들 분류 중 하나 또는 이들의 혼합물의 적어도 일부는, 본 발명의 수소화 처리 공정에 공급되는 새로운 원료에 첨가될 수 있다. 보통은 가스 오일 분류, 가솔린 분류 및 가스 분류도 회수된다. 이 가스 오일 분류의 적어도 일부는 작동 중인 제1 가드 구역의 유입구로 선택적으로 재순환될 수 있다.In another variant, at least a portion of the atmospheric and / or reduced pressure fraction is transferred to a catalytic cracking unit which is preferably a fluidized bed catalytic cracking unit, which is, for example, an R2R process developed by the applicant. It is a unit that uses. From this catalytic cracking unit, in particular LCO fractionation and HCO fractionation are recovered, and at least one of these fractions or mixtures thereof can be added to the fresh raw material fed to the hydroprocessing process of the invention. Usually, gas oil fractionation, gasoline fractionation and gas fractionation are also recovered. At least a portion of this gas oil fraction may optionally be recycled to the inlet of the first guard zone in operation.

접촉 분해 단계는, 분자량이 낮은 탄화수소 함유 생성물을 생산하기 위한 적절한 잔류물 분해 조건 하에서, 당업계에 알려져 있는 통상적인 방식으로 실시할 수 있다. 유동상 분해에 사용할 수 있는 조작 및 촉매에 대한 기재는, 예를 들면 US-A-4 695 370, EP-B-0 184 517, US-A-4 959 334, EP-B-0 323 297, US-A-4 965 232, US-A-5 120 691, US-A-5 344 544, US-A-5 449 496, EP-A-0 485 259, US-A-5 286 690, US-A-5 324 696 및 EP-A-0 699 224에서 발견할 수 있다(이들 문헌의 기재 내용을 본 명세서에 참고로 인용함).The catalytic cracking step can be carried out in a conventional manner known in the art, under appropriate residue cracking conditions to produce low molecular weight hydrocarbon containing products. Descriptions of operations and catalysts that can be used for fluid bed cracking are described, for example, in US-A-4 695 370, EP-B-0 184 517, US-A-4 959 334, EP-B-0 323 297, US-A-4 965 232, US-A-5 120 691, US-A-5 344 544, US-A-5 449 496, EP-A-0 485 259, US-A-5 286 690, US- A-5 324 696 and EP-A-0 699 224, the disclosures of which are incorporated herein by reference.

유동상 접촉 분해 반응기는 상승류 모드 또는 하강류 모드로 작동할 수 있다. 비록 본 발명의 바람직한 실시 형태는 아니지만, 이동상 반응기에서 접촉 분해를 실시할 수도 있다. 특히 바람직한 접촉 분해 촉매는, 알루미나, 실리카 또는실리카-알루미나와 같은 적절한 매트릭스와 혼합되는 것이 보통인, 적어도 하나의 제올라이트를 함유하는 촉매이다.The fluidized bed catalytic cracking reactor can be operated in either upflow mode or downflow mode. Although not a preferred embodiment of the present invention, catalytic cracking may be performed in a mobile phase reactor. Particularly preferred catalytic cracking catalysts are catalysts containing at least one zeolite, which are usually mixed with a suitable matrix such as alumina, silica or silica-alumina.

본 발명의 공정은 한 가지 특별한 변형례를 포함하는데, 이 공정에 따르면 c) 단계 동안 가드 구역이 모두 사용되고, b) 단계에서 촉매가 재생된 가드 구역이 재연결되어, 가드 구역의 연결이 b) 단계에서 단락되기 전과 동일해진다.The process of the present invention comprises one special variant, in which the guard zone is used up during step c) and the guard zone where the catalyst has been regenerated in step b) is reconnected so that the connection of the guard zone is b). Same as before the short in step.

본 발명의 공정은 본 발명의 바람직한 실시 형태를 구성하는 또 다른 변형례를 포함하는데, 이 변형례는,The process of the present invention includes another variant that constitutes a preferred embodiment of the present invention, which variant,

a) 처리된 원료의 전체 순환 방향을 기준으로 가장 상류에 있는 가드 구역의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 모든 가드 구역이 함께 사용되는 단계;a) all guard zones are used together for a period of less than or equal to the active disappearance time and / or occlusion time of the most upstream guard zone relative to the overall circulation direction of the treated raw material;

b) 선행 단계에서 가장 상류에 있었던 가드 구역의 바로 다음에 위치한 가드 구역으로 원료가 직접 칩입하고, 선행 단계에서 가장 상류에 있었던 가드 구역이 단락되며, 그 안에 수용되어 있던 촉매가 재생 및/또는 새로운 촉매나 재생된 촉매로 교체되는 단계;b) the raw material is directly introduced into the guard zone immediately following the guard zone which was the most upstream in the preceding stage, the guard zone which was the most upstream in the preceding stage is shorted, and the catalyst contained therein is regenerated and / or fresh Replacing with catalyst or regenerated catalyst;

c) 모든 가드 구역이 함께 사용되며, 선행 단계에서 촉매가 재생 및/또는 교체된 가드 구역이 재연결되어 가드 구역 세트의 하류에 위치하게 되는 단계로서, 처리된 원료의 전체 순환 방향을 기준으로 이 단계 동안 가장 상류에 위치하는 가드 구역의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 계속되는 것인 단계; 그리고c) all guard zones are used together, in which the guard zone where the catalyst has been regenerated and / or replaced in the preceding step is reconnected and positioned downstream of the set of guard zones, which is based on the overall circulation direction of the treated raw material. Continuing for a period of time that is less than the time of active disappearance and / or occlusion of the guard zone located most upstream during the step; And

d) 촉매의 활성 소실 및/또는 폐색시 촉매의 재생 및/또는 새로운 촉매나 재생된 촉매로의 교체를 위한 사이클 동안, 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션으로부터의 반응기 중 적어도 하나를 단락시킬 수 있는 단계d) shorting at least one of the reactor from the hydrodemetallization section and / or hydrodesulfurization section during a cycle for the loss of activity and / or occlusion of the catalyst during regeneration and / or replacement of the catalyst with a new or regenerated catalyst. Steps

를 포함한다.It includes.

본 발명의 공정의 바람직한 실시 형태에서, 원료의 전체 순환 방향을 기준으로 가장 상류에 있는 가드 구역은 금속, 코우크, 침전물, 그리고 다양한 그 밖의 불순물로 점차 채워진다. 이 가드 구역은 필요할 때에 분리할 수 있지만, 보통은 수용되어 있는 촉매가 금속 및 여러 불순물로 거의 포화되었을 때 분리한다.In a preferred embodiment of the process of the invention, the guard zone most upstream relative to the overall circulation direction of the raw material is gradually filled with metals, coke, precipitates, and various other impurities. This guard zone can be separated when needed, but usually when the contained catalyst is nearly saturated with metals and various impurities.

한 가지 바람직한 실시 형태에서는, 작동 도중에, 즉 유닛의 작동을 중단하지 않고 이들 가드 구역을 교환할 수 있게 하는 특별한 조정 섹션이 사용된다. 먼저, 적정 압력(1 내지 5 MPa, 그러나 바람직하게는 1.5 내지 2.5 MPa) 하에서 작동하는 시스템이, 사용된 촉매를 배출하기에 앞서, 분리된 가드 반응기에 세척, 탈거, 냉각의 조작을 행한다. 그리고 나서, 새로운 촉매로 채운 후 가열 및 황화 처리한다. 그 후, 적절한 기술을 이용하는 추가의 가압/감압 및 탭/밸브 시스템이, 유닛을 정지시키지 않고, 즉 사용률에 영향을 주지 않고 이들 가드 구역을 효과적으로 교환하는데, 이는 사용된 촉매의 세척, 탈거, 배출, 새로운 촉매의 재충전, 가열 및 황화 조작이 모두 분리된 반응기 또는 가드 구역에서 이루어지기 때문이다.In one preferred embodiment, a special adjustment section is used during operation, i.e. it is possible to exchange these guard zones without interrupting the operation of the unit. First, a system operating under an appropriate pressure (1-5 MPa, but preferably 1.5-2.5 MPa) is subjected to washing, stripping and cooling operations in a separate guard reactor prior to draining the used catalyst. It is then charged with fresh catalyst and then heated and sulfided. Subsequently, additional pressurization / depressurization and tap / valve systems using appropriate technology effectively exchange these guard zones without stopping the unit, i.e. without affecting the utilization rate, which cleans, strips and discharges the used catalyst. This is because the recharging, heating and sulfiding operations of the new catalyst are all carried out in separate reactors or guard zones.

수소화 처리 유닛의 반응기는 보통 다음과 같은 시간당 공간 속도(HSV)로 작동한다.The reactor of the hydroprocessing unit usually operates at the following hourly space velocity (HSV).

HSV(h-1)HSV (h -1 ) HSV(h-1)HSV (h -1 ) 넓은 범위Wide range 바람직한 범위Desirable range 총 HDM 단계 (가드 반응기 포함)Total HDM Stage (with Guard Reactor) 0.2-4.00.2-4.0 0.3-0.40.3-0.4 총 HDS 단계Total HDS Stage 0.2-4.00.2-4.0 0.25-0.40.25-0.4 전체(HDM+HDS)Full (HDM + HDS) 0.10-2.00.10-2.0 0.12-0.300.12-0.30

바람직한 모드는, 사용 중인 가드 반응기 또는 구역을 전체적인 HSV가 약 0.1 내지 4.0 h-1이 되도록, 보통은 약 0.2 내지 1.0 h-1이 되도록 조작함으로써 이루어지며, 이는 더 작은 가드 반응기를 사용하는 그 밖의 공정(특히, US-A-3 968 026에 개시된 것과 같이 작은 가드 반응기를 사용하는 공정)과는 다르다. 각각의 작동 중인 가드 반응기의 HSV값은 약 0.5 내지 8 h-1인 것이 바람직하며, 보통은 약 1 내지 2 h-1이다. 가드 반응기들의 전체적인 HSV와 각 반응기의 HSV는, 반응 온도를 제어하면서(발열성을 제한함) 수소화 탈금속(HDM)을 최대화하도록 선택된다.Preferred modes are achieved by manipulating the guard reactor or zone in use in such a way that the overall HSV is between about 0.1 and 4.0 h −1 , usually between about 0.2 and 1.0 h −1 , which is achieved using other guard reactors. Different from the process (particularly the process using a small guard reactor as disclosed in US-A-3 968 026). The HSV value of each running guard reactor is preferably about 0.5 to 8 h −1 , usually about 1 to 2 h −1 . The overall HSV of the guard reactors and the HSV of each reactor are selected to maximize the hydrodemetallization (HDM) while controlling the reaction temperature (limiting pyrogenicity).

한 가지 유리한 실시 형태에 따르면, 유닛은 조정 섹션(도면에 도시하지 않았음)을 포함하며, 이 조정 섹션에는 반응 섹션과는 독립적으로 작동하는 적절한 분리 수단, 순환 수단, 가열 수단 및 냉각 수단이 마련되어 있다. 따라서, 라인 및 밸브의 도움을 받아, 가드 반응기에 수용되는 새로운 촉매나 재생된 촉매를 준비하는 조작을, 단락된 반응기가 연결되기 직전에 유닛이 작동 중인 상태에서 실행할 수 있다. 다시 말하면, 교환 또는 단락 중에 가드 반응기를 예열하고, 그 안에 수용되어 있는 촉매를 황화 처리하며, 가드 반응기를 필요한 압력 및 온도 조건으로 유도한다. 적절한 밸브 세트를 사용하여 가드 반응기의 교환 또는 단락 조작을 실시했을 때에는, 이 섹션으로, 가드 반응기에 수용되어 있는 사용된 촉매를 조절하는 조작을 반응 섹션이 분리된 직후에 실행할 수도 있다. 즉, 필요한 조건 하에서 사용된 촉매를 세척하고 탈거한 후 냉각하고, 그 사용된 촉매를 배출하는 조작을 실시한 후 새로운 촉매나 재생된 촉매로 교체한다.According to one advantageous embodiment, the unit comprises an adjusting section (not shown in the drawing), which is provided with suitable separating means, circulation means, heating means and cooling means which operate independently of the reaction section. have. Thus, with the help of lines and valves, the operation of preparing new or regenerated catalyst contained in the guard reactor can be carried out with the unit in operation just before the shorted reactor is connected. In other words, the guard reactor is preheated during the exchange or short circuit, the catalyst contained therein is sulfided and the guard reactor is brought to the required pressure and temperature conditions. When an exchange or short-circuit operation of the guard reactor is carried out using an appropriate valve set, the operation of adjusting the used catalyst contained in the guard reactor may be performed immediately after the reaction section is separated. That is, under the necessary conditions, the used catalyst is washed, removed, cooled, and the operation of discharging the used catalyst is replaced with a new catalyst or a regenerated catalyst.

