KR20030056379A - Small bore tube heat exchanger - Google Patents

Small bore tube heat exchanger Download PDF

Info

Publication number
KR20030056379A
KR20030056379A KR1020010086583A KR20010086583A KR20030056379A KR 20030056379 A KR20030056379 A KR 20030056379A KR 1020010086583 A KR1020010086583 A KR 1020010086583A KR 20010086583 A KR20010086583 A KR 20010086583A KR 20030056379 A KR20030056379 A KR 20030056379A
Authority
KR
South Korea
Prior art keywords
heat exchanger
heat transfer
tube
refrigerant tube
transfer fin
Prior art date
Application number
KR1020010086583A
Other languages
Korean (ko)
Other versions
KR100512113B1 (en
Inventor
이욱용
고철수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR10-2001-0086583A priority Critical patent/KR100512113B1/en
Publication of KR20030056379A publication Critical patent/KR20030056379A/en
Application granted granted Critical
Publication of KR100512113B1 publication Critical patent/KR100512113B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/124Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/08Fins with openings, e.g. louvers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: A small bore tube heat exchanger is provided to improve dehumidifying performance. CONSTITUTION: A small bore tube heat exchanger includes a refrigerant tube(10) formed with a circular tube successively bent, and having a diameter(D) smaller than 5.5mm; and a plurality of heat transfer fins(12) arranged in parallel at regular intervals, fixed on the refrigerant tube by welding, and mounted to cross the bent refrigerant tube. The heat transfer fin is divided into a front part(121); and a rear part(122) contacting with flowing air after the front part. Width(W1) of the front part is 10-11mm, and width(W2) of the rear part is 12-15mm. An interval(RP) between the refrigerant tube penetrating the front part of the heat transfer fin and a refrigerant tube(10') penetrating the rear part of the heat transfer fin is 10-11mm. An interval between refrigerant tubes in each of the front part and the rear part of the heat transfer fin is 19-20mm. Humidify of air introduced through the front part of the heat transfer fin is reduced as passing the rear part of the heat transfer fin.

Description

세경관 열교환기{Small bore tube heat exchanger}Small bore tube heat exchanger

본 발명은 열교환기에 관한 것으로서, 보다 상세하게는 전열핀이 비대칭형으로 구성된 세경관 열교환기에 관한 것이다.The present invention relates to a heat exchanger, and more particularly to a tubular heat exchanger is configured in which the heat transfer fin is asymmetrical.

일반적으로 공조기 등에서 사용되는 핀튜브형 열교환기는, 도 1에 나타난 것과 같이 소정 길이의 원형관이 ' ?? ' 형태로 연속 벤딩(bending)되어 일종의 다중겹 형상으로 이루어진 냉매튜브(10)와, 일정한 간격을 두고 다수개가 평행하게 배열되어 용접에 의해 냉매튜브(10)에 부착되며, 외견상 벤딩된 냉매튜브(10)를 가로지르는 형태로 장착되는 얇은 패널형태의 전열핀(12)으로 구성되어 있다.In general, a fin tube type heat exchanger used in an air conditioner or the like has a circular tube having a predetermined length as shown in FIG. 'Bending in the form of a continuous (bending) a kind of a multi-layered refrigerant tube 10, and a plurality of parallel arrangements at regular intervals are attached to the refrigerant tube 10 by welding, apparently bent refrigerant tube It consists of the thin-panel heat-transfer fins 12 mounted in the form which crosses (10).

상기 냉매튜브(10)는 도 2에 나타난 것과 같이 대개 하나의 전열핀(12)을 폭방향으로 이중관통하고, 엇갈리게 배치되는데, 전후 냉매튜브(10)(10') 간의 중심선(도면상 가상선 표시)을 기준으로 전열핀(12)을 양분하고, 유동되는 공기(도면상 굵은 화살표시)와 먼저 접하는 부위를 전반부(121), 나중에 접하는 부위를 후반부(122)라 할 때, 전반부(121)의 폭(W1)과 후반부(122)의 폭(W2)은 동일하게 구성되어 있다.As shown in FIG. 2, the refrigerant tube 10 is generally double-passed through a single heating fin 12 in the width direction, and is alternately arranged. The center line between the front and rear refrigerant tubes 10 and 10 ′ (imaginary line on the drawing) is shown. When the heat transfer fin 12 is divided into two parts, the first contact portion 121 is first contacted with the flowing air (when thick arrows in the drawing) and the second contact portion 122 is later contacted with the first half 121. The width W1 and the width W2 of the second half portion 122 are configured to be the same.

그리고, 전열핀(12)에는 열교환효율 향상을 위해 루버(12a)가 형성되어 있는데, 루버(12a)는 전열핀(12)을 부분적으로 절개하여 절곡시키는 방식으로 만들어지며, 루버(12a)가 절개방식으로 만들어지기 때문에 그 일측에는 루버(12a)와 동일한 면적의 슬릿(미도시)이 형성된다.In addition, the louver 12a is formed in the heat transfer fin 12 to improve heat exchange efficiency. The louver 12a is made by partially cutting the heat transfer fin 12 and bending the louver 12a. Since it is made in a manner, a slit (not shown) having the same area as the louver 12a is formed at one side thereof.

이와 같은 종래의 핀튜브형 열교환기에 의하면 냉매가 냉매튜브(10)를 통해 유동하는 과정에서 외기와 열교환함으로써 증발기 내지는 응축기로서 작용하게 되며, 전열핀(12)에 의해 냉매튜브(10)의 전열면적이 확대되고, 각 전열핀(12) 사이를 통과하는 공기가 루버(12a)에 의해 만곡유동하기 때문에 평판형 전열핀에 비해 공기와 전열핀(12)의 접촉길이가 길어짐으로써 열교환기의 열전달 효율이 향상된다.According to the conventional fin tube type heat exchanger, the refrigerant acts as an evaporator or a condenser by exchanging heat with outside air in the process of flowing through the refrigerant tube 10, and the heat transfer area of the refrigerant tube 10 is transferred by the heat transfer fins 12. Since the air passing through each of the heat transfer fins 12 is curved and flows by the louver 12a, the contact length between the air and the heat transfer fins 12 is longer than that of the flat heat transfer fins, thereby increasing the heat transfer efficiency of the heat exchanger. Is improved.

한편, 일반적인 핀튜브형 열교환기는 냉매튜브(10)의 직경(D)이 7mm 이상으로서, 비교적 많은 냉매봉입량을 필요로 하고, 전체적인 부피 또한 크다고 볼 수 있는데, 최근의 열교환기는 이러한 단점을 보완하기 위하여 냉매튜브(10)의 직경(D)이 5mm 인 이른바 세경관 타입으로 구성되는 추세이다.On the other hand, the general fin tube type heat exchanger has a diameter (D) of the refrigerant tube 10 is 7mm or more, it requires a relatively large amount of refrigerant loading, the overall volume can be seen as a large, the recent heat exchanger to compensate for this disadvantage The diameter D of the refrigerant tube 10 is a trend of being composed of a so-called narrow tube type of 5 mm.

상기 세경관 열교환기는 냉매튜브(10)의 직경(D)이 감소됨에 따라 전열핀(12)의 효율저하를 방지하기 위해 전열핀(12)의 크기 또한 축소된 구조로 이루어져 있다.The tubular heat exchanger has a structure in which the size of the heat transfer fins 12 is also reduced in order to prevent the efficiency of the heat transfer fins 12 from decreasing as the diameter D of the refrigerant tube 10 decreases.

이러한 세경관 열교환기가 응축기로서 사용될 경우, 온도차에 의한 열전달작용을 수행하는 특성상 공기측 열전달 계수가 높아지기 때문에 기존의 열교환기와 성능면에서 별다른 차이가 없다.When such a tubular heat exchanger is used as a condenser, there is no difference in performance from the existing heat exchanger because the heat transfer coefficient of the air is increased due to the heat transfer effect due to the temperature difference.

그러나, 증발기로서 사용될 경우에는 온도차 및 습도차에 의한 열전달 작용을 수행하게 되고, 전열핀(12) 또한 냉매튜브(10)의 직경감소와 비례하여 축소되었기 때문에 전열핀(12)과 공기의 접촉면적이 감소되어 습윤성(wettability)이 저하된다.However, when used as an evaporator, the heat transfer action is performed by the temperature difference and the humidity difference, and the heat transfer fin 12 is also reduced in proportion to the diameter decrease of the refrigerant tube 10, so that the heat transfer fin 12 and the contact area of the air are reduced. This decreases and the wettability is lowered.