또한, 이들 촉매는 본 출원인의 특허 EP-B-0 098 764와, 국내 등록 번호 97/07149의 프랑스 특허 출원에 개시되어 있는 촉매인 것이 바람직하다. 이들 촉매는 담체를 포함하고, 또한 주기율표에서 V족, Ⅵ족 및 Ⅷ족 중 적어도 하나의 족에 속하는 적어도 1종의 금속 또는 금속 화합물을 0.1 중량% 내지 30 중량%(산화 금속으로서 표현한 값임) 함유한다. 상기 촉매는 복수 개의 침상 소판으로 각각 형성된 복수 개의 병치된 응집물 형태이며, 각 응집물의 소판들은 전체적으로 서로에 대해, 그리고 응집체의 중심에 대해 반경 방향으로 배향되어 있다.Further, these catalysts are preferably catalysts disclosed in the applicant's patent EP-B-0 098 764 and the French patent application No. 97/07149. These catalysts comprise a carrier and contain from 0.1% to 30% by weight (expressed as metal oxide) of at least one metal or metal compound belonging to at least one of Groups V, VI and VIII in the periodic table. do. The catalyst is in the form of a plurality of juxtaposed aggregates each formed from a plurality of needle platelets, the platelets of each aggregate being oriented radially with respect to each other and to the center of the aggregate.

더욱 구체적으로, 본 특허 출원은 중질 석유 또는 석유 분류를, 수송이 보다 용이하거나 통상적인 정제 공정을 이용하여 처리되는 경질 분류로 전환하기 위한 처리에 관계된다. 석탄 수소화물로부터의 오일도 처리될 수 있다. 이 경우에는 비등상 반응기를 사용하는 것이 바람직하다.More specifically, this patent application relates to a process for converting heavy petroleum or petroleum fractionation into light fractionation which is easier to transport or is processed using conventional refining processes. Oil from coal hydrides can also be treated. In this case, it is preferable to use a boiling phase reactor.

더욱 구체적으로 말하면, 본 발명은 금속 및 황이 풍부하고 정규 비등점이 520℃보다 높은 성분의 함량이 50%를 초과하여 수송이 불가능한 점성 중유를, 금속 및 아스팔텐 함량이 낮고 정규 비등점이 520℃보다 높은 성분의 함량이, 예를 들면 20 중량% 미만으로 감소되어 수송이 용이한 안정적인 탄화수소 함유 생성물로 변환하는 과제를 해결한다.More specifically, the present invention relates to a viscous heavy oil which is rich in metals and sulfur and whose content is higher than the regular boiling point above 520 ° C., which cannot be transported due to the content of more than 50%, and whose metal and asphaltene content is lower than the normal boiling point higher than 520 ° C. The content of the components is reduced to, for example, less than 20% by weight to solve the problem of converting into stable hydrocarbon-containing products that are easy to transport.

한 가지 특정 실시 형태에서는, 원료를 가드 반응기로 보내기 전에 먼저 수소와 혼합한 후 하이드로비스브레이킹(hydrovisbraking) 조건을 인가한다.In one particular embodiment, the raw materials are first mixed with hydrogen and then subjected to hydrovisbraking conditions before being sent to the guard reactor.

또 다른 실시 형태에서는, 예컨대 탄화수소 함유 용매 또는 용매 혼합물과 같은 용매를 사용하여, 상압 잔류물 또는 감압 잔류물에 탈아스팔트 처리를 실시할 수 있다. 가장 자주 사용되는 탄화수소 함유 용매는, 탄소 원자를 3개 내지 7개 포함하는 파라핀계 탄화수소, 올레핀계 탄화수소 또는 지방족 고리 탄화수소(또는 탄화수소 혼합물)이다. 이 처리는, AFNOR NF T 60115 기준에 따라 헵탄에 의해 침전되는 아스팔텐을 0.05 중량% 미만 함유하는 탈아스팔트 생성물을 생산할 수 있는 조건 하에서 실시하는 것이 일반적이다. 이 탈아스팔트 처리는 본 출원인의 특허 US-A-4 715 946에 기재되어 있는 절차를 이용하여 행할 수 있다. 용매와 원료의 체적비는 보통 약 3:1 내지 약 4:1이며, 전체적인 탈아스팔트 조작에 포함되어 있는 기초적인 물리 화학적 조작(혼합-침전, 아스팔텐상의 경사 분리, 아스팔텐상의 세척-침전)은 보통 개별적으로 실시된다. 그 후, 탈아스팔트 생성물은 작동 중인 제1 가드 구역의 유입구로 적어도 부분적으로 재순환되는 것이 보통이다.In another embodiment, deasphalting can be carried out on an atmospheric residue or a reduced pressure residue, for example using a solvent such as a hydrocarbon containing solvent or a solvent mixture. The most frequently used hydrocarbon-containing solvents are paraffinic hydrocarbons, olefinic hydrocarbons or aliphatic ring hydrocarbons (or hydrocarbon mixtures) containing 3 to 7 carbon atoms. This treatment is generally carried out under conditions capable of producing a deasphalted product containing less than 0.05% by weight of asphaltene precipitated by heptane according to the AFNOR NF T 60115 standard. This deasphalting treatment can be carried out using the procedure described in the applicant's patent US-A-4 715 946. The volume ratio of solvent to raw material is usually from about 3: 1 to about 4: 1, and the basic physicochemical operations (mixed-precipitation, gradient separation on asphaltenes, washing-precipitation on asphaltenes) involved in the overall deasphalting operation Usually done individually. The deasphalted product is then typically recycled at least partially to the inlet of the first guard zone in operation.

보통, 아스팔텐상의 세척에 사용되는 용매는 침전에 사용되는 것과 동일하다.Usually, the solvent used for washing on asphaltenes is the same as that used for precipitation.

탈아스팔트 대상인 원료와 탈아스팔트 용매 간의 혼합은, 혼합물의 온도를 직절한 침전 및 양호한 경사 분리의 실시에 필요한 값으로 조정하는 교환기의 상류에서 이루어지는 것이 보통이다.Mixing between the raw material to be deasphalted and the deasphalted solvent is usually performed upstream of the exchanger which adjusts the temperature of the mixture to the values necessary for the direct precipitation and good decantation.

원료와 용매의 혼합물은 교환기의 표면측이 아니라 관 내부로 이동하는 것이 바람직하다.It is preferable that the mixture of the raw material and the solvent move inside the tube and not on the surface side of the exchanger.

원료와 용매의 혼합물이 혼합 침전 구역에 머무르는 시간은 일반적으로 약 5초 내지 약 5분이며, 바람직하게는 약 20초 내지 약 2분이다.The time for the mixture of raw material and solvent to stay in the mixed precipitation zone is generally from about 5 seconds to about 5 minutes, preferably from about 20 seconds to about 2 minutes.

상기 혼합물이 경사 분리 구역에 머무르는 시간은 보통 약 4분 내지 약 20분이다.The time for the mixture to stay in the gradient separation zone is usually from about 4 minutes to about 20 minutes.

상기 혼합물이 세척 구역에 머무르는 시간은 약 4분 내지 20분이다.The time for the mixture to stay in the washing zone is about 4 to 20 minutes.

경사 분리 구역 및 세척 구역에서의 혼합물의 상승 속도는 보통 약 1 cm/s 미만이며, 바람직하게는 약 0.5 cm/s 미만이다.The rate of rise of the mixture in the gradient separation zone and the washing zone is usually less than about 1 cm / s, preferably less than about 0.5 cm / s.

세척 구역에 적용되는 온도는 경사 분리 구역에 적용되는 온도보다 낮은 것이 보통이다. 이들 두 구역 사이의 온도차는 보통 약 5℃ 내지 약 50℃이다.The temperature applied to the washing zone is usually lower than the temperature applied to the gradient separation zone. The temperature difference between these two zones is usually about 5 ° C to about 50 ° C.

세척 구역으로부터의 혼합물은 보통 경사 분리기로 재순환되며, 유리하게는 경사 분리 구역의 입구에 위치한 교환기의 상류로 재순환된다.The mixture from the washing zone is usually recycled to the decanter separator, advantageously to the upstream of the exchanger located at the inlet of the decanter separator zone.

세척 구역에서 권장되는 용매와 아스팔텐의 비율은 약 0.5:1 내지 약 8:1이며, 바람직하게는 약 1:1 내지 약 5:1이다.The recommended ratio of solvent to asphaltene in the washing zone is from about 0.5: 1 to about 8: 1, preferably from about 1: 1 to about 5: 1.

탈아스팔트 처리는 2 단계로 이루어질 수 있으며, 각 단계는 침전상, 경사 분리상 및 세척상의 3개 기초상을 포함한다. 이 정밀한 경우에서, 제1 단계의 각 상에서 권장되는 온도는, 제2 단계의 대응하는 각 상의 온도보다 평균적으로 약 10℃ 내지 약 40℃ 더 낮은 것이 바람직하다.The deasphalting treatment can consist of two stages, each stage comprising three basic phases: a settling phase, a gradient separation phase and a washing phase. In this precise case, the temperature recommended for each phase of the first step is preferably about 10 ° C. to about 40 ° C. lower than the temperature of the corresponding each phase of the second step.

사용되는 용매는 C1 내지 C6 알코올 또는 페놀 또는 글리콜 타입의 용매일 수도 있다. 그러나, 탄소 원자를 3개 내지 6개 포함하는 파라핀계 용매 및/또는 올레핀계 용매를 사용하는 것이 매우 유리하다.The solvent used may be a C1 to C6 alcohol or a phenol or glycol type solvent. However, it is very advantageous to use paraffinic solvents and / or olefinic solvents containing 3 to 6 carbon atoms.

요약하면, 한 가지 변형례에서, 본 발명의 공정은 황함유 불순물과 금속 불순물을 함유하는 탄화수소 중질 분류를 적어도 2개의 섹션에서 수소화 처리하기 위한 공정으로서, 이 공정에 따르면, 제1 수소화 탈금속 섹션에서 탄화수소 원료 및 수소가 수소화 탈금속 조건 하에서 수소화 탈금속 촉매를 통과하고, 이 제1 단계부터의 유출물이 수소화 탈황 조건 하의 후속 제2 섹션에서 수소화 탈황 촉매를 통과한다. 상기 제1 수소화 탈금속 섹션은 하나 이상의 수소화 탈금속 구역을 포함하며, 이 수소화 탈금속 구역의 앞에는 적어도 2개의 수소화 탈금속 가드 구역이 위치한다. 이들 수소화 탈금속 가드 구역은 이하에서 정의되는 b) 단계와 c) 단계의 연속적인 반복으로 이루어지는 사이클에 사용하기 위해 직렬로 배치된다. 상기 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션은 바람직한 하나 이상의 반응기로 구성되며, 이들 반응기는 이하에서 정의되는 d) 단계 이후에 개별적으로 또는 기타 방식으로 단락될 수 있다. 상기 수소화 처리 공정은,In summary, in one variant, the process of the present invention is a process for hydrotreating a hydrocarbon heavy fraction containing sulfur-containing impurities and metal impurities in at least two sections, according to the process, a first hydrodehydration section The hydrocarbon feedstock and hydrogen pass through a hydrodesulfurization catalyst under hydrodesulfurization conditions, and the effluent from this first step passes through a hydrodesulfurization catalyst in a subsequent second section under hydrodesulfurization conditions. The first hydrodemetallization section includes one or more hydrodemetallization zones, in front of which are at least two hydrodemetallization guard zones. These hydrodemetallization guard zones are arranged in series for use in a cycle consisting of successive repetitions of steps b) and c) defined below. The hydrodesulfurization section and / or hydrodesulfurization section consists of one or more preferred reactors, which may be shorted individually or in other ways after step d) as defined below. The hydrogenation treatment step,

a) 가드 구역 중 하나의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 모든 가드 구역이 함께 사용되는 단계;a) all guard zones are used together for a period of time less than the active dissipation time and / or occlusion time of one of the guard zones;

b) 활성 소실 및/또는 폐색 가드 구역이 단락되고, 그 가드 구역에 수용되어 있는 촉매가 재생 및/또는 새로운 촉매나 재생된 촉매로 교체되는 단계;b) short-circuit activity and / or occlusion guard zone, and the catalyst contained in the guard zone is regenerated and / or replaced with new or regenerated catalyst;

c) 모든 가드 구역이 함께 사용되는 단계로서, 선행 단계에서 촉매가 재생 및/또는 교체된 가드 구역이 재연결되며, 가드 구역 중 하나의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 실행되는 것인 단계; 그리고c) a step in which all guard zones are used together, wherein the guard zone where the catalyst has been regenerated and / or replaced in the preceding step is reconnected, and is run for a period of time less than the active disappearance time and / or occlusion time of one of the guard zones Phosphorus step; And

d) 촉매의 활성 소실 및/또는 폐색시 촉매의 재생 및/또는 새로운 촉매나 재생된 촉매로의 교체를 위한 사이클 동안, 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션으로부터의 반응기 중 적어도 하나를 단락시킬 수 있는 단계d) shorting at least one of the reactor from the hydrodemetallization section and / or hydrodesulfurization section during a cycle for the loss of activity and / or occlusion of the catalyst during regeneration and / or replacement of the catalyst with a new or regenerated catalyst. Steps

를 포함한다.It includes.