따라서, 기존의 열교환기와 세경관 열교환기의 차이를 자체만을 비교할 경우에는 도 3에 나타난 것과 같이 물질전달계수의 차이로 파악할 수 있으며, 열교환기가 적용된 열교환 시스템에서는 도 4에 나타난 것과 같은 제습 능력으로 파악할 수 있다.Therefore, when comparing the difference between the conventional heat exchanger and the capillary heat exchanger alone, it can be seen as the difference in the material transfer coefficient as shown in FIG. 3, and in the heat exchanger system to which the heat exchanger is applied, it can be understood as the dehumidification capacity as shown in FIG. 4. Can be.

또한, 기존의 열교환기와 세경관 열교환기의 차이를 도 5에서와 같은 공기선도를 통해 살펴보면 다음과 같다.In addition, the difference between the conventional heat exchanger and the tubular heat exchanger is as follows through the air diagram as shown in FIG.

먼저, 기존의 열교환기에 있어서는 전열핀과 접하는 공기가 전반부를 통과하면서 습도변화 없이 온도가 낮아지게 되며(① -> ②), 후반부를 통과하면서 온도와 습도가 동시에 대폭 낮아지는 반면(② -> ③), 세경관 열교환기에 있어서는 전열핀 후반부에서의 습도변화(② -> ③')가 기존 열교환기에 훨씬 못미치는 것을 알 수 있다.First, in the existing heat exchanger, the air contacting the heating fins passes through the first half and the temperature is lowered without changing humidity (①-> ②), while the temperature and humidity are drastically lowered at the same time while passing through the second half (②-> ③). ), In the tubular heat exchanger, it can be seen that the humidity change (②-> ③ ') in the latter part of the heat transfer fin is far less than that of the existing heat exchanger.

그러므로, 상술한 바와 같은 종래의 세경관 열교환기에 의하면 기존의 열교환기에 비해 제습작용이 미약하게 수행되기 때문에 결과적으로 열교환 시스템의 성능이 저하된다는 문제가 발생한다.Therefore, according to the conventional tubular heat exchanger as described above, since the dehumidification is performed in comparison with the conventional heat exchanger, a problem arises that the performance of the heat exchange system is lowered as a result.

본 발명은 상기한 종래 문제점을 해결하고자 안출된 것으로서, 전열핀의 전반부와 후반부의 폭이 다른 비대칭 구조로 이루어짐으로써 제습기능이 강화된 세경관 열교환기의 제공을 목적으로 한다.The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a tubular heat exchanger having a dehumidification function by being made of an asymmetrical structure having different widths in the first half and the second half of the heating fin.

도 1은 일반적인 열교환기의 구조를 나타낸 사시도이다.1 is a perspective view showing the structure of a general heat exchanger.

도 2는 일반적인 열교환기의 구조를 나타낸 단면도이다.2 is a cross-sectional view showing the structure of a general heat exchanger.

도 3은 일반적인 열교환기와 세경관 열교환기의 물질전달계수를 비교하여 나타낸 그래프이다.3 is a graph illustrating a comparison of the mass transfer coefficients between the general heat exchanger and the tubular heat exchanger.

도 4는 일반적인 열교환기와 세경관 열교환기의 제습능력을 비교하여 나타낸 그래프이다.Figure 4 is a graph showing a comparison of the dehumidification capacity of the general heat exchanger and the tubular heat exchanger.

도 5는 일반적인 열교환기와 세경관 열교환기를 비교하여 나타낸 공기선도이다.Figure 5 is an air line diagram showing a comparison between the general heat exchanger and the tubular heat exchanger.

도 6은 본 발명의 실시예에 따른 세경관 열교환기의 구조를 나타낸 단면도이다.6 is a cross-sectional view showing the structure of a capillary heat exchanger according to an embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10: 냉매튜브 12: 전열핀10: refrigerant tube 12: heating fin

121: 전반부 122: 후반부121: first half 122: second half

12a: 루버12a: louver

상기 목적을 달성하기 위하여 제공되는 세경관 열교환기는, 소정 길이의 원형관이 연속 벤딩되어 다중겹 형상으로 이루어진 직경 5.5mm 이하의 냉매튜브와, 일정한 간격을 두고 다수개가 평행하게 배열되어 용접에 의해 냉매튜브에 부착되며, 외견상 벤딩된 냉매튜브를 가로지르는 형태로 장착되는 얇은 패널형태로서, 전후 냉매튜브 간의 중심선을 기준으로 유동되는 공기와 먼저 접하는 전반부, 나중에 접하는 후반부로 구분되는 전열핀을 포함하며, 상기 전열핀이 전반부 보다 후반부의 폭이 큰 비대칭형으로 이루어지는 것을 특징으로 한다.In order to achieve the above object, the tubular heat exchanger includes a refrigerant tube having a diameter of 5.5 mm or less formed in a multi-ply shape in which a circular tube of a predetermined length is continuously bent, and a plurality of refrigerant tubes are arranged in parallel at regular intervals to form a refrigerant by welding. It is attached to the tube and is mounted in the form of a thin panel that crosses the seemingly bent refrigerant tube, and includes a heating fin divided into a first half contacting the air flowing first and a second half touching later based on the centerline between the front and rear refrigerant tubes. In addition, the heat transfer fin is characterized in that the asymmetrical shape of the width of the second half larger than the first half.

여기서, 상기 전열핀은 전반부의 폭이 10 ~ 11mm, 후반부의 폭이 12 ~ 15mm이고, 전열핀의 전반부를 관통하는 냉매튜브와 후반부를 관통하는 냉매튜브 사이의 간격은 10 ~ 11mm 로 이루어진다.Here, the heat transfer fin has a width of 10-11 mm in the first half and a width of 12-15 mm in the second half, and a gap between the coolant tube passing through the first half of the heat transfer fin and the coolant tube passing through the second half is 10-11 mm.

이하, 본 발명의 실시예를 첨부된 도 6을 참조로 하여 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to FIG. 6.

본 발명의 실시예에 따른 세경관 열교환기는 도면에 나타난 것과 같이 소정 길이의 원형관이 연속 벤딩되어 다중겹 형상으로 이루어지며 직경(D)이 5.5mm 이하인 냉매튜브(10)와, 일정한 간격을 두고 다수개가 평행하게 배열되어 용접에 의해 냉매튜브(10)에 부착되며 외견상 벤딩된 냉매튜브(10)를 가로지르는 형태로 장착되는 얇은 패널형태로 이루어지는 전열핀(12)을 포함하여 이루어진다.The tubular heat exchanger according to the embodiment of the present invention has a multi-layered shape in which a circular tube of a predetermined length is continuously bent as shown in the drawing and has a diameter (D) of 5.5 mm or less with the refrigerant tube 10 at regular intervals. A plurality of heat transfer fins 12 are arranged in parallel and attached to the refrigerant tube 10 by welding, and are formed in a thin panel form mounted in a form that crosses the apparently bent refrigerant tube 10.

여기서, 상기 전열핀(12)은 전후 냉매튜브(10) 간의 중심선을 기준으로 유동되는 공기와 먼저 접하는 전반부(121), 나중에 접하는 후반부(122)로 구분되며, 전반부(121) 의 폭(W1)보다 후반부(122)의 폭(W2)이 큰 비대칭형으로 이루어지는데, 구체적으로는 전반부(121)의 폭(W1)이 10 ~ 11mm, 후반부(122)의 폭(W2)이 12 ~ 15mm로 구성된다.Here, the heat transfer fin 12 is divided into a first half portion 121 that comes into contact with air flowing first and a second half portion 122 that comes into contact with air flowing on the basis of the center line between the front and rear refrigerant tubes 10, and the width W1 of the first half portion 121. The width (W2) of the second half 122 is made of a larger asymmetric shape, specifically, the width (W1) of the first half 121 is composed of 10 ~ 11mm, the width (W2) of the second half 122 is composed of 12 ~ 15mm. do.