또 다른 변형례에서, 본 발명의 공정은 황함유 불순물과 금속 불순물을 함유하는 탄화수소 중질 분류를 적어도 2개의 섹션에서 수소화 처리하기 위한 공정으로서, 제1 수소화 탈금속 섹션에서 탄화수소 원료 및 수소가 수소화 탈금속 조건 하에서 수소화 탈금속 촉매를 통과하고, 이 제1 단계로부터의 유출물이 수소화 탈황 조건 하의 후속 제2 섹션에서 수소화 탈황 촉매를 통과한다. 상기 제1 수소화 탈금속 섹션은 하나 이상의 수소화 탈금속 구역을 포함하며, 이 수소화 탈금속 구역의 앞에는 적어도 하나의 수소화 탈금속 가드 구역이 위치한다. 상기 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션은 하나 이상의 반응기로 구성되며, 이들 반응기는 이하에서 정의되는 d) 단계 이후에 개별적으로 또는 기타 방식으로 단락될 수 있다. 상기 수소화 처리 공정은,In another variant, the process of the present invention is a process for hydroprocessing a hydrocarbon heavy fraction containing sulfur-containing impurities and metal impurities in at least two sections, wherein the hydrocarbon feedstock and the hydrogen in the first hydrodemetallization section are hydrodegraded. Under metal conditions is passed through a hydrodesulfurization catalyst, and the effluent from this first step is passed through a hydrodesulfurization catalyst in a subsequent second section under hydrodesulfurization conditions. The first hydrodemetallization section includes one or more hydrodemetallization zones, and at least one hydrodemetallization guard zone is located in front of the hydrodemetallization zone. The hydrodesulfurization section and / or hydrodesulfurization section consists of one or more reactors, which may be shorted individually or in other ways after step d) as defined below. The hydrogenation treatment step,

a) 가드 구역의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 가드 구역이 사용되는 단계;a) the guard zone is used for a period of time that is less than the time of active disappearance and / or occlusion of the guard zone;

b) 활성 소실 및/또는 폐색 가드 구역이 단락되고, 그 가드 구역에 수용되어 있는 촉매가 재생 및/또는 새로운 촉매나 재생된 촉매로 교체되는 단계;b) short-circuit activity and / or occlusion guard zone, and the catalyst contained in the guard zone is regenerated and / or replaced with new or regenerated catalyst;

c) 선행 단계에서 촉매가 재생 및/또는 교체된 가드 구역이 재연결되며, 상기 단계는 가드 구역 중 하나의 활성 소실 시간 및/또는 폐색 시간 이하의기간 동안 실행되는 단계; 그리고c) the guard zone in which the catalyst has been regenerated and / or replaced in a preceding step is reconnected, said step being carried out for a period of time less than the time of active disappearance and / or occlusion of one of the guard zones; And

d) 촉매의 활성 소실 및/또는 폐색시 촉매의 재생 및/또는 새로운 촉매나 재생된 촉매로의 교체를 위한 사이클 동안, 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션으로부터의 반응기 중 적어도 하나를 단락시킬 수 있는 단계d) shorting at least one of the reactor from the hydrodemetallization section and / or hydrodesulfurization section during a cycle for the loss of activity and / or occlusion of the catalyst during regeneration and / or replacement of the catalyst with a new or regenerated catalyst. Steps

를 포함한다.It includes.

또 다른 변형례에서, 본 발명의 공정은 황함유 불순물과 금속 불순물을 함유하는 탄화수소 중질 분류를 적어도 2개의 섹션에서 수소화 처리하기 위한 공정으로서, 제1 수소화 탈금속 섹션에서 탄화수소 원료 및 수소가 수소화 탈금속 조건 하에서 수소화 탈금속 촉매를 통과하고, 이 제1 수소화 탈금속 섹션으로부터의 유출물이 수소화 탈황 조건 하의 후속 제2 섹션에서 수소화 탈황 촉매를 통과한다. 상기 제1 수소화 탈금속 섹션은 하나 이상의 수소화 탈금속 구역을 포함하며, 이 수소화 탈금속 구역의 앞에는, 고정상 구역 또는 비등상 구역인 것이 바람직한 적어도 2개의 수소화 탈금속 가드 구역이 위치한다. 이들 수소화 탈금속 가드 구역은 이하에서 정의되는 b) 단계와 c) 단계의 연속적인 반복으로 이루어지는 사이클에 사용하기 위해 직렬로 배치된다. 상기 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션은 하나 이상의 반응기로 구성되며, 이들 반응기는 이하에서 정의되는 d) 단계 이후에 개별적으로 또는 기타 방식으로 단락될 수 있다. 상기 수소화 처리 공정은,In another variant, the process of the present invention is a process for hydroprocessing a hydrocarbon heavy fraction containing sulfur-containing impurities and metal impurities in at least two sections, wherein the hydrocarbon feedstock and the hydrogen in the first hydrodemetallization section are hydrodegraded. Under metal conditions is passed through a hydrodesulfurization catalyst, and the effluent from this first hydrodesulfurization section is passed through a hydrodesulfurization catalyst in a subsequent second section under hydrodesulfurization conditions. The first hydrodemetallization section comprises one or more hydrodemetallization zones, in front of which are at least two hydrodemetallurgical guard zones which are preferably stationary phase or boiling phase zones. These hydrodemetallization guard zones are arranged in series for use in a cycle consisting of successive repetitions of steps b) and c) defined below. The hydrodesulfurization section and / or hydrodesulfurization section consists of one or more reactors, which may be shorted individually or in other ways after step d) as defined below. The hydrogenation treatment step,

a) 처리된 원료의 전체 순환 방향을 기준으로 가장 상류에 있는 가드 구역의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안, 모든 가드 구역이 함께 사용되는 단계;a) all guard zones are used together for a period of less than or equal to the active disappearance time and / or occlusion time of the most upstream guard zone relative to the overall circulation direction of the treated raw material;

b) 선행 단계에서 가장 상류에 있었던 가드 구역의 바로 다음에 위치한 가드 구역으로 원료가 직접 칩입하고, 선행 단계에서 가장 상류에 있었던 가드 구역이 단락되며, 그 안에 수용되어 있던 촉매가 재생 및/또는 새로운 촉매나 재생된 촉매로 교체되는 단계;b) the raw material is directly introduced into the guard zone immediately following the guard zone which was the most upstream in the preceding stage, the guard zone which was the most upstream in the preceding stage is shorted, and the catalyst contained therein is regenerated and / or fresh Replacing with catalyst or regenerated catalyst;

c) 모든 가드 구역이 함께 사용되며, b) 단계에서 촉매가 재생 및/또는 교체된 가드 구역이 재연결되어 가드 구역 세트의 하류에 위치하게 되는 단계로서, 처리된 원료의 전체 순환 방향을 기준으로 이 단계 동안 가장 상류에 위치하는 가드 구역의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 계속되는 것인 단계; 그리고c) all guard zones are used together, and in step b) the guard zone where the catalyst has been regenerated and / or replaced is reconnected and positioned downstream of the set of guard zones, with reference to the overall circulation direction of the treated raw materials. Continuing for a period of time less than or equal to the active disappearance time and / or occlusion time of the guard zone located most upstream during this step; And

d) 촉매의 활성 소실 및/또는 폐색시 촉매의 재생 및/또는 새로운 촉매나 재생된 촉매로의 교체를 위한 사이클 동안, 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션으로부터의 반응기 중 적어도 하나를 단락시킬 수 있는 단계d) shorting at least one of the reactor from the hydrodemetallization section and / or hydrodesulfurization section during a cycle for the loss of activity and / or occlusion of the catalyst during regeneration and / or replacement of the catalyst with a new or regenerated catalyst. Steps

를 포함한다.It includes.

본 발명의 공정에서는, 일반적으로 탄화수소 원료 중량의 0.5 중량% 내지 80 중량%에 해당하는 양의 중간 유분이, 작동 중인 제1 가드 구역의 유입구로 도입되는 것이 바람직하다. 탄화수소 원료와 함께 도입되는 상압 유분은 직류 가스 오일인 것이 더욱 바람직하다.In the process of the invention, it is generally preferred that an intermediate fraction in an amount corresponding to from 0.5% to 80% by weight of the hydrocarbon feed weight is introduced into the inlet of the first guard zone in operation. More preferably, the atmospheric pressure oil introduced together with the hydrocarbon raw material is a direct gas oil.

본 발명의 공정에서, 바람직하게는 수소화 탈황 단계로부터의 생성물이 상압 증류 구역으로 이송되며, 이 구역으로부터 상압 유분과 상압 잔류물이 회수되고, 상압 유분의 적어도 일부는 작동 중인 제1 가드 구역의 유입구로 재순환되는 것이바람직하다. 수소화 탈황 단계에 후속하는 상압 유분 단계로부터의 가스 오일 분류의 적어도 일부가, 작동 중인 제1 가드 구역의 유입구로 재순환되는 것이 더욱 바람직하다.In the process of the invention, preferably, the product from the hydrodesulfurization step is sent to an atmospheric distillation zone from which atmospheric oil and atmospheric residues are recovered, at least a portion of which is at the inlet of the first guard zone in operation. It is preferable to recycle to. More preferably, at least a portion of the gas oil fractionation from the atmospheric distillation stage following the hydrodesulfurization stage is recycled to the inlet of the first guard zone in operation.

본 발명의 한 가지 바람직한 변형례에서, 재순환되는 가스 오일 유분은 최초 비등점이 약 140℃이고 최종 비등점이 약 400℃인 유분이다.In one preferred variant of the invention, the recycled gas oil fraction is an oil having an initial boiling point of about 140 ° C. and a final boiling point of about 400 ° C.

이들 바람직한 변형례에서, 작동 중인 제1 가드 구역의 유입구로 원료와 동시에 도입되는 상압 유분 및/또는 가스 오일의 양은, 원료 중량의 약 1% 내지 50%에 해당하는 것이 바람직하다.In these preferred variants, the amount of atmospheric oil and / or gas oil introduced simultaneously with the feed into the inlet of the first guard zone in operation preferably corresponds to about 1% to 50% of the feed weight.

또한, 상압 증류 구역으로부터의 상압 유분의 적어도 일부를 감압 증류 구역으로 이송하고, 이 감압 증류 구역으로부터 회수된 감압 유분의 적어도 일부를 작동 중인 제1 가드 구역의 유입구로 재순환시키며, 감압 잔류물도 상기 감압 증류 구역으로부터 회수하는 것도 가능하다. 이 경우, 한 가지 바람직한 변형례에 있어서, 상압 유분 및/또는 감압 유분의 적어도 일부는 접촉 분해 유닛으로 이송되며, 이 접촉 분해 유닛으로부터 LCO 분류 및 HCO 분류가 회수되고, 이들 분류 중 하나 또는 이들의 혼합물의 적어도 일부는 작동 중인 제1 가드 구역의 유입구로 이송된다.In addition, at least a portion of the atmospheric pressure fraction from the atmospheric distillation zone is transferred to the vacuum distillation zone, and at least a portion of the vacuum fraction recovered from the vacuum distillation zone is recycled to the inlet of the first guard zone in operation, and the vacuum residue is also depressurized. It is also possible to recover from the distillation zone. In this case, in one preferred variant, at least a portion of the atmospheric and / or reduced pressure fraction is sent to a catalytic cracking unit from which the LCO fraction and the HCO fraction are recovered and one or more of these fractions are recovered. At least a portion of the mixture is conveyed to the inlet of the first guard zone in operation.

본 발명의 공정의 한 가지 바람직한 실시 형태에서는, c) 단계 동안 가드 구역이 모두 사용되고, b) 단계에서 촉매가 재생된 가드 구역이 재연결되어, 가드 구역의 연결이 b) 단계에서 단락되기 전과 동일해진다.In one preferred embodiment of the process of the invention, the guard zone is used up during step c) and the guard zone where the catalyst has been regenerated in step b) is reconnected so that the connection of the guard zones is the same as before the shorting in step b). Become.

본 발명의 공정의 또 다른 바람직한 실시 형태에서, 조정 섹션이 가드 구역과 연관되어, 작동 중에, 즉 유닛의 작동을 중단하지 않고 상기 가드 구역의 단락 또는 교환을 가능하게 한다. 상기 조정 섹션을 조절함으로써, 작동하지 않는 가드 구역에 수용되어 있는 촉매가 1 MPa 내지 5 MPa의 압력 범위로 조정된다.In another preferred embodiment of the process of the invention, the adjusting section is associated with the guard zone, allowing shorting or replacement of the guard zone during operation, ie without interrupting the operation of the unit. By adjusting the adjusting section, the catalyst accommodated in the inoperative guard zone is adjusted to a pressure range of 1 MPa to 5 MPa.

본 발명의 공정의 한 가지 바람직한 실시 형태에서는, 아스팔텐을 함유하는 중유 또는 중유 분류로 이루어진 원료를 처리하기 위해, 원료를 가드 구역으로 보내기 전에 먼저 수소와 혼합한 후 하이드로비스브레이킹 조건을 인가한다.In one preferred embodiment of the process of the present invention, in order to treat a crude oil or heavy oil fraction containing asphaltenes, hydrobisbreaking conditions are first applied after mixing with hydrogen prior to sending the crude to the guard zone.

본 발명의 공정의 한 가지 바람직한 실시 형태에서는, 선택적인 상압 증류 단계로부터 얻은 상압 잔류물에 용매 또는 용매 혼합물을 사용한 탈아스팔트 처리를 실시하며, 탈아스팔트 처리된 생성물의 적어도 일부를 작동 중인 제1 가드 구역의 유입구로 재순환시킨다.In one preferred embodiment of the process of the present invention, a deasphalting treatment using a solvent or a mixture of solvents is performed on the atmospheric residue obtained from the optional atmospheric distillation step, wherein at least a portion of the deasphalted product is in operation with a first guard. Recycle to the inlet of the zone.

본 발명의 공정의 한 가지 바람직한 실시 형태에서는, 선택적인 감압 증류 단계로부터 얻은 감압 잔류물에 용매 또는 용매 혼합물을 사용한 탈아스팔트 처리를 실시하며, 탈아스팔트 처리된 생성물의 적어도 일부를 작동 중인 제1 가드 구역의 유입구로 재순환시킨다.In one preferred embodiment of the process of the invention, the depressurized residue obtained from the optional reduced pressure distillation step is subjected to deasphalting with a solvent or solvent mixture and at least a portion of the deasphalted product is in operation. Recycle to the inlet of the zone.

본 발명의 공정의 또 다른 바람직한 실시 형태에서는, 모든 반응기가 고정상 반응기이다. 또 다른 바람직한 변형례에서는, 가드 반응기 및/또는 수소화 탈금속 섹션 반응기 및/또는 수소화 탈황 섹션 반응기 중 적어도 하나가 비등상 반응기이다. 또 다른 바람직한 변형례에서는, 가드 구역용 반응기가 고정상 반응기이고, 수소화 탈황 구역 내의 반응기는 모두 비등상 반응기이다.In another preferred embodiment of the process of the invention, all reactors are fixed bed reactors. In another preferred variant, at least one of the guard reactor and / or hydrodesulfurization section reactor and / or hydrodesulfurization section reactor is a boiling phase reactor. In another preferred variant, the reactor for the guard zone is a fixed bed reactor and the reactors in the hydrodesulfurization zone are all boiling phase reactors.

또 다른 바람직한 변형례에서는, 가드 구역 내의 반응기가 모두 고정상 반응기이고, 수소화 탈금속 구역 내의 반응기는 모두 비등상 반응기이며, 선택적으로, 그리고 매우 바람직하게는 수소화 탈황 구역 내의 모든 반응기도 비등상 반응기이다. 또한, 가드 구역과 수소화 탈금속 섹션 및 수소화 탈황 섹션 내에 비등상 반응기만 있는 상태로 본 발명의 공정을 조작할 수도 있다.In another preferred variant, all of the reactors in the guard zone are fixed bed reactors, all of the reactors in the hydrodesulfurization zone are boiling phase reactors, and optionally, and very preferably all of the reactors in the hydrodesulfurization zone are also boiling phase reactors. It is also possible to operate the process of the invention with only the boiling phase reactor in the guard zone, the hydrodesulfurization section and the hydrodesulfurization section.

라인(1)을 통해 원료가 가드 구역(1A 및 1B)에 도달한 후 라인(13), 라인(23) 및/또는 라인(24)을 통해 상기 가드 구역을 떠난다. 가드 구역을 떠난 원료는 라인(13)을 통해 반응 섹션(2)으로 도시되어 있는 HDM 섹션에 도착하며, 이 반응 섹션(2)은 각각 단락될 수 있는 하나 이상의 반응기로 이루어져 있다. 반응 섹션(2)으로부터의 유출물은 라인(14)을 통해 취출되어 수소화 탈황 섹션(3)으로 이송된다. 이 수소화 탈황 섹션(3)은 하나 이상의 반응기를 포함하며, 이들 반응기는 직렬로 배치될 수 있고, 선택적으로는 각각 단락될 수 있다. 수소화 탈황 섹션(3)으로부터의 유출물은 라인(15)을 통해 취출된다.After the raw material reaches guard zones 1A and 1B via line 1, it leaves the guard zone via line 13, line 23 and / or line 24. The raw material leaving the guard zone arrives via line 13 in the HDM section, shown as reaction section 2, which consists of one or more reactors, each of which can be shorted. The effluent from the reaction section 2 is withdrawn via line 14 and sent to the hydrodesulfurization section 3. This hydrodesulfurization section 3 comprises one or more reactors, which may be arranged in series, optionally shorted respectively. Effluent from the hydrodesulfurization section 3 is withdrawn via line 15.

도 1에 도시된 바와 같이, 라인(55)을 통해 중간 유분이 도입되어, 라인(1)을 통해 흐르는 탄화수소 원료와 혼합된다.As shown in FIG. 1, intermediate fractions are introduced via line 55 and mixed with hydrocarbon feedstock flowing through line 1.

도 1에 도시된 경우에서, 가드 구역은 2개의 반응기를 포함한다. 바람직한 실시 형태에서, 본 공정은 다음과 같은 4개의 연속된 기간을 각각 포함하는 일련의 사이클을 포함한다.In the case shown in FIG. 1, the guard zone comprises two reactors. In a preferred embodiment, the process comprises a series of cycles each comprising four consecutive periods as follows.

·원료가 가드 구역(1A) 및 가드 구역(1B)을 연속적으로 통과하고, 재순환되는 상압 유분으로부터의 가스 오일 분류가 원료와 함께 가드 구역(1A)으로 도입되는 제1 기간. 이 제1 기간[공정의 a) 단계] 중에는, 원료가 라인(1) 및 가드 반응기(1A)를 향해 개방된 밸브(31)를 포함하는 라인(21)을 통해 도입된다. 이 기간 동안 밸브(32, 33 및 35)는 폐쇄된다. 가드 구역(1A)으로부터의 유출물은 라인(23) 및 개방 밸브(34)를 포함하는 라인(26)과 라인(22)을 통해 가드 반응기(1B)로 이송된다. 가드 구역(1B)으로부터의 유출물은 개방 밸브(36)를 포함하는 라인(24)과, 개방 밸브(37)를 포함하는 라인(13)을 통해 HDM 섹션(2)으로 이송된다.First period in which raw material passes continuously through guard zone 1A and guard zone 1B, and gas oil fractionation from the atmospheric pressure fraction being recycled is introduced into guard zone 1A with the raw material. During this first period (step a) of the process), the raw material is introduced via line 21, which comprises a line 1 and a valve 31 open towards the guard reactor 1A. During this period the valves 32, 33 and 35 are closed. Effluent from the guard zone 1A is conveyed to the guard reactor 1B via line 26 and line 22 comprising line 23 and open valve 34. The effluent from the guard zone 1B is conveyed to the HDM section 2 via a line 24 comprising an open valve 36 and a line 13 comprising an open valve 37.

·원료가 가드 구역(1B)만을 통과하고, 재순환되는 상압 유분으로부터의 가스 오일 분류가 원료와 함께 가드 구역(1B)으로 도입되는 제2 기간. 이 제2 기간[공정의 b) 단계] 중에는 밸브(31, 33, 34 및 35)가 폐쇄되고, 원료는 라인(1) 및 개방 밸브(32)를 포함하는 라인(22)을 통해 가드 구역(1B)으로 도입된다. 이 기간 동안, 가드 구역(1B)으로부터의 유출물은 개방 밸브(36)를 포함하는 라인(24)과, 개방 밸브(37)를 포함하는 라인(13)을 통해 HDM 섹션(2)으로 이송된다.A second period in which the raw material passes only the guard zone 1B, and gas oil fractionation from the atmospheric pressure fraction recycled is introduced into the guard zone 1B together with the raw material. During this second period (step b) of the process) the valves 31, 33, 34 and 35 are closed and the raw material is guarded via a line 22 which comprises a line 1 and an open valve 32. 1B). During this period, the effluent from the guard zone 1B is conveyed to the HDM section 2 via a line 24 comprising an open valve 36 and a line 13 comprising an open valve 37. .

·원료가 가드 구역(1B) 및 가드 구역(1A)을 연속적으로 통과하고, 재순환되는 상압 유분으로부터의 가스 오일 분류가 원료와 함께 가드 구역(1B)으로 도입되는 제3 기간. 이 제3 기간[공정의 c) 단계] 중에는 밸브(31, 34 및 36)가 폐쇄되고, 밸브(32, 33 및 35)가 개방된다. 원료가 라인(1) 및 라인(22)을 통해 가드 구역(1B)으로 도입된다. 이 가드 구역(1B)으로부터의 유출물은 라인(24, 27 및 21)을 통해 가드 반응기(1A)로 이송된다. 가드 구역(1A)으로부터의 유출물은 라인(23) 및 개방 밸브(37)를 포함하는 라인(13)을 통해 HDM 섹션(2)으로 이송된다.A third period in which the raw material passes continuously through the guard zone 1B and the guard zone 1A, and gas oil fractionation from the atmospheric pressure fraction recycled is introduced into the guard zone 1B together with the raw material. During this third period (step c) of the process), the valves 31, 34, and 36 are closed, and the valves 32, 33, and 35 are opened. Raw material is introduced into guard zone 1B via line 1 and line 22. Effluent from this guard zone 1B is sent to guard reactor 1A via lines 24, 27 and 21. Effluent from the guard zone 1A is conveyed to the HDM section 2 via a line 13 comprising a line 23 and an open valve 37.

·원료가 가드 구역(1A)만을 통과하고, 재순환되는 상압 유분으로부터의 가스 오일 분류가 원료와 함께 가드 구역(1A)으로 도입되는 제4 기간.A fourth period in which the raw material passes only the guard zone 1A and gas oil fractionation from the atmospheric pressure fraction recycled is introduced into the guard zone 1A together with the raw material.

가드 반응기에 대해 실시되는 사이클의 수는, 전체 유닛의 조작 사이클의 지속 시간과, 가드 구역(1A 및 1B)의 평균 교환 빈도의 함수이다. 제4 기간 동안, 밸브(32, 33, 34 및 36)는 폐쇄되고 밸브(31 및 35)는 개방된다. 라인(1 및 21)을 통해 원료가 가드 구역(1A)으로 도입된다. 이 기간 동안에, 가드 구역(1A)으로부터의 유출물은 라인(23) 및 개방 밸브(37)를 포함하는 라인(13)을 통해 HDM 섹션(2)으로 이송된다.The number of cycles performed for the guard reactor is a function of the duration of the operating cycle of the entire unit and the average exchange frequency of the guard zones 1A and 1B. During the fourth period, the valves 32, 33, 34 and 36 are closed and the valves 31 and 35 are open. Raw materials are introduced into guard zone 1A via lines 1 and 21. During this period, the effluent from the guard zone 1A is transferred to the HDM section 2 via a line 13 comprising a line 23 and an open valve 37.

도 1에 도시된 경우에서, 수소화 탈금속(HDM) 섹션(2)은 하나 이상의 반응기를 포함할 수 있다. 각각의, 또는 복수 개의 이들 반응기는 촉매의 주기적인 갱신을 위해 일시적으로 격리될 수 있다[공정의 d) 단계]. 바람직한 실시 형태에서, 공정은 다음과 같은 3개의 연속된 기간을 각각 포함하는 일련의 사이클을 포함한다.In the case shown in FIG. 1, the hydrodemetallization (HDM) section 2 may comprise one or more reactors. Each or a plurality of these reactors may be temporarily sequestered for periodic update of the catalyst (step d) of the process). In a preferred embodiment, the process comprises a series of cycles each comprising three consecutive periods as follows.

·원료가 가드 구역(1A 및 1B)과 HDM 섹션(2) 및 마지막으로는 HDS 섹션(3)을 연속적으로 통과하는 제1 기간. 이 기간 동안, 재순환되는 상압 유분으로부터의 가스 오일 분류가 원료와 함께 가드 구역(1A)으로 도입된다. 이 기간 동안 밸브(32, 33, 35, 38 및 41)는 폐쇄된다. 라인(1 및 21)을 통해 원료가 가드구역(1A)으로 도입된다. 가드 구역(1A)으로부터의 유출물은 라인(23) 및 개방 밸브(34)를 포함하는 라인(26)과 라인(22)을 통해 가드 반응기(1B)로 이송된다. 이 가드 구역(1B)으로부터의 유출물은 개방 밸브(36)를 포함하는 라인(24)과, 개방 밸브(37)를 포함하는 라인(13)을 통해 HDM 섹션(2)으로 이송된다. 이 HDM 섹션(2)으로부터의 유출물은 2개의 개방 밸브(42 및 39)를 포함하는 라인(14)을 통해 HDS 섹션(3)으로 이송된다. 그리고 나서, 이 HDS 섹션(3)으로부터의 유출물은 개방 밸브(40)를 포함하는 라인(15)을 통해 분할 유닛(도시 생략)으로 이송된다.First period in which the raw material passes continuously through the guard zones 1A and 1B and the HDM section 2 and finally the HDS section 3. During this period, gas oil fractionation from the recycled atmospheric fraction is introduced into the guard zone 1A with the raw materials. During this period the valves 32, 33, 35, 38 and 41 are closed. Raw materials are introduced into guard zone 1A via lines 1 and 21. Effluent from the guard zone 1A is conveyed to the guard reactor 1B via line 26 and line 22 comprising line 23 and open valve 34. The effluent from this guard zone 1B is conveyed to the HDM section 2 via a line 24 comprising an open valve 36 and a line 13 comprising an open valve 37. The effluent from this HDM section 2 is conveyed to the HDS section 3 via a line 14 comprising two open valves 42 and 39. The effluent from this HDS section 3 is then sent to a splitting unit (not shown) via a line 15 comprising an open valve 40.

·원료가 가드 구역(1A 및 1B)과 HDS 섹션(3)을 연속적으로 통과하는 제2 기간. 이 기간 동안, 재순환되는 상압 유분으로부터의 가스 오일 분류가 원료와 함께 가드 구역(1B)으로 도입된다. 이 조작 동안 밸브(32, 33, 35, 37, 41 및 42)는 폐쇄된다. 라인(1 및 21)을 통해 원료가 가드 구역(1A)으로 도입된다. 이 가드 구역(1A)으로부터의 유출물은 라인(23) 및 개방 밸브(34)를 포함하는 라인(26)과 라인(22)을 통해 가드 구역(1B)으로 이송된다. 이 가드 구역(1B)으로부터의 유출물은 개방 밸브(36)를 포함하는 라인(24)과, 2개의 개방 밸브(38 및 39)를 포함하는 라인(25)을 통해 HDS 섹션(3)으로 이송된다. 그리고 나서, 이 HDS 섹션(3)으로부터의 유출물은 개방 밸브(40)를 포함하는 라인(15)을 통해 분할 유닛(도시 생략)으로 이송된다. 이 기간 동안 HDM 촉매가 갱신되며, 그 후 상기 촉매는 본 명세서에 기재된 방법을 이용하여 조절된다. 이 조절은 촉매가 산화물 형태인 경우에 특히 필요하다.Second period in which the raw material passes continuously through guard zones 1A and 1B and HDS section 3. During this period, gas oil fractionation from the recycled atmospheric fraction is introduced into the guard zone 1B with the raw materials. The valves 32, 33, 35, 37, 41 and 42 are closed during this operation. Raw materials are introduced into guard zone 1A via lines 1 and 21. Effluent from this guard zone 1A is conveyed to guard zone 1B via line 26 and line 22 comprising line 23 and open valve 34. Effluent from this guard zone 1B is conveyed to HDS section 3 via line 24 comprising open valve 36 and line 25 comprising two open valves 38 and 39. do. The effluent from this HDS section 3 is then sent to a splitting unit (not shown) via a line 15 comprising an open valve 40. During this time the HDM catalyst is updated, after which the catalyst is adjusted using the methods described herein. This control is particularly necessary when the catalyst is in oxide form.

·원료가 가드 구역(1A 및 1B)과 HDM 섹션(2) 및 HDS 섹션(3)을 연속적으로통과하는 제3 기간. 이 기간 동안, 재순환되는 상압 증류 단계로부터의 가스 오일 분류가 원료와 함께 가드 구역(1B)으로 도입된다. 이 상황은 제1 기간과 동일하며, 새로운 촉매를 함유하고 있는 반응기가, 제1 기간과 관련하여 전술한 경우와 비교할 때 유체 회로 내의 동일한 위치에서 교체될 수 있게 한다.A third period of time in which the raw material passes through the guard zones 1A and 1B and the HDM section 2 and the HDS section 3 continuously. During this period, gas oil fractionation from the recycled atmospheric distillation stage is introduced into the guard zone 1B together with the raw materials. This situation is the same as the first period, allowing the reactor containing the new catalyst to be replaced at the same location in the fluid circuit as compared to the case described above with respect to the first period.

도 1에 나타난 경우에서, 수소화 탈황 섹션(3)은 하나 이상의 반응기를 포함할 수 있다. 각각의, 또는 복수 개의 이들 반응기는 촉매의 주기적인 갱신을 위해 일시적으로 격리될 수 있다[공정의 d) 단계]. 바람직한 실시 형태에서, 공정은 다음과 같은 3개의 연속된 기간을 각각 포함하는 일련의 사이클을 포함한다.In the case shown in FIG. 1, the hydrodesulfurization section 3 may comprise one or more reactors. Each or a plurality of these reactors may be temporarily sequestered for periodic update of the catalyst (step d) of the process). In a preferred embodiment, the process comprises a series of cycles each comprising three consecutive periods as follows.

·원료가 가드 구역(1A 및 1B)과 HDM 섹션(2) 및 HDS 섹션(3)을 연속적으로 통과하는 제1 기간. 이 기간 동안, 재순환되는 상압 유분으로부터의 가스 오일 분류가 원료와 함께 가드 구역(1A)으로 도입된다. 이 기간 동안 밸브(32, 33, 35, 38 및 41)는 폐쇄된다. 라인(1 및 21)을 통해 원료가 가드 구역(1A)으로 도입된다. 가드 구역(1A)으로부터의 유출물은 라인(23) 및 개방 밸브(34)를 포함하는 라인(26)과 라인(22)을 통해 가드 반응기(1B)로 이송된다. 이 가드 구역(1B)으로부터의 유출물은 개방 밸브(36)를 포함하는 라인(24)과, 개방 밸브(37)를 포함하는 라인(13)을 통해 HDM 섹션(2)으로 이송된다. 이 HDM 섹션(2)으로부터의 유출물은 2개의 개방 밸브(42 및 39)를 포함하는 라인(14)을 통해 HDS 섹션(3)으로 이송된다. 그리고 나서, 이 HDS 섹션(3)으로부터의 유출물은 개방 밸브(40)를 포함하는 라인(15)을 통해 분할 유닛(도시 생략)으로 이송된다.First period in which the raw material passes continuously through guard zones 1A and 1B and HDM section 2 and HDS section 3. During this period, gas oil fractionation from the recycled atmospheric fraction is introduced into the guard zone 1A with the raw materials. During this period the valves 32, 33, 35, 38 and 41 are closed. Raw materials are introduced into guard zone 1A via lines 1 and 21. Effluent from the guard zone 1A is conveyed to the guard reactor 1B via line 26 and line 22 comprising line 23 and open valve 34. The effluent from this guard zone 1B is conveyed to the HDM section 2 via a line 24 comprising an open valve 36 and a line 13 comprising an open valve 37. The effluent from this HDM section 2 is conveyed to the HDS section 3 via a line 14 comprising two open valves 42 and 39. The effluent from this HDS section 3 is then sent to a splitting unit (not shown) via a line 15 comprising an open valve 40.

·원료가 가드 구역(1A 및 1B)과 HDM 섹션(2)을 연속적으로 통과하는 제2 기간. 이 기간 동안, 재순환되는 상압 유분으로부터의 가스 오일 분류가 원료와 함께 가드 구역(1B)으로 도입된다. 이 조작 동안 밸브(32, 33, 35, 38, 39 및 40)는 폐쇄된다. 라인(1 및 21)을 통해 원료가 가드 구역(1A)으로 도입된다. 이 가드 구역(1A)으로부터의 유출물은 라인(23) 및 개방 밸브(34)를 포함하는 라인(26)과 라인(22)을 통해 가드 구역(1B)으로 이송된다. 이 가드 구역(1B)으로부터의 유출물은 개방 밸브(36)를 포함하는 라인(24)과, 개방 밸브(37)를 포함하는 라인(13)을 통해 HDM 섹션(2)으로 이송된다. 그리고 나서, 이 HDM 섹션(2)으로부터의 유출물은 개방 밸브(42)를 포함하는 라인(14)과, 개방 밸브(41)를 포함하는 라인(16)을 통해 분할 유닛(도시 생략)으로 이송된다. 이 기간 동안 HDS 섹션(3)으로부터의 촉매가 갱신되며, 그 후 상기 촉매는 본 명세서에 기재된 방법을 이용하여 조절된다. 이 조절은 촉매가 산화물 형태인 경우에 특히 필요하다.A second period in which the raw material passes continuously through the guard zones 1A and 1B and the HDM section 2. During this period, gas oil fractionation from the recycled atmospheric fraction is introduced into the guard zone 1B with the raw materials. During this operation valves 32, 33, 35, 38, 39 and 40 are closed. Raw materials are introduced into guard zone 1A via lines 1 and 21. Effluent from this guard zone 1A is conveyed to guard zone 1B via line 26 and line 22 comprising line 23 and open valve 34. The effluent from this guard zone 1B is conveyed to the HDM section 2 via a line 24 comprising an open valve 36 and a line 13 comprising an open valve 37. The effluent from this HDM section 2 is then conveyed to the splitting unit (not shown) via line 14 including open valve 42 and line 16 including open valve 41. do. During this period the catalyst from the HDS section 3 is updated, after which the catalyst is adjusted using the methods described herein. This control is particularly necessary when the catalyst is in oxide form.

·원료가 가드 구역(1A 및 1B)과 HDM 섹션(2) 및 HDS 섹션(3)을 연속적으로 통과하는 제3 기간. 이 기간 동안, 재순환되는 상압 증류 단계로부터의 가스 오일 분류가 원료와 함께 가드 구역(1B)으로 도입된다. 이 상황은 제1 기간과 동일하며, 새로운 촉매를 함유하고 있는 반응기가, 제1 기간과 관련하여 전술한 경우와 비교할 때 유체 회로 내의 동일한 위치에서 교체될 수 있게 한다.A third period of time in which the raw material passes continuously through the guard zones 1A and 1B and the HDM section 2 and the HDS section 3. During this period, gas oil fractionation from the recycled atmospheric distillation stage is introduced into the guard zone 1B together with the raw materials. This situation is the same as the first period, allowing the reactor containing the new catalyst to be replaced at the same location in the fluid circuit as compared to the case described above with respect to the first period.

Claims (20)

황함유 불순물과 금속 불순물을 함유하는 탄화수소 중질 분류를 적어도 2개의 섹션에서 수소화 처리하기 위한 수소화 처리 공정으로서, 제1 수소화 탈금속 섹션에서 탄화수소 원료 및 수소가 수소화 탈금속 조건 하에서 수소화 탈금속 촉매를 통과하고, 이 제1 단계로부터의 유출물이 수소화 탈황 조건 하의 후속 제2 섹션에서 수소화 탈황 촉매를 통과하며, 상기 수소화 탈금속 섹션은 하나 이상의 수소화 탈금속 구역을 포함하고, 이 수소화 탈금속 구역의 앞에는 적어도 2개의 수소화 탈금속 가드 구역이 위치하며, 이들 수소화 탈금속 가드 구역은 이하에서 정의되는 b) 단계와 c) 단계의 연속적인 반복으로 이루어지는 사이클에 사용하기 위해 직렬로 배치되고, 상기 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션은 하나 이상의 반응기로 구성되며, 이들 반응기는 이하에서 정의되는 d) 단계 이후에 개별적으로 또는 기타 방식으로 단락될 수 있고, 상기 수소화 처리 공정은,A hydrotreating process for hydrotreating hydrocarbon heavy fractions containing sulfur-containing impurities and metal impurities in at least two sections, wherein the hydrocarbon feedstock and hydrogen pass through a hydrodemetalization catalyst under hydrodemetalization conditions in a first hydrodemetalization section And the effluent from this first stage passes through a hydrodesulfurization catalyst in a subsequent second section under hydrodesulfurization conditions, said hydrodesulfurization section comprising at least one hydrodesulfurization zone, which precedes the hydrodesulfurization zone. At least two hydrodemetallization guard zones are located, and these hydrodehydration guard zones are arranged in series for use in a cycle consisting of successive repetitions of steps b) and c) defined below. Sections and / or hydrodesulfurization sections consist of one or more reactors, these The reactors can be shorted individually or in other ways after step d), defined below, wherein the hydroprocessing process a) 상기 가드 구역 중 하나의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 모든 가드 구역이 함께 사용되는 단계;a) all guard zones are used together for a period of time less than the active disappearance time and / or occlusion time of one of the guard zones; b) 활성 소실 및/또는 폐색 가드 구역이 단락되고, 그 가드 구역에 수용되어 있는 촉매가 재생 및/또는 새로운 촉매나 재생된 촉매로 교체되는 단계;b) short-circuit activity and / or occlusion guard zone, and the catalyst contained in the guard zone is regenerated and / or replaced with new or regenerated catalyst; c) 모든 가드 구역이 함께 사용되는 단계로서, 선행 단계에서 촉매가 재생 및/또는 교체된 가드 구역이 재연결되고, 상기 가드 구역 중 하나의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 실행되는 것인 단계; 그리고c) a step in which all guard zones are used together, in which the guard zone where the catalyst has been regenerated and / or replaced in the preceding step is reconnected and is carried out for a period of time less than the active disappearance time and / or occlusion time of one of the guard zones. Step; And d) 촉매의 활성 소실 및/또는 폐색시 촉매의 재생 및/또는 새로운 촉매나 재생된 촉매로의 교체를 위한 사이클 동안, 상기 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션으로부터의 반응기 중 적어도 하나를 단락시킬 수 있는 단계d) short-circuit at least one of the reactor from the hydrodesulfurization section and / or hydrodesulfurization section during a cycle for loss of activity and / or occlusion of the catalyst and / or replacement of the catalyst with a new or regenerated catalyst. Steps you can make 를 포함하는 것인 수소화 처리 공정.Hydrogen treatment process comprising a. 황함유 불순물과 금속 불순물을 함유하는 탄화수소 중질 분류를 적어도 2개의 섹션에서 수소화 처리하기 위한 수소화 처리 공정으로서, 제1 수소화 탈금속 섹션에서 탄화수소 원료 및 수소가 수소화 탈금속 조건 하에서 수소화 탈금속 촉매를 통과하고, 이 제1 단계로부터의 유출물이 수소화 탈황 조건 하의 후속 제2 섹션에서 수소화 탈황 촉매를 통과하며, 상기 수소화 탈금속 섹션은 하나 이상의 수소화 탈금속 구역을 포함하고, 이 수소화 탈금속 구역의 앞에는 적어도 하나의 가드 구역이 위치하며, 상기 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션은 하나 이상의 반응기로 구성되고, 이 반응기는 이하에서 정의되는 d) 단계 이후에 개별적으로 또는 기타 방식으로 단락될 수 있으며, 상기 수소화 처리 공정은,A hydrotreating process for hydrotreating hydrocarbon heavy fractions containing sulfur-containing impurities and metal impurities in at least two sections, wherein the hydrocarbon feedstock and hydrogen pass through a hydrodemetalization catalyst under hydrodemetalization conditions in a first hydrodemetalization section And the effluent from this first stage passes through a hydrodesulfurization catalyst in a subsequent second section under hydrodesulfurization conditions, said hydrodesulfurization section comprising at least one hydrodesulfurization zone, which precedes the hydrodesulfurization zone. At least one guard zone is located, wherein the hydrodesulfurization section and / or hydrodesulfurization section consists of one or more reactors, which may be shorted individually or in other ways after step d) as defined below; , The hydrogenation treatment step, a) 상기 가드 구역의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 상기 가드 구역이 사용되는 단계;a) the guard zone is used for a period of time less than or equal to the active disappearance time and / or occlusion time of the guard zone; b) 활성 소실 및/또는 폐색 가드 구역이 단락되고, 그 가드 구역에 수용되어 있는 촉매가 재생 및/또는 새로운 촉매나 재생된 촉매로 교체되는 단계;b) short-circuit activity and / or occlusion guard zone, and the catalyst contained in the guard zone is regenerated and / or replaced with new or regenerated catalyst; c) 선행 단계에서 촉매가 재생 및/또는 교체된 가드 구역이 재연결되는 단계로서, 상기 가드 구역 중 하나의 활성 소실 시간 및/또는 폐색 시간 이하의 기간동안 실행되는 것인 단계; 그리고c) reconnecting the guard zone in which the catalyst has been regenerated and / or replaced in the preceding step, wherein the run is carried out for a period of time less than the time of active disappearance and / or occlusion of one of the guard zones; And d) 촉매의 활성 소실 및/또는 폐색시 촉매의 재생 및/또는 새로운 촉매나 재생된 촉매로의 교체를 위한 사이클 동안, 상기 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션으로부터의 반응기 중 적어도 하나를 단락시킬 수 있는 단계d) short-circuit at least one of the reactor from the hydrodesulfurization section and / or hydrodesulfurization section during a cycle for loss of activity and / or occlusion of the catalyst and / or replacement of the catalyst with a new or regenerated catalyst. Steps you can make 를 포함하는 것인 수소화 처리 공정.Hydrogen treatment process comprising a. 황함유 불순물과 금속 불순물을 함유하는 탄화수소 중질 분류를 적어도 2개의 섹션에서 수소화 처리하기 위한 수소화 처리 공정으로서, 제1 수소화 탈금속 섹션에서 탄화수소 원료와 수소가 수소화 탈금속 조건 하에서 수소화 탈금속 촉매를 통과하고, 이 제1 단계로부터의 유출물이 수소화 탈황 조건 하의 후속 제2 섹션에서 수소화 탈황 촉매를 통과하며, 상기 수소화 탈금속 섹션은 하나 이상의 수소화 탈금속 구역을 포함하고, 이 수소화 탈금속 구역의 앞에는 적어도 2개의 수소화 탈금속 가드 구역이 위치하며, 이들 수소화 탈금속 가드 구역은 고정상 반응기 또는 비등상 반응기인 것이 바람직한 하나 이상의 반응기를 포함하고, 이 반응기는 이하에서 정의되는 b) 단계와 c) 단계의 연속적인 반복으로 이루어지는 사이클에 사용하기 위해 직렬로 배치되며, 상기 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션은 하나 이상의 반응기로 구성되고, 이들 반응기는 이하에서 정의되는 d) 단계 이후에 개별적으로 또는 기타 방식으로 단락될 수 있으며, 상기 수소화 처리 공정은,A hydrogenation process for hydroprocessing hydrocarbon heavy fractions containing sulfur-containing impurities and metal impurities in at least two sections, wherein the hydrocarbon feedstock and hydrogen pass through a hydrodemetallization catalyst under hydrodemetallization conditions in a first hydrodemetallization section. And the effluent from this first stage passes through a hydrodesulfurization catalyst in a subsequent second section under hydrodesulfurization conditions, said hydrodesulfurization section comprising at least one hydrodesulfurization zone, which precedes the hydrodesulfurization zone. At least two hydrodemetallization guard zones are located, and these hydrodemetallization guard zones comprise at least one reactor which preferably is a fixed bed reactor or an boiling phase reactor, the reactor of steps b) and c) defined below. Placed in series for use in cycles of continuous repetition Wherein the hydrodesulfurization section and / or hydrodesulfurization section consists of one or more reactors, which reactors may be shorted individually or in other ways after step d) defined below, said hydroprocessing process being a) 처리된 원료의 전체 순환 방향을 기준으로 가장 상류에 있는 가드 구역의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안, 모든 가드 구역이 함께 사용되는 단계;a) all guard zones are used together for a period of less than or equal to the active disappearance time and / or occlusion time of the most upstream guard zone relative to the overall circulation direction of the treated raw material; b) 선행 단계에서 가장 상류에 있었던 가드 구역의 바로 다음에 위치한 가드 구역으로 원료가 직접 칩입하고, 선행 단계에서 가장 상류에 있었던 가드 구역이 단락되며, 그 안에 수용되어 있던 촉매가 재생 및/또는 새로운 촉매나 재생된 촉매로 교체되는 단계;b) the raw material is directly introduced into the guard zone immediately following the guard zone which was the most upstream in the preceding stage, the guard zone which was the most upstream in the preceding stage is shorted, and the catalyst contained therein is regenerated and / or fresh Replacing with catalyst or regenerated catalyst; c) 모든 구역이 함께 사용되며, b) 단계에서 촉매가 재생 및/또는 교체된 가드 구역이 재연결되어 가드 구역 세트의 하류에 위치하게 되는 단계로서, 처리된 원료의 전체 순환 방향을 기준으로 이 단계 동안 가장 상류에 위치하는 가드 구역의 활성 소실 시간 및/또는 폐색 시간 이하의 기간 동안 계속되는 것인 단계; 그리고c) all zones are used together, and in step b), the guard zone where the catalyst has been regenerated and / or replaced is reconnected and positioned downstream of the set of guard zones, based on the overall circulation direction of the treated raw material. Continuing for a period of time that is less than the time of active disappearance and / or occlusion of the guard zone located most upstream during the step; And d) 촉매의 활성 소실 및/또는 폐색시 촉매의 재생 및/또는 새로운 촉매나 재생된 촉매에 의해 교체하기 위한 사이클 동안, 상기 수소화 탈금속 섹션 및/또는 수소화 탈황 섹션으로부터의 반응기 중 적어도 하나를 단락시킬 수 있는 단계d) shorting at least one of the reactors from the hydrodesulfurization section and / or hydrodesulfurization section during a cycle for loss of activity and / or occlusion of the catalyst and / or replacement of the catalyst by a new or regenerated catalyst. Steps you can make 를 포함하는 것인 수소화 처리 공정.Hydrogen treatment process comprising a. 제1항 내지 제3항 중 어느 한 항에 있어서, 탄화수소 원료 중량의 0.5% 내지 80%에 해당하는 양의 중간 유분이 작동 중인 제1 가드 구역의 유입구로 도입되는 것인 수소화 처리 공정.The process of any one of claims 1 to 3, wherein an intermediate fraction in an amount corresponding to 0.5% to 80% of the weight of the hydrocarbon feed is introduced into the inlet of the first guard zone in operation. 제4항에 있어서, 탄화수소 원료와 함께 도입되는 상압 유분은 직류 가스 오일인 것인 수소화 처리 공정.The hydroprocessing process according to claim 4, wherein the atmospheric pressure introduced with the hydrocarbon raw material is a direct gas oil. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 수소화 탈황 단계로부터의 생성물은 상압 증류 구역으로 이송되고, 이 상압 증류 구역으로부터 상압 유분 및 상압 잔류물이 회수되며, 회수된 상압 유분의 적어도 일부는 작동 중인 제1 가드 구역의 유입구로 재순환되는 것인 수소화 처리 공정.The product from any one of claims 1 to 5, wherein the product from the hydrodesulfurization step is sent to an atmospheric distillation zone, from which atmospheric pressure oil and atmospheric residues are recovered, and at least of the recovered atmospheric oil fraction. A portion of which is recycled to the inlet of the first guard zone in operation. 제6항에 있어서, 상기 수소화 탈황 단계에 이은 상압 증류 단계로부터의 가스 오일 분류의 적어도 일부가, 작동 중인 제1 가드 구역의 유입구로 재순환되는 것인 수소화 처리 공정.7. The process of claim 6, wherein at least a portion of the gas oil fractionation from the hydrodesulfurization step following the atmospheric distillation step is recycled to the inlet of the first guard zone in operation. 제5항 또는 제7항에 있어서, 재순환되는 가스 오일 분류는 최초 비등점이 약 140℃이고 최종 비등점이 약 400℃인 유분인 것인 수소화 처리 공정.8. The process of claim 5 or 7, wherein the gas oil fraction being recycled is an oil having an initial boiling point of about 140 ° C and a final boiling point of about 400 ° C. 제4항 내지 제8항 중 어느 한 항에 있어서, 작동 중인 제1 가드 구역의 유입구 원료와 동시에 도입되는 상압 유분 및/또는 가스 오일의 양은 원료 중량의 약 1% 내지 50%에 해당하는 것인 수소화 처리 공정.The method according to any one of claims 4 to 8, wherein the amount of atmospheric oil and / or gas oil introduced simultaneously with the inlet feedstock in the first guard zone in operation corresponds to about 1% to 50% of the feedstock weight. Hydroprocessing process. 제6항 또는 제7항에 있어서, 상기 상압 증류 구역으로부터의 상압 잔류물의 적어도 일부는 감압 증류 구역으로 이송되고, 이 감압 증류 구역으로부터 감압 유분 및 감압 잔류물이 이 회수되며, 회수된 감압 유분의 적어도 일부는 작동 중인 제1 가드 구역의 유입구로 재순환되는 것인 수소화 처리 공정.8. The process according to claim 6 or 7, wherein at least a portion of the atmospheric residue from the atmospheric distillation zone is transferred to a vacuum distillation zone from which the vacuum fraction and the vacuum residue are recovered. At least a portion of which is recycled to the inlet of the first guard zone in operation. 제10항에 있어서, 상압 유분 및/또는 감압 유분의 적어도 일부는 접촉 분해 유닛으로 이송되고, 이 접촉 분해 유닛으로부터 LCO 분류 및 HCO 분류가 회수되며, 이들 분류 중 하나 또는 이들 분류의 혼합물 중 적어도 일부는 작동 중인 제1 가드 구역의 유입구로 이송되는 것인 수소화 처리 공정.12. The process of claim 10 wherein at least a portion of the atmospheric and / or reduced pressure fraction is sent to a catalytic cracking unit from which the LCO fraction and the HCO fraction are recovered and at least some of these fractions or a mixture of these fractions. Is sent to the inlet of the first guard zone in operation. 제1항 내지 제3항 중 어느 한 항에 있어서, c) 단계 동안 모든 가드 구역이 함께 사용되고, b) 단계에서 촉매가 재생된 가드 구역이 재연결되어, 가드 구역의 연결이 b) 단계에서 단락되기 전과 동일해지는 것인 수소화 처리 공정.The method according to any one of claims 1 to 3, wherein all guard zones are used together during step c) and the guard zone where the catalyst is regenerated in step b) is reconnected so that the connection of the guard zones is short-circuited in step b). Hydrogenation process to become the same as before. 제1항 내지 제12항 중 어느 한 항에 있어서, 조정 섹션이 상기 가드 구역과 연관되어, 유닛의 작동을 중단하지 않고 상기 가드 구역을 작동 중에 단락 또는 교환할 수 있게 하며, 상기 조정 섹션은 작동하지 않는 가드 구역에 수용되어 있는 촉매를 1 MPa 내지 5 MPa의 압력 범위로 조정하기 위해 조절되는 것인 수소화 처리 공정.13. The control section according to any one of the preceding claims, wherein an adjustment section is associated with the guard zone, allowing the guard zone to be shorted or exchanged during operation without interrupting operation of the unit, the adjustment section being actuated. And to adjust the catalyst contained in the unguarded zone to a pressure range of 1 MPa to 5 MPa. 제1항 내지 제13항 중 어느 한 항에 있어서, 아스팔텐을 함유하는 중유 또는 중유 분류로 이루어진 원료를 처리하기 위해, 원료를 상기 가드 구역으로 보내기전에 먼저 수소와 혼합한 후 하이드로비스브레이킹 조건을 인가하는 것인 수소화 처리 공정.14. The hydrobisbreaking condition according to any one of claims 1 to 13, in order to treat the raw material consisting of heavy oil or heavy oil fraction containing asphaltenes, the raw material is first mixed with hydrogen before being sent to the guard zone. Hydrogenation process to apply. 제7항, 제10항 또는 제11항 중 어느 한 항에 있어서, 상기 상압 잔류물에 용매 또는 용매 혼합물을 사용한 탈아스팔트 처리를 실시하며, 탈아스팔트 처리된 생성물의 적어도 일부를 작동 중인 제1 가드 구역의 유입구로 재순환시키는 것인 수소화 처리 공정.12. The first guard according to any one of claims 7, 10 or 11, wherein the atmospheric residue is subjected to deasphalting treatment using a solvent or solvent mixture and wherein at least a portion of the deasphalted product is in operation. Recycling to the inlet of the zone. 제10항 또는 제11항에 있어서, 상기 감압 잔류물에 용매 또는 용매 혼합물을 사용한 탈아스팔트 처리를 실시하며, 탈아스팔트 처리된 생성물의 적어도 일부를 작동 중인 제1 가드 구역의 유입구로 재순환시키는 것인 수소화 처리 공정.12. The process of claim 10 or 11, wherein the depressurized residue is subjected to a deasphalted treatment with a solvent or solvent mixture and wherein at least a portion of the deasphalted product is recycled to the inlet of the first guard zone in operation. Hydroprocessing process. 제1항 내지 제16항 중 어느 한 항에 있어서, 상기 반응기는 모두 고정상 반응기인 것인 수소화 처리 공정.17. The process of any of claims 1 to 16, wherein all of the reactors are fixed bed reactors. 제1항 내지 제17항 중 어느 한 항에 있어서, 가드 구역 반응기 및/또는 수소화 탈금속 섹션 반응기 및/또는 수소화 탈황 섹션 반응기 중 적어도 하나가 비등상 반응기인 것인 수소화 처리 공정.18. The hydroprocessing process according to claim 1, wherein at least one of the guard zone reactor and / or hydrodesulfurization section reactor and / or hydrodesulfurization section reactor is a boiling phase reactor. 제18항에 있어서, 상기 가드 구역용의 반응기는 모두 고정상 반응기이고, 상기 수소화 탈황 구역 내의 반응기는 모두 비등상 반응기인 것인 수소화 처리 공정.19. The process of claim 18, wherein all of the reactors for the guard zone are fixed bed reactors and all of the reactors in the hydrodesulfurization zone are boiling phase reactors. 제18항 또는 제19항에 있어서, 상기 가드 구역 내의 반응기는 모두 고정상 반응기이고, 상기 수소화 탈금속 구역 내의 반응기는 모두 비등상 반응기인 것인 수소화 처리 공정.20. The process of claim 18 or 19, wherein all of the reactors in the guard zone are fixed bed reactors and all of the reactors in the hydrodemetalization zone are boiling phase reactors.
KR1020037007692A 2000-12-11 2000-12-11 Process for hydrotreating a heavy hydrocarbon fraction with permutable reactors and reactors that can be short-circuited KR100783448B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2000/003472 WO2002048288A1 (en) 2000-12-11 2000-12-11 Method for hydrotreatment of a heavy hydrocarbon fraction with switchable reactors and reactors capable of being shorted out

Publications (2)

Publication Number Publication Date
KR20030059837A true KR20030059837A (en) 2003-07-10
KR100783448B1 KR100783448B1 (en) 2007-12-07

Family

ID=8848233

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020037007692A KR100783448B1 (en) 2000-12-11 2000-12-11 Process for hydrotreating a heavy hydrocarbon fraction with permutable reactors and reactors that can be short-circuited

Country Status (12)

Country Link
US (1) US20040055934A1 (en)
EP (1) EP1343857B1 (en)
JP (1) JP4697571B2 (en)
KR (1) KR100783448B1 (en)
CN (1) CN1322097C (en)
AU (1) AU2001226863A1 (en)
BR (1) BR0017384B1 (en)
CA (1) CA2432022A1 (en)
DE (1) DE60029645T2 (en)
MX (1) MXPA03005072A (en)
NO (1) NO332312B1 (en)
WO (1) WO2002048288A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917078B1 (en) * 2005-08-16 2009-09-15 리서치 인스티튜트 오브 페트롤리움 인더스트리 Process for hydroconverting of a heavy hydrocarbonaceous feedstock
KR20100071020A (en) * 2008-12-18 2010-06-28 아이에프피 Hydrocracking process including switchable reactors with feedstocks containing 200 ppm by weight - 2% by weight of asphaltenes

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20022185A1 (en) * 2002-10-15 2004-04-16 Enitecnologie Spa PROCESS FOR THE PREPARATION OF PHENOL BY HYDRODEXYGENATION OF BENZENDIOLS.
DE102007031680A1 (en) * 2007-07-06 2009-01-08 Thermo Fisher Scientific (Bremen) Gmbh Apparatus for providing gases, in particular for the isotope ratio analysis
WO2009073436A2 (en) * 2007-11-28 2009-06-11 Saudi Arabian Oil Company Process for catalytic hydrotreating of sour crude oils
US8372267B2 (en) * 2008-07-14 2013-02-12 Saudi Arabian Oil Company Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil
EP2300566B1 (en) * 2008-07-14 2016-09-07 Saudi Arabian Oil Company Process for the treatment of heavy oils using light hydrocarbon components as a diluent
WO2010009082A1 (en) * 2008-07-14 2010-01-21 Saudi Arabian Oil Company A prerefining process for the hydrodesulfurization of heavy sour crude oils to produce sweeter lighter crudes using moving catalyst system
FR2940143B1 (en) * 2008-12-18 2015-12-11 Inst Francais Du Petrole HYDRODEMETALLATION AND HYDRODESULFURIZATION CATALYSTS AND IMPLEMENTATION IN A SINGLE FORMULATION CHAINING PROCESS
WO2011005476A2 (en) * 2009-06-22 2011-01-13 Saudi Arabian Oil Company Alternative process for the treatment of heavy crudes in a coking refinery
FR2950072B1 (en) * 2009-09-11 2013-11-01 Inst Francais Du Petrole METHOD OF HYDROCONVERSION IN FIXED BED OF A CRUDE OIL, OFF OR NOT, USING PERMUTABLE REACTORS FOR THE PRODUCTION OF A SYNTHETIC RAW PRERAFFIN.
EP2486107A1 (en) * 2009-10-09 2012-08-15 Velocys Inc. Process for treating heavy oil
US8618011B2 (en) 2010-04-09 2013-12-31 Kellogg Brown & Root Llc Systems and methods for regenerating a spent catalyst
US8808535B2 (en) * 2010-06-10 2014-08-19 Kellogg Brown & Root Llc Vacuum distilled DAO processing in FCC with recycle
CN102311789A (en) * 2010-07-07 2012-01-11 中国石油化工股份有限公司 Heavy hydrocarbon flexible hydrogenation method
CN102311787B (en) * 2010-07-07 2014-05-21 中国石油化工股份有限公司 Method of hydrogenating liquefied petroleum gas to prepare ethylene cracking feed
CN102443438A (en) * 2010-10-12 2012-05-09 中国石油化工股份有限公司 Combined process for pretreating and catalytically cracking hydrocarbon oil
CN102465009B (en) * 2010-11-04 2014-04-16 中国石油化工股份有限公司 Multistage boiling bed heavy oil hydrogenation treatment method
CN102453547B (en) * 2010-10-15 2016-04-13 中国石油化工股份有限公司 A kind of heavy oil lightweight combination process
CN102453530B (en) * 2010-10-26 2015-05-20 中国石油化工股份有限公司 Hydrogenation method for processing heavy oil
FR2970260B1 (en) * 2011-01-10 2014-07-25 IFP Energies Nouvelles METHOD FOR HYDROTREATING HEAVY HYDROCARBON LOADS WITH PERMUTABLE REACTORS INCLUDING AT LEAST ONE SHORT-CIRCUIT STEP OF A CATALYTIC BED
FR2970261B1 (en) * 2011-01-10 2013-05-03 IFP Energies Nouvelles METHOD FOR HYDROPROCESSING HYDROCARBON HEAVY LOADS WITH PERMUTABLE REACTORS INCLUDING AT LEAST ONE PROGRESSIVE PERMUTATION STEP
FR2970478B1 (en) * 2011-01-18 2014-05-02 IFP Energies Nouvelles FIXED BED HYDROCONVERSION PROCESS OF A CRUDE OIL, DETAILED OR NOT, FRACTIONATION AND THEN DEASPHALIZATION OF THE HEAVY FRACTION FOR THE PRODUCTION OF A SYNTHETIC RAW PRERAFFIN
CN102952581B (en) * 2011-08-26 2015-05-27 中国石油天然气股份有限公司 Inferior heavy oil hydrotreatment process
CN102952579B (en) * 2011-08-26 2015-11-18 中国石油天然气股份有限公司 Improve the inferior heavy oil hydroprocessing technique of catalyst utilization to greatest extent
CN102952580B (en) * 2011-08-26 2015-05-13 中国石油天然气股份有限公司 Process for hydrotreating inferior heavy oil with high content of metal, sulfur and nitrogen
CN103013567B (en) * 2011-09-28 2015-02-25 中国石油化工股份有限公司 Method for preparing needle coke material by catalytic cracking slurry
FR2981659B1 (en) * 2011-10-20 2013-11-01 Ifp Energies Now PROCESS FOR CONVERTING PETROLEUM LOADS COMPRISING A BOILING BED HYDROCONVERSION STEP AND A FIXED BED HYDROTREATMENT STEP FOR THE PRODUCTION OF LOW SULFUR CONTENT
CN103059931B (en) * 2011-10-21 2014-12-31 中国石油化工股份有限公司 Residual oil hydrotreating method
CN103059928B (en) * 2011-10-24 2014-12-31 中国石油化工股份有限公司 Hydrotreating device and application thereof as well as residual oil hydrotreating method
CN103102940B (en) * 2011-11-10 2016-01-20 中国石油化工股份有限公司 A kind of combined technical method of mink cell focus hydrotreatment
CN103102941B (en) * 2011-11-10 2015-07-22 中国石油化工股份有限公司 Hydrotreatment method for heavy oil by using multistage fluidized beds
FR2983866B1 (en) 2011-12-07 2015-01-16 Ifp Energies Now PROCESS FOR HYDROCONVERSION OF PETROLEUM LOADS IN BEDS FOR THE PRODUCTION OF LOW SULFUR CONTENT FIELDS
CN103289735B (en) * 2012-03-01 2015-09-23 中国石油天然气股份有限公司 A kind of inferior heavy oil is through catalyst combination hydroprocessing technique
CN103289734B (en) * 2012-03-01 2015-11-18 中国石油天然气股份有限公司 The inferior heavy oil of high metal, high-sulfur and high nitrogen is through catalyst combination hydroprocessing technique
CN103289736B (en) * 2012-03-01 2015-09-23 中国石油天然气股份有限公司 Improve the inferior heavy oil catalyst combination hydroprocessing technique of catalyst utilization to greatest extent
CN103540349B (en) * 2012-07-12 2016-02-10 中国石油天然气股份有限公司 Inferior heavy oil, the residual hydrocracking combination process in a kind of extending catalyst work-ing life
CN103773429B (en) * 2012-10-24 2015-07-22 中国石油化工股份有限公司 Residual oil hydrotreating method
FR3000098B1 (en) 2012-12-20 2014-12-26 IFP Energies Nouvelles PROCESS WITH SEPARATING TREATMENT OF PETROLEUM LOADS FOR THE PRODUCTION OF LOW SULFUR CONTENT FIELDS
FR3000097B1 (en) * 2012-12-20 2014-12-26 Ifp Energies Now INTEGRATED PROCESS FOR THE TREATMENT OF PETROLEUM LOADS FOR THE PRODUCTION OF LOW SULFUR CONTENT FIELDS
US9650312B2 (en) 2013-03-14 2017-05-16 Lummus Technology Inc. Integration of residue hydrocracking and hydrotreating
US8974051B2 (en) * 2013-05-31 2015-03-10 Xerox Corporation Systems and methods for facilitating magnetic ink character recognition (MICR) image forming using digital offset lithographic printing techniques
FR3014897B1 (en) 2013-12-17 2017-04-07 Ifp Energies Now NEW INTEGRATED PROCESS FOR THE TREATMENT OF PETROLEUM LOADS FOR THE PRODUCTION OF LOW SULFUR AND SEDIMENT FIELDS
FR3015514B1 (en) * 2013-12-23 2016-10-28 Total Marketing Services IMPROVED PROCESS FOR DESAROMATIZATION OF PETROLEUM CUTTERS
WO2016001230A1 (en) * 2014-06-30 2016-01-07 Haldor Topsøe A/S Process for sulfidation of guard catalyst
FR3024459B1 (en) * 2014-07-30 2018-04-13 Ifp Energies Now METHOD FOR FRACTIONING HYDROCARBON LOADS USING A DEVICE COMPRISING PERMUTABLE BACKGROUND AREAS
CN105524653B (en) * 2014-09-29 2017-05-24 中国石油化工股份有限公司 Hydrotreatment method for residual oil
CN105738148B (en) * 2014-12-06 2018-11-02 中国石油化工股份有限公司 A kind of solid catalyst on-line period method
CN106701172B (en) * 2015-11-12 2018-06-12 中国石油化工股份有限公司 A kind of process for hydrogenating residual oil
FR3045651B1 (en) * 2015-12-22 2018-01-19 IFP Energies Nouvelles METHOD FOR SELECTIVE HYDROGENATION OF OLEFINIC LOADS WITH A MAIN REACTOR THRESHOLD AND A REDUCED SIZE REACTION REACTOR
FR3050735B1 (en) * 2016-04-27 2020-11-06 Ifp Energies Now CONVERSION PROCESS INCLUDING PERMUTABLE HYDRODEMETALLATION GUARD BEDS, A FIXED BED HYDRO-TREATMENT STAGE AND A PERMUTABLE REACTOR HYDRO-CRACKING STAGE
FR3053356A1 (en) * 2016-06-30 2018-01-05 Ifp Energies Now PROCESS FOR TREATING HEAVY LOADS OF HYDROCARBONS
CN107875978B (en) * 2016-09-29 2021-06-11 中国石油化工股份有限公司 Grading filling method and application of hydrogenation catalyst
US20180230389A1 (en) 2017-02-12 2018-08-16 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US10253272B2 (en) 2017-06-02 2019-04-09 Uop Llc Process for hydrotreating a residue stream
US10865350B2 (en) 2017-09-30 2020-12-15 Uop Llc Process for hydroprocessing a hydrocarbon stream
CN109705907B (en) * 2017-10-26 2021-03-12 中国石油化工股份有限公司 Method for processing residual oil raw material
CN109705906B (en) * 2017-10-26 2021-03-12 中国石油化工股份有限公司 Method for prolonging operation time of residual oil hydrogenation device
CN109705898B (en) * 2017-10-26 2021-03-12 中国石油化工股份有限公司 Process for hydrotreating residua feedstocks
CN109722333B (en) * 2017-10-27 2021-10-08 中国石油化工股份有限公司 Method for improving running period of waste lubricating oil regenerating device
CN110684556B (en) * 2018-07-06 2021-11-16 中国石油化工股份有限公司 Hydrotreating method and system
CN109453667B (en) * 2018-10-31 2021-08-06 四川大学 Regeneration method of desulfurization catalyst and ammonium sulfate preparation method and equipment using same
CN112852480B (en) * 2019-11-28 2022-12-02 中国石油天然气股份有限公司 Grading method of coking gasoline hydrofining catalyst and hydrofining method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3910834A (en) * 1972-08-29 1975-10-07 Universal Oil Prod Co Moving bed reactor conversion process for particulate containing hydrocarbons such as shale oil and tar-sands oil
US3876533A (en) * 1974-02-07 1975-04-08 Atlantic Richfield Co Guard bed system for removing contaminant from synthetic oil
US4017382A (en) * 1975-11-17 1977-04-12 Gulf Research & Development Company Hydrodesulfurization process with upstaged reactor zones
US4118310A (en) * 1977-06-28 1978-10-03 Gulf Research & Development Company Hydrodesulfurization process employing a guard reactor
NL191022C (en) * 1978-01-20 1994-12-16 Shell Int Research Device suitable for the catalytic hydrotreating of heavy hydrocarbon oils.
US4925554A (en) * 1988-02-05 1990-05-15 Catalysts & Chemicals Industries Co., Ltd. Hydrotreating process for heavy hydrocarbon oils
FR2660322B1 (en) * 1990-03-29 1992-06-19 Inst Francais Du Petrole PROCESS FOR HYDROTREATING AN OIL RESIDUE OR HEAVY OIL WITH A VIEW TO REFINING THEM AND CONVERTING THEM INTO LIGHTER FRACTIONS.
FR2681871B1 (en) * 1991-09-26 1993-12-24 Institut Francais Petrole PROCESS FOR HYDROTREATING A HEAVY FRACTION OF HYDROCARBONS WITH A VIEW TO REFINING IT AND CONVERTING IT TO LIGHT FRACTIONS.
FR2784687B1 (en) * 1998-10-14 2000-11-17 Inst Francais Du Petrole PROCESS FOR HYDROTREATING A HEAVY HYDROCARBON FRACTION WITH PERMUTABLE REACTORS AND INTRODUCING A MEDIUM DISTILLATE
CN1119395C (en) * 1999-03-19 2003-08-27 中国石油化工集团公司 Two-stage fraction oil hydrogenating and arene eliminating process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917078B1 (en) * 2005-08-16 2009-09-15 리서치 인스티튜트 오브 페트롤리움 인더스트리 Process for hydroconverting of a heavy hydrocarbonaceous feedstock
KR20100071020A (en) * 2008-12-18 2010-06-28 아이에프피 Hydrocracking process including switchable reactors with feedstocks containing 200 ppm by weight - 2% by weight of asphaltenes

Also Published As

Publication number Publication date
JP2004519533A (en) 2004-07-02
CN1484684A (en) 2004-03-24
NO332312B1 (en) 2012-08-27
AU2001226863A1 (en) 2002-06-24
WO2002048288A1 (en) 2002-06-20
CA2432022A1 (en) 2002-06-20
NO20032620L (en) 2003-08-08
JP4697571B2 (en) 2011-06-08
EP1343857B1 (en) 2006-07-26
US20040055934A1 (en) 2004-03-25
DE60029645T2 (en) 2006-11-30
DE60029645D1 (en) 2006-09-07
BR0017384B1 (en) 2011-04-05
KR100783448B1 (en) 2007-12-07
MXPA03005072A (en) 2004-05-24
NO20032620D0 (en) 2003-06-10
CN1322097C (en) 2007-06-20
BR0017384A (en) 2004-03-02
EP1343857A1 (en) 2003-09-17

Similar Documents

Publication Publication Date Title
KR100783448B1 (en) Process for hydrotreating a heavy hydrocarbon fraction with permutable reactors and reactors that can be short-circuited
KR100564128B1 (en) Process for hydrotreatment of a heavy hydrocarbon fraction using permutable reactors and introduction of a middle distillate
KR100221005B1 (en) Hydrotreating process for heavy hydrocarbon fraction
KR0136089B1 (en) Process for hydrotreatment of petroleum residue or heavy oil for reconversion to lighter frac
TWI617661B (en) Process with separation for treating petroleum feedstocks for the production of fuel oils with a low sulfur content
US9394493B2 (en) Pressure cascaded two-stage hydrocracking unit
RU2570948C2 (en) Hydrotreating method for heavy hydrocarbons in interchangeable reactors including at least one stage of catalytic layer bypass
US20140299515A1 (en) Process for conversion of petroleum feed comprising an ebullated bed hydroconversion step in a fixed bed hydrotreatment step for the production of low sulphur content fuel
CA2896247C (en) Intergration of residue hydrocracking and solvent deasphalting
US9834731B2 (en) Process for converting petroleum feedstocks comprising a stage of fixed-bed hydrotreatment, a stage of ebullating-bed hydrocracking, a stage of maturation and a stage of separation of the sediments for the production of fuel oils with a low sediment content
KR101831039B1 (en) Integration of residue hydrocracking and hydrotreating
CA2897212C (en) Residue hydrocracking processing
KR20190082994A (en) Multi-stage resid hydrocracking
EA037049B1 (en) Residue hydrocracking
US11279886B2 (en) Hydrocracking process and system including separation of heavy poly nuclear aromatics from recycle by sulfonation
CN110408428B (en) Method for treating residual oil by combined process
CN110408430B (en) Method for treating heavy hydrocarbon by combined process
WO2012142723A1 (en) Combined method for hydrogenation and catalytic cracking of residual oil

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121129

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131129

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141201

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151202

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161129

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171128

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181129

Year of fee payment: 12