그리고, 전열핀(12)의 전반부(121)를 관통하는 냉매튜브(10)와 후반부(122)를 관통하는 냉매튜브(10') 사이의 간격(RP)은 10 ~ 11mm로 이루어지며, 각 반부(121)(122)내에서 냉매튜브(10)와 냉매튜브(10) 사이의 간격(SP)은 19 ~ 20mm 로 유지되는 것이 바람직하다.In addition, the interval RP between the refrigerant tube 10 penetrating the first half 121 of the heat transfer fin 12 and the refrigerant tube 10 'penetrating the second half 122 is 10 to 11 mm, and each half The spacing SP between the coolant tube 10 and the coolant tube 10 in the 121 and 122 is preferably maintained at 19 to 20 mm.

상술한 바와 같이 구성되는 본 발명의 실시예에 따른 세경관 열교환기에 의하면 전열핀(12)의 전반부(121)를 거쳐 유입된 공기가 후반부(122)를 통과하면서 습도가 낮아지게 되는데, 후반부(122)의 폭(W2)이 종래에 비해 길기 때문에 습윤성이 증가하여 습도의 강하량이 종래 보다 커지게 된다.According to the tubular heat exchanger according to the embodiment of the present invention configured as described above, the air introduced through the first half portion 121 of the heat transfer fin 12 is lowered while passing through the second half portion 122, and the second half portion 122. Since the width (W2) of the () is longer than in the prior art, the wettability is increased, and the amount of humidity drop is larger than in the related art.

따라서, 본 실시예에 따른 열교환기가 적용된 열교환 시스템에 의해 냉방작용이 수행되어 열교환기가 증발기로서 사용될 경우에는, 냉각작용과 더불어 제습작용 또한 효과적으로 수행된다.Therefore, when the cooling action is performed by the heat exchanger system to which the heat exchanger is applied according to the present embodiment and the heat exchanger is used as the evaporator, the dehumidification action is effectively performed as well as the cooling action.

이상에서 설명한 바와 같이 본 발명에 따른 세경관 열교환기는, 직경이 작은 냉매튜브의 구조상 기존의 열교환기에 비해 부피가 작고, 전반부 보다 후반부의 폭이 긴 전열핀의 비대칭 구조상, 제습 능력이 떨어지지 않기 때문에 열교환 시스템에 적용되어 상품성이 뛰어나고, 냉방 및 제습 기능을 효과적으로 수행한다는 이점이 있다.As described above, the tubular heat exchanger according to the present invention has a smaller diameter than the conventional heat exchanger due to the structure of the refrigerant tube with a small diameter, and the dehumidification capacity is not reduced due to the asymmetrical structure of the heat transfer fin having a wider second half than the first half. Applied to the system has excellent merchandise, has the advantage of performing the cooling and dehumidification function effectively.

Claims (3)

소정 길이의 원형관이 연속 벤딩되어 다중겹 형상으로 이루어진 냉매튜브와,A refrigerant tube made of a multi-ply shape by continuously bending a circular tube of a predetermined length; 일정한 간격을 두고 다수개가 평행하게 배열되어 용접에 의해 냉매튜브에 부착되며, 외견상 벤딩된 냉매튜브를 가로지르는 형태로 장착되는 얇은 패널형태로서, 전후 냉매튜브 간의 중심선을 기준으로 유동되는 공기와 먼저 접하는 전반부, 나중에 접하는 후반부로 구분되는 전열핀을 포함하며,A plurality of panels are arranged in parallel at regular intervals and are attached to the refrigerant tube by welding, and are thin panels that are mounted in a form that crosses the seemingly bent refrigerant tube. Heat transfer fins are divided into the first half, the second half to contact later, 냉매튜브의 직경이 5.5mm 이하인 세경관 열교환기에 있어서;In the tubular heat exchanger having a diameter of the refrigerant tube of less than 5.5mm; 상기 전열핀은 전반부 보다 후반부의 폭이 큰 비대칭형으로 이루어지는 것을 특징으로 하는 세경관 열교환기.The heat exchange fin is a narrow tube heat exchanger, characterized in that the width of the rear portion is made larger than the first half. 제1항에 있어서, 상기 전열핀은The method of claim 1, wherein the heat transfer fin 전반부의 폭이 10 ~ 11mm, 후반부의 폭이 12 ~ 15mm 인 것을 특징으로 하는 세경관 열교환기.A tubular heat exchanger having a width of 10 to 11 mm in the first half and a width of 12 to 15 mm in the second half. 제1항에 있어서,The method of claim 1, 상기 전열핀의 전반부를 관통하는 냉매튜브와 후반부를 관통하는 냉매튜브 사이의 간격은 10 ~ 11mm 인 것을 특징으로 하는 세경관 열교환기.The tubular heat exchanger characterized in that the interval between the refrigerant tube penetrating the first half of the heat transfer fin and the refrigerant tube penetrating the second half is 10 ~ 11mm.
KR10-2001-0086583A 2001-12-28 2001-12-28 Small bore tube heat exchanger KR100512113B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0086583A KR100512113B1 (en) 2001-12-28 2001-12-28 Small bore tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0086583A KR100512113B1 (en) 2001-12-28 2001-12-28 Small bore tube heat exchanger

Publications (2)

Publication Number Publication Date
KR20030056379A true KR20030056379A (en) 2003-07-04
KR100512113B1 KR100512113B1 (en) 2005-09-02

Family

ID=32214577

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0086583A KR100512113B1 (en) 2001-12-28 2001-12-28 Small bore tube heat exchanger

Country Status (1)

Country Link
KR (1) KR100512113B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100533007C (en) * 2006-10-31 2009-08-26 东芝开利株式会社 Heat exchanger and outdoor unit of air-conditioner having the same
WO2014104576A1 (en) * 2012-12-26 2014-07-03 주식회사 경동나비엔 Pin-tube type heat exchanger
CN105659039A (en) * 2013-10-25 2016-06-08 三菱电机株式会社 Heat exchanger and refrigeration cycle device using said heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196384A (en) * 1992-01-22 1993-08-06 Mitsubishi Electric Corp Heat exchanger
JP3132413B2 (en) * 1997-03-28 2001-02-05 木村工機株式会社 Plate fin coil
JPH1122995A (en) * 1997-07-04 1999-01-26 Daikin Ind Ltd Air heat-exchanger
JPH1151586A (en) * 1997-08-01 1999-02-26 Matsushita Refrig Co Ltd Heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100533007C (en) * 2006-10-31 2009-08-26 东芝开利株式会社 Heat exchanger and outdoor unit of air-conditioner having the same
WO2014104576A1 (en) * 2012-12-26 2014-07-03 주식회사 경동나비엔 Pin-tube type heat exchanger
CN104884889A (en) * 2012-12-26 2015-09-02 庆东纳碧安株式会社 Pin-tube type heat exchanger
US9989316B2 (en) 2012-12-26 2018-06-05 Kyungdong Navien Co., Ltd. Fin-tube type heat exchanger
CN105659039A (en) * 2013-10-25 2016-06-08 三菱电机株式会社 Heat exchanger and refrigeration cycle device using said heat exchanger

Also Published As

Publication number Publication date
KR100512113B1 (en) 2005-09-02

Similar Documents

Publication Publication Date Title
EP2031335A2 (en) Heat Exchanger and Refrigeration Cycle Apparatus Having the Same
JP2004205124A (en) Plate fin for heat exchanger and heat exchanger core
WO2013161792A1 (en) Heat exchanger, method for producing same, and refrigeration cycle device
JP3284904B2 (en) Heat exchanger
KR20060012303A (en) Heat exchanger fin, heat exchanger, condensers, and evaporators
EP1486748A1 (en) Heat exchanger, heat exchanger manufacturing method, and air conditioner
KR100512113B1 (en) Small bore tube heat exchanger
JP2006349208A (en) Heat exchanger
JP2000154989A (en) Air heat exchanger
JP2001091101A (en) Heat exchanger for air conditioner
JPH02298796A (en) Heat exchanger core
JPH02166394A (en) Heat exchanger with fin
JP2002031434A (en) Heat exchanger for air conditioner
JPH0545023A (en) Heat exchanger
JPS61159094A (en) Finned heat exchanger
JPH06147532A (en) Air conditioner
JPH0933189A (en) Heat exchanger for outdoor machine
JP2001041670A (en) Cross fin tube type heat exchanger
KR100484656B1 (en) Heat exchanger
JP2003021485A (en) Fin tube heat exchanger
JPS63197887A (en) Heat exchanger
JP2002257483A (en) Plate fin type heat exchanger
JP2002228290A (en) Air conditioner
JP2001004291A (en) Heat exchanger and method for manufacturing same
KR20030063980A (en) Parallel flow type heat exchanger

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120727

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130724

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140724

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee