KR20030056061A - High Gloss Thermoplastic Resin Composition Having High Flowability and Method of Preparing the Same - Google Patents

High Gloss Thermoplastic Resin Composition Having High Flowability and Method of Preparing the Same Download PDF

Info

Publication number
KR20030056061A
KR20030056061A KR1020010086220A KR20010086220A KR20030056061A KR 20030056061 A KR20030056061 A KR 20030056061A KR 1020010086220 A KR1020010086220 A KR 1020010086220A KR 20010086220 A KR20010086220 A KR 20010086220A KR 20030056061 A KR20030056061 A KR 20030056061A
Authority
KR
South Korea
Prior art keywords
reactor
rubber
solution
styrene monomer
polydimethylsiloxane
Prior art date
Application number
KR1020010086220A
Other languages
Korean (ko)
Inventor
김길성
임진규
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR1020010086220A priority Critical patent/KR20030056061A/en
Publication of KR20030056061A publication Critical patent/KR20030056061A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/068Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE: A thermoplastic resin composition and its preparation method are provided, to obtain a thermoplastic resin having high fluidity and excellent gloss, mold cycle time and impact resistance with a low cost. CONSTITUTION: The method comprises the steps of continuous bulk polymerizing a styrene monomer rubbery solution where a polybutadiene rubber is dissolved in a styrene monomer in a first reactor under the condition of V1/F = 3.04 and 1.2 <= V1/V2 <= 1.6, wherein F is the total flux of the source solution injected into a first reactor, V1 is the internal volume of a first reactor, and V2 is the internal volume occupied by the reaction solution; and sending the obtained polymer into a second reactor and adding polydimethylsiloxane to the second reactor to continuous bulk polymerize the reaction mixture to allow the solid component to be 55-80 wt%. The polybutadiene rubber is dissolved in a styrene monomer in the concentration of 7-20 wt%, and contains 10-98 % of a cis-form; and the polydimethylsiloxane is added in the amount of 0.01-0.80 wt% based on the amount of the reaction mixture of the second reactor, and has a viscosity of 10-10,000 cps.

Description

고유동 및 고광택성을 갖는 열가소성 수지 조성물 및 그 제조방법{High Gloss Thermoplastic Resin Composition Having High Flowability and Method of Preparing the Same}High Gloss Thermoplastic Resin Composition Having High Flowability and Method of Preparing the Same

발명의 분야Field of invention

본 발명은 고유동, 고광택성을 갖는 고무변성 스티렌계 수지 조성물에 관한 것이다. 보다 구체적으로 본 발명은 제1반응기에서 폴리부타디엔 고무가 용해된 스티렌 고무상 용액을 상전환이 완료되도록 연속 괴상중합을 행하고, 제2반응기에서 폴리디메틸실록산을 첨가하여 고형성분 함량이 55-80%가 되도록 연속 괴상중합을 행하여 최종 수지 조성물의 고무입자 평균직경이 0.2-1.1㎛의 범위에 존재하는 고무변성 스티렌계 수지 조성물 및 그 제조방법에 관한 것이다.The present invention relates to a rubber modified styrene resin composition having high flow and high gloss. More specifically, the present invention performs a continuous block polymerization of the styrene rubber solution in which the polybutadiene rubber is dissolved in the first reactor to complete phase inversion, and adds polydimethylsiloxane in the second reactor to increase the solid content of 55-80%. The present invention relates to a rubber-modified styrene resin composition and a method for producing the same, which are subjected to continuous bulk polymerization so that the average particle diameter of the rubber particles in the final resin composition is in the range of 0.2-1.1 µm.

발명의 배경Background of the Invention

고무변성 스티렌계 수지는 다른 수지에 비하여 유동성과 광택이 우수하며 값이 싼 장점이 있어 가전제품. 사무용기기 등의 성형품 및 난연용 베이스 수지에 널리 사용되고 있다. 특히 고무변성 스티렌계 수지를 난연 베이스 수지로 적용할 경우, 사출성형, 압출시이트 성형, 압출 진공 성형등과 같은 작업성에 있어서도 매우 우수하여 수려한 외관뿐만 아니라 높은 성형사이클 타임을 얻을 수 있는 장점이 있다.Rubber modified styrenic resins are excellent in fluidity and gloss compared to other resins. It is widely used for molded articles such as office equipment and flame retardant base resins. In particular, when the rubber-modified styrene resin is applied as a flame-retardant base resin, it is also excellent in workability such as injection molding, extrusion sheet molding, extrusion vacuum molding, etc., and has a merit of obtaining not only a beautiful appearance but also a high molding cycle time.

고무변성 스티렌계 수지는 통상 폴리부타디엔 고무와 스티렌 부타디엔 혼성 중합체 고무가 사용되고 있는데, 고무변성 스티렌계 수지의 고유동성과 고광택도를 부여하기 위해서는 고무 입자경을 최적치로 제어하는 문제와 입자 직경 분포를 협소하게 하는 문제가 해결하여야 할 중요한 과제로 대두되고 있다.Rubber-modified styrene-based resins are generally polybutadiene rubber and styrene butadiene-polymer polymer rubber. In order to give high fluidity and high gloss of rubber-modified styrene-based resins, the problem of controlling the rubber particle diameter to optimum value and narrowing the particle diameter distribution The problem of this is becoming an important task to be solved.

폴리부타디엔 고무를 사용하는 경우에는 고무입자경을 최적치로 제어하기가 상당히 어렵다. 스티렌/부타디엔 혼성 중합체 고무를 사용하는 경우에는 고무입자경을 최적치로 제어하기는 용이하지만 양호한 내충격성을 얻기 어렵다.In the case of using polybutadiene rubber, it is very difficult to control the rubber particle size to an optimum value. When styrene / butadiene interpolymer rubber is used, it is easy to control the rubber particle size to an optimum value, but it is difficult to obtain good impact resistance.

고무변성 스티렌계 수지는 폴리스티렌 메트릭스상에 구상의 고무입자 크기가 다양한 크기로 분포된 구조로 되어 있으며, 고무입자 크기가 대체로 1.5 내지 6.0㎛의 범위를 갖는다. 이러한 구조를 갖는 수지는 외부로부터 충격이 가해지면 고무입자가 그 충격을 흡수하는 효과를 나타내는 것이다.The rubber-modified styrene resin has a structure in which spherical rubber particles are distributed in various sizes on a polystyrene matrix, and the rubber particle sizes generally range from 1.5 to 6.0 μm. The resin having such a structure exhibits the effect that the rubber particles absorb the impact when an impact is applied from the outside.

또한, 고무입자의 크기는 수지성형품의 광택도에 있어서도 영향을 미친다. 일반적으로 고무입자의 크기가 작을수록 광택도가 우수하다. 반면, 광택도만 고려하여 고무입자의 크기를 작게 하면 충격강도가 낮아진다.In addition, the size of the rubber particles also affects the glossiness of the resin molded article. In general, the smaller the size of the rubber particles, the better the gloss. On the other hand, when the size of the rubber particles is reduced in consideration of the glossiness, the impact strength is lowered.

미국특허 제4,146,589호에는 (A) 폴리부타디엔 고무 2-15 중량%가 용해된 스티렌 단량체 제1용액을 고무입자 크기가 약 0.5-1.0㎛이 되도록 제1반응조에서 연속괴상중합을 하고, (B) 폴리부타디엔 고무 2-15 중량%가 용해된 스티렌 단량체 제2용액을 고무입자 크기가 약 2-3㎛이 되도록 제2반응조에서 연속 괴상중합하고, (C) 상기 제1중합 용액과 제2중합 용액을 혼합하고, (D) 상기 혼합용액을 제3반응조에서 연속 괴상중합하고, (E) 상기용액을 가열하고, 그리고 (F) 상기 용액으로부터 고분자를 분리하여 분산된 고무상을 갖는 스티렌계 고무변성 수지를 제조하는 방법을 개시하고 있다.U.S. Patent No. 4,146,589 discloses (A) continuous mass polymerization of a styrene monomer first solution in which 2-15% by weight of polybutadiene rubber is dissolved in a first reactor so as to have a rubber particle size of about 0.5-1.0 µm, and (B) Continuous mass polymerization of the second styrene monomer solution in which 2-15% by weight of polybutadiene rubber is dissolved in a second reactor to obtain a rubber particle size of about 2-3 μm, (C) the first polymerization solution and the second polymerization solution Styrene-based rubber modified with (D) continuous bulk polymerization of the mixed solution in a third reactor, (E) heating the solution, and (F) separating the polymer from the solution A method for producing a resin is disclosed.

미국특허 제4,493,922호에서는 매트릭스로서의 폴리스티렌과 그 메트릭스에 균일하게 분산된 두개의 탄성고분자 또는 공중합체로 이루어지고, 이중 하나는 0.2-0.6㎛의 입자 크기를 갖으며 폴리부타디엔에 대하여 60-95 중량%이고, 다른 하나는 2-8㎛의 입자 크기를 갖으며 폴리부타디엔에 대하여 40-5중량%인 내충격성 열가소성 성형물질을 개시하고 있다. 그러나, 상기 제4,146,589호 및 제4,493,922호는 효과적인 충격강도 및 광택도를 얻을 수 없고 낮은 온도에서 성형될 때 성형품의 표면외관이 균일하지 못한 단점이 있다.US Pat. No. 4,493,922 consists of polystyrene as a matrix and two elastomers or copolymers uniformly dispersed in the matrix, one of which has a particle size of 0.2-0.6 μm and 60-95% by weight relative to polybutadiene. The other discloses an impact resistant thermoplastic molding having a particle size of 2-8 μm and 40-5% by weight relative to polybutadiene. However, the above-mentioned 4,146,589 and 4,493,922 have the disadvantage that the effective impact strength and glossiness cannot be obtained and the surface appearance of the molded article is not uniform when molded at low temperature.

일본 특허공개 소57-170950호에는 (a) 평균 고무입자 크기가 0.5-2.5㎛이고 고무상 중합체가 1-15중량%인 폴리부타디엔 용액, (b) 메탄올 및 (c) 유기 폴리실록산으로 구성된 고무변성 스티렌계 수지 조성물을 개시하고 있다.Japanese Patent Application Laid-Open No. 57-170950 discloses rubber modifications comprising (a) a polybutadiene solution with an average rubber particle size of 0.5-2.5 μm and a rubbery polymer of 1-15% by weight, (b) methanol and (c) organic polysiloxane. A styrene resin composition is disclosed.

일본 특허공개 평2-34615호에는 (a) 부타디엔 고무중합체, (b) 툴루엔 및 (c) 유기 폴리실록산으로 구성된 수지 조성물을 개시하고 있다.Japanese Patent Laid-Open No. 2-34615 discloses a resin composition composed of (a) butadiene rubber polymer, (b) toluene and (c) organic polysiloxane.

상기 소57-170950호 및 평2-34615호는 폴리 디메틸실록산이 함유하지만, 평균 고무입자크기, 겔성분 대 고무성분의 비율이 일정하지 못하기 때문에 양호한 충격성을 나타내지 못하는 문제점이 있다.The above-mentioned 57-170950 and 2-34615 contain polydimethylsiloxane, but there is a problem in that the average rubber particle size, the ratio of the gel component to the rubber component are not constant, and thus do not exhibit good impact properties.

따라서, 본 발명자들은 상기 문제점을 해결하기 위하여, 수지 조성물 내에 평균 고무입자크기는 물론 겔성분 대 고무성분의 비율을 적절하게 조절함으로써, 고유동성과 고광택성을 갖을 뿐만 아니라 충격강도가 양호한 열가소성 수지 조성물 및 그 제조방법을 개발하기에 이른 것이다.Therefore, in order to solve the above problems, the present inventors appropriately control the average rubber particle size as well as the ratio of the gel component to the rubber component in the resin composition, so that the thermoplastic resin composition has not only high flowability and high glossiness but also good impact strength. And developing a method for producing the same.

본 발명의 목적은 평균고무입자크기가 0.2-1.1 ㎛이고, 겔 성분대 고무성분비율이 1.9-3.4 범위에 있는 고무변성 스티렌계 수지 조성물 및 그 제조방법을 제공하기 위한 것이다.An object of the present invention is to provide a rubber-modified styrene resin composition having an average rubber particle size of 0.2-1.1 µm and a gel component to rubber component ratio in the range of 1.9-3.4, and a method of manufacturing the same.

본 발명의 다른 목적은 유동성과 성형사이클타임이 우수한 고무변성 스티렌계 수지 조성물 및 그 제조방법을 제공하기 위한 것이다.Another object of the present invention is to provide a rubber-modified styrene resin composition excellent in fluidity and molding cycle time, and a method for producing the same.

본 발명의 또 다른 목적은 고광택성을 갖는 고무변성 스티렌계 수지 조성물 및 그 제조방법을 제공하기 위한 것이다.Still another object of the present invention is to provide a rubber-modified styrene resin composition having high glossiness and a method of manufacturing the same.

본 발명의 또 다른 목적은 충격강도가 우수한 고무변성 스티렌계 수지 조성물 및 그 제조방법을 제공하기 위한 것이다.Still another object of the present invention is to provide a rubber-modified styrene-based resin composition excellent in impact strength and a method of manufacturing the same.

본 발명의 상기 및 기타 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.

도1은 본 발명에 따른 연속괴상중합의 공정도이다.1 is a process chart of the continuous block polymerization according to the present invention.

본 발명의 열가소성 수지 조성물의 제조방법은 (1) 스티렌 단량체에 폴리부타디엔 고무를 용해시킨 스티렌 단량체 고무상 용액을 원료용액으로 하여 V1/F = 3.04 (V1: 제1반응기의 내용적, F: 제1반응기에 투입되는 원료용액의 유량), 1.2 ≤ V1/V2≤ 1.6 (V1: 제1반응기의 내용적, V2: 반응액이 점하는 용적)의 조건을 유지하도록 제1반응기에서 연속 괴상중합시키는 제1단계 및 (2) 상기 제1반응기에서 배출된 중합물을 제2반응기로 보내어 0.01-0.80 중량%의 폴리 디메틸실록산을 첨가하여 고형성분이 55-80 중량%가 되도록 연속 괴상중합시키는 제2단계로 이루어진다. 상기 제조방법으로 제조된 최종 펠레트의 겔성분대 고무성분의 비율은 1.9-3.4의 범위이고, 평균 고무입자크기는 0.2-1.1 ㎛의 범위를 갖는다. 본 발명의 열가소성 수지 조성물은 연속괴상중합에 의해 제조되며, 본 발명에 의한 공정은 도1에 대략적으로 개시되어 있다.The method for producing a thermoplastic resin composition of the present invention comprises (1) a styrene monomer rubbery solution in which polybutadiene rubber is dissolved in a styrene monomer as a raw material solution, and V 1 / F = 3.04 (V 1 : Content of the first reactor, F : Flow rate of the raw material solution introduced into the first reactor), 1.2 ≤ V 1 / V 2 ≤ 1.6 (V 1 : the volume of the first reactor, V 2 : volume of the reaction solution) to maintain the conditions The first step of continuous bulk polymerization in the reactor and (2) the polymer discharged from the first reactor is sent to the second reactor to add 0.01-0.80% by weight of poly dimethylsiloxane so that the solid component is 55-80% by weight. It consists of a second step of bulk polymerization. The ratio of the gel component to the rubber component of the final pellet prepared by the above production method is in the range of 1.9 to 3.4, and the average rubber particle size is in the range of 0.2 to 1.1 μm. The thermoplastic resin composition of the present invention is produced by continuous bulk polymerization, and the process according to the present invention is approximately disclosed in FIG.

이하 본 발명의 상세한 내용을 하기에 설명한다.Hereinafter, the details of the present invention will be described below.

(1) 제1단계(1) First step

제1반응기에 공급되는 원료용액은 스티렌 단량체에 폴리부타디엔 고무를 용해시킨 스티렌 단량체 고무상 용액을 사용하며, 저장탱크로부터 상기 원료용액을 제1반응기로 연속적으로 공급한다.The raw material solution supplied to the first reactor is a styrene monomer rubbery solution in which polybutadiene rubber is dissolved in styrene monomer, and the raw material solution is continuously supplied from the storage tank to the first reactor.

스티렌 단량체의 용액에 용해되는 폴리부타디엔 고무는 여러 가지 폴리부타디엔 고무가 사용될 수 있지만, 리튬계 촉매에 의하여 용액중합된 시스 형태의 함량이 10∼98 %인 폴리부타디엔 고무가 바람직하다.As the polybutadiene rubber dissolved in the solution of the styrene monomer, various polybutadiene rubbers can be used, but polybutadiene rubber having a content of 10 to 98% of the cis form solution polymerized by a lithium-based catalyst is preferable.

상기 스티렌 단량체의 용액에 용해되는 고무성분은 고무상 용액에 대하여 7∼20 중량%의 범위가 바람직하다. 폴리부타디엔 고무의 농도가 7∼20 중량%를 벗어나는 경우에는 고무상 용액내의 스티렌 단량체와 추가로 공급되는 스티렌 단량체가 상불균일을 초래하여 양호하게 혼합되지 않으며, 제1반응기내로 공급할 때 동력손실이 발생한다. 본 발명의 바람직한 구체예는 공정운전의 안전성을 확보하기 위해 고무성분 농도를 12 중량%로 조절하여 공급하고, 제1반응기의 고무성분 농도가 9.0 중량%로 유지되도록 스티렌 단량체를 추가로 투입한다.The rubber component dissolved in the solution of the styrene monomer is preferably in the range of 7 to 20% by weight based on the rubbery solution. When the concentration of the polybutadiene rubber is outside the range of 7 to 20% by weight, the styrene monomer in the rubber solution and the additionally supplied styrene monomer do not mix well due to phase unevenness, and the power loss is supplied when feeding into the first reactor. Occurs. In a preferred embodiment of the present invention, the rubber component concentration is adjusted to 12% by weight to ensure the safety of the process operation, and the styrene monomer is further added to maintain the rubber component concentration of the first reactor at 9.0% by weight.

7-20% 폴리부타디엔 고무가 용해된 스티렌 단량체의 고무상 용액(rubbery solution of styrene monomer)은 25℃에서 25-110 cps의 점도를 갖는 것이 바람직하며, 더 바람직하기로는 25-70 cps의 범위이다. 상기 스티렌 단량체의 고무상 용액의 점도는 중합 반응후의 평균 고무 입자 크기와 중합반응중의 평균 전단 속도 조절기의 회전수에 영향을 미치기 때문에 중요한 요소이다.The rubbery solution of styrene monomer in which 7-20% polybutadiene rubber is dissolved preferably has a viscosity of 25-110 cps at 25 ° C., more preferably in the range of 25-70 cps. . The viscosity of the rubbery solution of the styrene monomer is an important factor because it affects the average rubber particle size after the polymerization reaction and the rotation speed of the average shear rate regulator during the polymerization reaction.

상기 제1반응기에는 공정의 안정성을 확보하기 위하여 스티렌 단량체가 추가로 공급될 수 있다. 본 발명에서 사용될 수 있는 스티렌 단량체로는 스티렌, α-에틸스티렌 및 α-메틸스티렌이 있다. 추가로 필요한 스티렌 단량체는 제1중합기에 상기 고무상 용액과는 별도로 공급된다.The first reactor may be further supplied with a styrene monomer to ensure the stability of the process. Styrene monomers that can be used in the present invention include styrene, α-ethylstyrene and α-methylstyrene. Further necessary styrene monomers are fed to the first polymerizer separately from the rubbery solution.

상기 고무상 용액과 스티렌 단량체를 일정비율로 제1반응기에 공급하기 위해서는 유량 조절기를 사용하며, 이는 이 분야의 당업자에 의하여 용이하게 실시될 수 있다.In order to supply the rubber-like solution and the styrene monomer to the first reactor at a predetermined ratio, a flow controller is used, which can be easily performed by those skilled in the art.

제1반응기에서 중합은 제1반응기의 내용적을 V1, 반응액이 점하는 용적을 V2, 원료용액이 제1반응기에 투입되는 유량을 F로 했을 때, V1/F = 3.04, 1.2 ≤ V1/V2≤ 1.6 의 조건을 유지하여 반응을 행하고 제1반응기의 평균 전단속도 조절기의 회전수를 16∼52회/분으로 유지한다. 상기 V1/V2의 비율이 1.6을 초과하는 경우(V1/V2> 1.6), 상전환이 완결되지 않아 고무입자가 불안정하고 고무입자가 지나치게 작아져 충격강도가 떨어지는 문제점이 있으며, V1/V2의 비율이 1.2 보다 작을 경우(V1/V2〈 1.2 ), 고무입자가 커져서 양호한 광택과 유동성을 얻을 수 없다는 문제점이 있다. 따라서, 제1반응기에서 혼합을 양호하게 하고 평균 고무 입자 크기를 조절하기 위해서는 1.2 ≤ V1/V2≤1.6의 범위를 유지하도록 한다.In the first reactor, polymerization was performed when V 1 / F = 3.04, 1.2 ≤ when the internal volume of the first reactor was V 1 , the volume of the reaction solution was V 2 , and the flow rate at which the raw material solution was fed to the first reactor was F. The reaction is carried out under the condition of V 1 / V 2 ≤ 1.6, and the rotation speed of the average shear rate regulator of the first reactor is maintained at 16 to 52 revolutions per minute. If the ratio of V 1 / V 2 exceeds 1.6 (V 1 / V 2 > 1.6), there is a problem that the rubber particles are unstable because the phase inversion is not completed and the rubber particles are too small, the impact strength falls, V If the ratio of 1 / V 2 is smaller than 1.2 (V 1 / V 2 <1.2), there is a problem that rubber gloss becomes large and good gloss and fluidity cannot be obtained. Therefore, in order to improve mixing and control the average rubber particle size in the first reactor, the range of 1.2 ≦ V 1 / V 2 ≦ 1.6 is maintained.

제1반응기의 평균 전단속도 조절기의 회전수는 16-52 회/분으로 유지한다. 평균전단속도 조절기의 회전속도가 16 회/분 미만인 경우에는 균일한 혼합이 어려워 폭주반응이 일어날 위험이 있고, 평균 고무 입자 크기가 커져서 수지의 광택도가 저하된다. 반면, 평균전단속도 조절기의 회전속도가 52 회/분 이상인 경우에는조절기의 부하가 증가하여 운전이 어렵고, 평균 고무 입자 크기가 작아져서 수지의 내충격성이 저하된다. 제1반응기에서 반응이 진행된 중합물은 제2반응기로 연속적으로 공급되어 연속 괴상중합이 계속된다.The average shear rate regulator of the first reactor is maintained at 16-52 revolutions per minute. If the rotation speed of the average shear rate controller is less than 16 times / minute, uniform mixing is difficult, and there is a risk of runaway reaction, and the average rubber particle size is increased to reduce the glossiness of the resin. On the other hand, when the rotation speed of the average shear rate regulator is 52 times / minute or more, the load of the regulator increases, making it difficult to operate, and the average rubber particle size decreases, thereby reducing the impact resistance of the resin. The polymerized product in the first reactor is continuously supplied to the second reactor, and continuous bulk polymerization is continued.

(2) 제2단계(2) second stage

제1반응기로부터 배출된 중합물은 제2반응기로 연속적으로 공급되어 평균 고무 입자크기가 0.2-1.1㎛의 범위가 되도록 연속 괴상중합된다.The polymer discharged from the first reactor is continuously supplied to the second reactor and continuously bulk polymerized so that the average rubber particle size is in the range of 0.2-1.1 μm.

상기 제2반응기에서는 폴리디메틸실록산을 전체 반응 용액에 대하여 0.01-0.80 중량%의 양으로 투입한다. 폴리디메틸실록산은 폴리스티렌 분자사이 또는 폴리부타디엔 고무입자와 폴리스티렌 분자 사이에서 위치하여 수지 내부에서 외부 충격량을 완화시키는 완충작용을 하거나 또는 폴리부타디엔 고무성분과 폴리스티렌 분자사이에 분산되어 가교역할을 하여 충격을 완화하는 효과를 가져오는 것으로 생각된다. 또한 수지내에 분산된 폴리디메틸실록산은 폴리스티렌 분자사이에서 일부가 블리딩(bleeding)되어 수지표면을 감싸게 되고, 그럼으로써 사출성형시에 금형으로부터 이탈될 때 성형물이 받는 응력을 감소시켜 잔류 응력에 의한 물성의 변화를 감소시켜주는 것으로 생각된다.In the second reactor, polydimethylsiloxane is added in an amount of 0.01-0.80% by weight based on the total reaction solution. Polydimethylsiloxane is located between polystyrene molecules or between polybutadiene rubber particles and polystyrene molecules to buffer shocks to alleviate external impacts within the resin, or dispersed between polybutadiene rubber components and polystyrene molecules to mitigate impacts. It seems to bring about an effect. In addition, the polydimethylsiloxane dispersed in the resin is partially bleeded between the polystyrene molecules to cover the surface of the resin, thereby reducing the stress of the molding when it is released from the mold during injection molding, thereby reducing the physical properties It is thought to reduce change.

상기 제2반응기에 투입되는 폴리디메틸실록산은 점도가 50-9,000 cps인 것이 바람직하다. 폴리디메틸실록산의 점도가 50 cps이하인 경우에는 수지내에 분산효과가 감소하여 충격강도가 낮아지며, 9,000 cps이상인 경우에는 제2반응기에 투입할 때 고점도로 인한 기계적인 문제가 발생한다.The polydimethylsiloxane introduced into the second reactor preferably has a viscosity of 50-9,000 cps. When the viscosity of the polydimethylsiloxane is less than 50 cps, the dispersion effect in the resin is reduced and the impact strength is lowered. When the viscosity of the polydimethylsiloxane is 9,000 cps or more, a mechanical problem occurs due to the high viscosity when introduced into the second reactor.

상기 폴리디메틸실록산은 스티렌 단량체와 1 : 1 의 비율로 별도의 탱크에서 용해시킨 후 투입한다.The polydimethylsiloxane is dissolved after being dissolved in a separate tank at a ratio of 1: 1 with the styrene monomer.

제2반응기에서는 중합된 고형성분의 함량이 55-80 중량%가 되도록 연속괴상중합하는 것이 바람직하다. 고형 성분의 함량이 80 중량%를 초과할 경우, 충격강도가 저하되는 문제점이 있다.In the second reactor, the continuous bulk polymerization is preferably performed so that the content of the polymerized solid component is 55-80% by weight. If the content of the solid component exceeds 80% by weight, there is a problem that the impact strength is lowered.

상기 제1반응기 또는 제2반응기에서는 연쇄전달제와 같은 기타의 첨가제가 첨가될 수 있으며, 이는 이 분야의 당업자에 의하여 용이하게 실시될 수 있다. 예를 들면, 이형제, 대전 방지제, 유동제, 자외선 흡수제, 산화 방지제 등이 각각의 용도에 따라 적절히 첨가될 수 있다.In the first reactor or the second reactor, other additives such as a chain transfer agent may be added, which can be easily carried out by those skilled in the art. For example, a releasing agent, an antistatic agent, a flow agent, an ultraviolet absorber, an antioxidant, and the like may be appropriately added according to the respective uses.

제2반응기에서 중합 반응이 완료된 반응물은 탈휘공정으로 보내져서 증발기, 승온기 등을 거치면서 미반응 단량체를 분리한 후 펠렛트 형태로 절단한다. 상기 펄렛트 형태로 최종의 수지 조성물은 겔성분 대 고무성분의 비율이 1.9-3.4의 범위로 하는 것이 바람직하다. 상기 “겔성분”이란 폴리부타디엔 고무에 스티렌 단량체가 그라프트 중합한 부분을 의미하며, 겔성분 대 고무성분의 비율은 고충격성과 광택도 등의 물성에 영향을 미친다. 겔성분 대 고무성분의 비율이 1.9-3.4의 범위인 경우, 평균 고무 입자크기는 0.2-1.1㎛의 범위를 갖는다.In the second reactor, the reaction product after completion of the polymerization reaction is sent to a devolatilization process, an unreacted monomer is separated while passing through an evaporator, a temperature riser, and the like, and cut into pellets. It is preferable that the ratio of the gel component to the rubber component of the final resin composition in the form of the pearllet is in the range of 1.9 to 3.4. The "gel component" refers to a portion obtained by graft polymerization of a styrene monomer to polybutadiene rubber, and the ratio of the gel component to the rubber component affects physical properties such as high impact and gloss. When the ratio of the gel component to the rubber component is in the range of 1.9 to 3.4, the average rubber particle size is in the range of 0.2 to 1.1 mu m.

본 발명은 하기의 실시예에 의하여 보다 구체화될 것이며, 하기의 실시예는 본 발명을 예시하기 위한 목적으로 기재될 뿐이며 본 발명의 보호범위를 한정하고자 하는 것은 아니다.The present invention will be further illustrated by the following examples, which are only described for the purpose of illustrating the present invention and are not intended to limit the protection scope of the present invention.

실시예Example

실시예 1Example 1

중합원료 저장탱크에 86 중량%의 스티렌 단량체와 14 중량%의 폴리부타디엔 고무를 넣고 3시간동안 용해시켰다. 이 고무상 용액의 점도는 30 cps이었다. 상기 스티렌 단량체의 고무상 용액과 스티렌 단량체를 제1반응기에 투입하고 퍼옥시에스테르를 개시제로 사용하여 중합온도를 135 ℃로 유지하여 중합시켰다. 제1반응기에서 반응기의 내용적을 V1, 반응액이 점하는 용적을 V2,원료용액이 제1반응기에 투입되는 유량을 F 로 했을때, V1/F = 3.04, V1/V2= 1.4 으로 조절하였다. 이 때의 전단속도 조절기의 회전속도는 45회/분으로 하였다. 고무상 농도는 12.0중량%로 유지하였다. 제1반응기의 중합물을 제1반응기 공급유량과 동일하게 제2반응기로 연속 공급하고 제2반응기에 0.015 중량%의 폴리디메틸실록산을 투입하였다. 디메틸 폴리술록산의 점도는 200 cps이었으며, 이 폴리디메틸실록산은 스티렌 단량체에 용해시켜 투입하였다. 산화 방지제와 이형제가 최종 펄레트내에서 각각 1000 ppm 및 8000 ppm이 되도록 공급하였다. 제2반응기에서 얻어진 중합물의 고형성분 함량은 70 중량%이었다. 최종 중합액을 탈휘공정에 보내서 240℃까지 승온하여 미반응 단량체등 휘발성분을 제거하고 펄레트 형태로 제조하였다.86 wt% of styrene monomer and 14 wt% of polybutadiene rubber were added to the polymerization raw material storage tank and dissolved for 3 hours. The viscosity of this rubbery solution was 30 cps. The rubbery solution of the styrene monomer and the styrene monomer were introduced into the first reactor, and the polymerization was carried out by maintaining the polymerization temperature at 135 ° C using peroxyester as an initiator. First when the flow volume of the V 2, the raw material solution to the first reactor, the contents less V 1, the reaction solution of the reactor points in the input into the first reaction vessel with the F, V 1 / F = 3.04 , V 1 / V 2 = 1.4 was adjusted. The rotation speed of the shear rate regulator at this time was 45 times / minute. The rubber phase concentration was maintained at 12.0% by weight. The polymer of the first reactor was continuously supplied to the second reactor in the same manner as the first reactor feed flow rate, and 0.015% by weight of polydimethylsiloxane was added to the second reactor. The viscosity of dimethyl polysiloxane was 200 cps, and this polydimethylsiloxane was dissolved in styrene monomer and added. Antioxidants and mold release agents were fed to 1000 ppm and 8000 ppm in the final pellets, respectively. The solid component content of the polymer obtained in the second reactor was 70% by weight. The final polymerization solution was sent to a devolatilization step, and the temperature was raised to 240 ° C. to remove volatile components such as unreacted monomers and to prepare a pellet.

실시예 2Example 2

고무상 용액의 점도를 90cps로 유지한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The same procedure as in Example 1 was conducted except that the viscosity of the rubbery solution was maintained at 90 cps.

실시예 3Example 3

제1반응기의 전단속도 조절기의 회전수를 50회/분으로 조절한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The same procedure as in Example 1 was carried out except that the rotation speed of the shear rate controller of the first reactor was adjusted to 50 times / minute.

실시예 4Example 4

제1반응기에서의 체류시간을 조절하여 반응기 내용적/반응액이 점하는 용적(V1/V2)을 1.55로 하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The same procedure as in Example 1 was conducted except that the volume (V 1 / V 2 ) of the reactor volume / reaction liquid was 1.55 by adjusting the residence time in the first reactor.

실시예 5Example 5

제1반응기의 전단속도 조절기의 회전수를 40 회/분으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The same procedure as in Example 1 was carried out except that the rotation speed of the shear rate controller of the first reactor was 40 times / minute.

실시예 6Example 6

체류시간을 조절하여 제2반응기에서의 고형성분 함량을 60 중량%로 하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The same procedure as in Example 1 was carried out except that the solid component content in the second reactor was adjusted to 60 wt% by adjusting the residence time.

실시예 7Example 7

체류시간을 조절하여 제2반응기에서의 고형성분 함량을 75 중량%로 하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The retention time was adjusted in the same manner as in Example 1 except that the content of the solid component in the second reactor was 75% by weight.

실시예 8Example 8

디메틸 폴리실록산을 0.400 중량%로 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The same procedure as in Example 1 was conducted except that 0.400 wt% of dimethyl polysiloxane was added.

실시예 9Example 9

폴리디메틸실록산을 0.650 중량%로 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The same procedure as in Example 1 was conducted except that 0.65 wt% of polydimethylsiloxane was added.

실시예 10Example 10

폴리디메틸실록산의 점도가 800 cps인 것을 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The same procedure as in Example 1 was carried out except that the viscosity of the polydimethylsiloxane was 800 cps.

실시예 11Example 11

폴리디메틸실록산의 점도가 7000 cps인 것을 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The same procedure as in Example 1 was conducted except that the viscosity of the polydimethylsiloxane was 7000 cps.

비교실시예 1Comparative Example 1

고무상 용액의 점도가 125 cps이고, 제1반응기에서의 전단속도 조절기의 회전수가 45회/분인 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The viscosity of the rubbery solution was 125 cps, and the rotation speed of the shear rate controller in the first reactor was 45, except that the procedure was carried out in the same manner as in Example 1.

비교실시예 2Comparative Example 2

체류시간을 조절하여 제1반응기에서 반응기 내용액/반응액이 점하는 용적(V1/V2)을 1.1으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The residence time was adjusted in the same manner as in Example 1 except that the volume (V 1 / V 2 ) of the reactor contents / reaction liquid in the first reactor was set to 1.1.

비교실시예 3Comparative Example 3

체류시간을 조절하여 제2반응기에서의 고형성분 함량을 86 중량%로 한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The same procedure as in Example 1 was carried out except that the solid component content of the second reactor was adjusted to 86 wt% by adjusting the residence time.

비교실시예 4Comparative Example 4

폴리디메틸실록산을 0.005 중량%로 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The same procedure as in Example 1 was conducted except that the polydimethylsiloxane was added at 0.005% by weight.

비교실시예 5Comparative Example 5

폴리디메틸실록산의 점도가 14,000 cps인 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The same procedure as in Example 1 was conducted except that the viscosity of the polydimethylsiloxane was 14,000 cps.

비교실시예 6Comparative Example 6

체류시간을 조절하여 제1반응기에서 반응기 내용적/반응액이 점하는 용적(V1/V2)을 1.8로 한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.The residence time was adjusted in the same manner as in Example 1 except that the volume (V 1 / V 2 ) of the reactor volume / reaction liquid in the first reactor was adjusted to 1.8.

상기 실시예 1-11 및 비교실시예 1- 6에 대한 작업조건은 표Ⅰ에 나타내었다.The working conditions for the above Examples 1-11 and Comparative Examples 1-6 are shown in Table I.

제1반응기First reactor 제2반응기Second reactor 고무상용액점도(cps)Rubber solution viscosity (cps) 전단속도조절기회전수(회/분)Shear speed controller rotation speed (times / minute) 내용적/반응액용적 (V1/V2)Inner volume / Reaction volume (V 1 / V 2 ) 고형성분(중량%)Solid component (wt%) 폴리디메틸실록산(중량%)Polydimethylsiloxane (% by weight) 폴리디메틸실록산점도(cps)Polydimethylsiloxane viscosity (cps) 실시예Example 1One 3030 4545 1.401.40 7070 0.0150.015 200200 22 9090 4545 1.401.40 7171 0.0150.015 200200 33 3030 5050 1.401.40 7070 0.0150.015 200200 44 3030 4444 1.551.55 6969 0.0150.015 200200 55 3030 4040 1.401.40 7171 0.0150.015 200200 66 3030 4545 1.401.40 6060 0.0150.015 200200 77 3030 4545 1.401.40 7575 0.0150.015 200200 88 3030 4545 1.401.40 7272 0.4000.400 200200 99 3030 4545 1.401.40 7171 0.6500.650 200200 1010 3030 4545 1.401.40 7070 0.0150.015 800800 1111 3030 4545 1.401.40 7272 0.0150.015 70007000 비교실시예Comparative Example 1One 125125 4545 1.401.40 7272 0.0150.015 200200 22 3030 4545 1.101.10 7070 0.0150.015 200200 33 3030 4545 1.401.40 8686 0.0150.015 200200 44 3030 4545 1.401.40 7171 0.0050.005 200200 55 3030 4545 1.401.40 6969 0.0150.015 1400014000 66 3030 4545 1.801.80 7272 0.0150.015 200200

상기 실시예 1-11 및 비교실시예 1-6의 시편에 대한 물성은 하기의 방법에 의하여 측정하였다.Physical properties of the specimens of Example 1-11 and Comparative Example 1-6 were measured by the following method.

(1) 광택 : JIS K 7150(60。)에 의하여 측정하였다.(1) Gloss: It measured according to JIS K 7150 (60 °).

(2) 아이조드 충격강도 : ASTM D256에 의하여 측정하였다(1/8"notched).(2) Izod impact strength was measured according to ASTM D256 (1/8 "notched).

(3) 유동성 : ASTM D1238에 의하여 측정하였다(200 ℃, 5 Kg)(3) Flowability: measured by ASTM D1238 (200 ℃, 5 Kg)

(4) 평균 고무 입자 크기 : 시료 0.3 g을 용매(DMF) 10 ㎖ 용해시킨 후 영국 말버른사 기기로 측정하였다.(4) Average rubber particle size: 0.3 g of the sample was dissolved in 10 ml of solvent (DMF), and then measured by a Marlburn, England.

(5) 겔성분 함량 : 삼각 플라스크에 시료 1g을 정확히 칭량하여 기록하고(①), 이를 20 ㎖ 메틸에틸키톤(MEK)에 용해시켰다. 정확히 칭량된 SUS 튜브(②)에 용해된 시료를 옮겨 담았다. 분석오차를 줄이기 위해 MEK 20 ㎖를 삼각 플라스크에 투입하여 남아있는 시료를 옮겨 담았다. 원심분리기(조건:±50℃에서 15,000 rpm이상, 30분 이상)로 분리시켰다. 분리후 상층액은 버리고 침전물에 MEK 10 ㎖를 투입하여 분쇄기로 분쇄시켰다. MEK 30 ㎖를 추가로 투입하고 원심분리하였다. 분리후 상층액은 버리고 105℃ 컨벡션 오븐(convection oven)에서 4시간 동안 건조시키고, 데시케이터에 20분간 방냉시켰다. 방냉이 끝난 SUS 튜브를 정확히 칭량(③)하여 아래식에 의하여 겔성분 함량을 계산하였다.(5) Gel content: 1 g of a sample was accurately weighed and recorded in a Erlenmeyer flask (1), and it was dissolved in 20 ml methyl ethyl ketone (MEK). The dissolved sample was transferred to a correctly weighed SUS tube (②). To reduce analytical error, 20 ml of MEK was added to an Erlenmeyer flask to transfer the remaining sample. Separation was carried out by a centrifuge (condition: at least 15,000 rpm at 30 ° C., at least 30 minutes). After separation, the supernatant was discarded and 10 ml of MEK was added to the precipitate, which was then crushed with a grinder. 30 ml of MEK was further added and centrifuged. After separation, the supernatant was discarded and dried in a 105 ° C convection oven for 4 hours, and allowed to cool in a desiccator for 20 minutes. Accurately weigh the SUS tube after cooling to cool (③) to calculate the gel content by the following formula.

겔성분 함량(%) = 〔(③-②) ÷ ①〕× 100Gel component content (%) = [(③-②) ÷ ①] × 100

(6) 고무성분 함량 : 시료 0.4 g을 50 ㎖ Volumetric flask에 넣어 칭량하였다. 공실험(blank)을 위하여 여분의 플라스크에 클로로포름 30 ㎖를 투입하여 시료를 용해시켰다. 용해후 ICI-CCI4혼합액 10 ㎖를 투입하고 클로로포름으로 50 ㎖가 되도록 투입하였다. 30 분간 방치한 후 플라스크에 20 ㎖를 채취하여 KI용액 약 60 ㎖와 혼합하였다. 전분 3∼4 방울을 떨어뜨린후 0.04 N Na2S2O3로 적정하여 적정소비량을 측정하였다. 하기식에 의하여 고무성분 함량을 구하였다.(6) Rubber content: 0.4 g of the sample was placed in a 50 ml Volumetric flask and weighed. The sample was dissolved by adding 30 ml of chloroform to an extra flask for blank. After dissolution, 10 ml of ICI-CCI 4 mixture was added and 50 ml was added with chloroform. After leaving for 30 minutes, 20 ml of the flask was collected and mixed with about 60 ml of KI solution. After dropping 3-4 drops of starch, the titration was performed by titration with 0.04 N Na 2 S 2 O 3 . The rubber component content was calculated | required by the following formula.

상기 실시예 1-11 및 비교실시예 1- 6에 대한 물성측정의 결과는 표 2에 나타내었다.The results of the physical property measurement for Examples 1-11 and Comparative Examples 1-6 are shown in Table 2.

수지조성물Resin composition 물성Properties 평균고무입자크기(㎛)Average Rubber Particle Size (㎛) 겔성분/고무성분Gel / Rubber Ingredients 광택도(%)Glossiness (%) 유동성(g/10분)Fluidity (g / 10 min) 아이조드충격강도(kg·cm/cm)Izod impact strength (kgcm / cm) 실시예Example 1One 0.280.28 2.42.4 9696 9.59.5 17.017.0 22 0.500.50 2.52.5 8484 9.69.6 22.022.0 33 0.270.27 2.62.6 9999 9.49.4 15.515.5 44 0.280.28 2.72.7 9696 10.510.5 17.017.0 55 0.300.30 2.52.5 9797 9.59.5 17.417.4 66 0.280.28 2.32.3 9494 9.39.3 17.117.1 77 0.270.27 2.62.6 9696 9.69.6 16.316.3 88 0.290.29 2.62.6 9595 9.59.5 17.317.3 99 0.290.29 2.42.4 9797 9.79.7 17.817.8 1010 0.270.27 2.52.5 9494 9.39.3 17.117.1 1111 0.280.28 2.72.7 9696 9.69.6 17.417.4 비교실시예Comparative Example 1One 1.41.4 2.72.7 3838 9.49.4 9.19.1 22 1.21.2 2.32.3 4343 7.07.0 10.210.2 33 0.260.26 2.42.4 9696 9.59.5 12.112.1 44 0.270.27 2.12.1 9393 9.79.7 8.38.3 55 0.290.29 2.52.5 9797 9.69.6 8.78.7 66 0.170.17 2.52.5 9999 14.014.0 7.17.1

표 2의 결과에서 제1반응기에 도입되는 고무상용액의 점도가 110 cps를 초과한 비교실시예 1의 경우, 평균고무입자 크기가 1.4 ㎛로 매우 컸으며, 광택도뿐만 아니라 충격강도도 저하된 것으로 나타났다. V1/V2의 비율이 1.1인 비교실시예 2의 경우에도 광택도 및 유동성과 충격강도가 저하되었으며, 제2반응기에서의 고형성분 함량이 86 중량%인 비교실시예 3에서도 충격강도가 저하된 것으로 나타났다. 비교실시예 4 및 5의 경우에도 충격강도가 저하된 것으로 나타났으며, V1/V2의 비율이 1.8인 비교실시예 6의 경우, 광택도는 우수하였으나, 충격강도가 가장 낮은 것을 알 수 있었다.In the results of Table 2, in Comparative Example 1 in which the viscosity of the rubber supernatant introduced into the first reactor exceeded 110 cps, the average rubber particle size was very large as 1.4 μm, and not only glossiness but also impact strength were reduced. Appeared. Glossiness, fluidity, and impact strength were also reduced in Comparative Example 2 having a V 1 / V 2 ratio of 1.1, and Impact Strength was also decreased in Comparative Example 3 having a solid content of 86% by weight in the second reactor. Appeared to be. In Comparative Examples 4 and 5, the impact strength was also lowered. In Comparative Example 6, in which the ratio of V 1 / V 2 was 1.8, the gloss was excellent, but the impact strength was lowest. there was.

본 발명은 일정한 점도 범위를 갖는 스티렌 고무상 용액을 제1반응기에 일정한 속도로 투입하여 연속 괴상중합을 행하고, 제2반응기에서 폴리디메틸실록산을 첨가하여 고형성분 함량이 55-80%가 되도록 연속 괴상중합을 행하여 최종 수지 조성물의 고무입자 평균직경 및 겔성분 대 고무성분의 비율을 적절하게 조절함으로써, 고유동성과 고광택성을 갖을 뿐만 아니라 충격강도가 양호한 고무변성 스티렌계 수지 조성물 및 그 제조방법을 제공하는 효과를 갖는다.In the present invention, a continuous mass polymerization is performed by introducing a styrene rubber solution having a constant viscosity range into a first reactor at a constant speed, and adding a polydimethylsiloxane in the second reactor so that the solid component content is 55-80%. By polymerizing to appropriately adjust the rubber particle average diameter and the ratio of the gel component to the rubber component of the final resin composition, there is provided a rubber-modified styrene resin composition having not only high fluidity and high glossiness but also good impact strength and a method of producing the same. Has the effect.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications and variations of the present invention can be easily made by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (4)

(1) 스티렌 단량체에 폴리부타디엔 고무를 용해시킨 스티렌 단량체 고무상 용액을 원료용액으로 하여 V1/F = 3.04 (V1: 제1반응기의 내용적, F: 제1반응기에 투입되는 원료용액의 유량), 1.2 ≤ V1/V2≤ 1.6 (V1: 제1반응기의 내용적, V2: 반응액이 점하는 용적)의 조건을 유지하도록 제1반응기에서 연속 괴상중합시키는 제1단계; 및(1) V 1 / F = 3.04 (V 1 : content of the first reactor, F: content of the raw material solution to be added to the first reactor using a styrene monomer rubber-like solution in which polybutadiene rubber is dissolved in the styrene monomer as a raw material solution. Flow rate), a first step of continuous bulk polymerization in the first reactor to maintain conditions of 1.2 ≦ V 1 / V 2 ≦ 1.6 (V 1 : volume of the first reactor, V 2 : volume of the reaction solution); And (2) 상기 제1반응기에서 배출된 중합물을 제2반응기로 보내어 폴리디메틸실록산을 첨가하여 고형성분이 55-80 중량%가 되도록 연속 괴상중합시키는 제2단계;(2) a second step of continuously bulk polymerizing the polymer discharged from the first reactor to a second reactor to add polydimethylsiloxane so that the solid component is 55-80% by weight; 로 이루어지고, 상기 스티렌 단량체의 용액에 용해되는 폴리부타디엔 고무는 시스 형태의 함량이 10-98 %이고, 스티렌 단량체의 용액에 7-20 중량%의 농도로 용해되고, 상기 폴리디메틸실록산이 제2반응기의 반응물에 대하여 0.01-0.80 중량%으로 투입되며, 상기 폴리디메틸실록산은 10-10,000 cps의 점도 범위를 갖는 것을 특징으로 하는 열가소성 수지 조성물의 제조방법.The polybutadiene rubber, which is dissolved in a solution of the styrene monomer, has a cis form content of 10-98%, is dissolved in a solution of styrene monomer at a concentration of 7-20% by weight, and the polydimethylsiloxane is a second In an amount of 0.01-0.80 wt% based on the reactants of the reactor, the polydimethylsiloxane has a viscosity range of 10-10,000 cps. 제1항에 있어서, 상기 고무상 용액은 25℃에서 25-110 cps인 것을 특징으로 하는 열가소성 수지 조성물의 제조방법.The method of claim 1, wherein the rubber solution is 25-110 cps at 25 ℃ manufacturing method of the thermoplastic resin composition. 제1항에 있어서, 상기 제1반응기의 평균 전단속도 조절기의 회전수는 16-52 회/분으로 유지하는 것을 특징으로 하는 열가소성 수지 조성물의 제조방법.The method of claim 1, wherein the number of revolutions of the average shear rate controller of the first reactor is maintained at 16-52 times / minute. 제1항 내지 제3항 중 어느 한 항에 의하여 제조되는 고무입자 평균직경이 0.2-1.1㎛범위이고, 겔 성분대 고무성분비율이 1.9-3.4 범위인 열가소성 수지 조성물.The thermoplastic resin composition according to any one of claims 1 to 3, wherein the average particle diameter of the rubber particles is in the range of 0.2 to 1.1 µm, and the ratio of the gel component to the rubber component is in the range of 1.9 to 3.4.
KR1020010086220A 2001-12-27 2001-12-27 High Gloss Thermoplastic Resin Composition Having High Flowability and Method of Preparing the Same KR20030056061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010086220A KR20030056061A (en) 2001-12-27 2001-12-27 High Gloss Thermoplastic Resin Composition Having High Flowability and Method of Preparing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010086220A KR20030056061A (en) 2001-12-27 2001-12-27 High Gloss Thermoplastic Resin Composition Having High Flowability and Method of Preparing the Same

Publications (1)

Publication Number Publication Date
KR20030056061A true KR20030056061A (en) 2003-07-04

Family

ID=32214282

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010086220A KR20030056061A (en) 2001-12-27 2001-12-27 High Gloss Thermoplastic Resin Composition Having High Flowability and Method of Preparing the Same

Country Status (1)

Country Link
KR (1) KR20030056061A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170950A (en) * 1981-04-16 1982-10-21 Mitsui Toatsu Chem Inc Improved rubber-moldified styrene resin composition
KR19990011442A (en) * 1997-07-23 1999-02-18 박홍기 Styrene-based thermoplastic resin having excellent release property and surface gloss
KR100193023B1 (en) * 1995-12-06 1999-06-15 유현식 Process for production of thermoplastic styrene resins with high impact resistnace and high brilliance properties
KR20000055268A (en) * 1999-02-04 2000-09-05 유현식 Styrenic thermoplastic composition with good low temperature impact resistance
KR20020033870A (en) * 2000-10-30 2002-05-08 안복현 Thermoplastic Resin Compositions With High Gloss And High Impact Resistance And Process For Preparing The Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170950A (en) * 1981-04-16 1982-10-21 Mitsui Toatsu Chem Inc Improved rubber-moldified styrene resin composition
KR100193023B1 (en) * 1995-12-06 1999-06-15 유현식 Process for production of thermoplastic styrene resins with high impact resistnace and high brilliance properties
KR19990011442A (en) * 1997-07-23 1999-02-18 박홍기 Styrene-based thermoplastic resin having excellent release property and surface gloss
KR20000055268A (en) * 1999-02-04 2000-09-05 유현식 Styrenic thermoplastic composition with good low temperature impact resistance
KR20020033870A (en) * 2000-10-30 2002-05-08 안복현 Thermoplastic Resin Compositions With High Gloss And High Impact Resistance And Process For Preparing The Same

Similar Documents

Publication Publication Date Title
JPH0141177B2 (en)
CN112778684B (en) Talcum powder filled polypropylene material with high yield strain and low-temperature impact resistance and preparation method thereof
EP0014574B1 (en) Process for the production of graft polymer, the polymer so produced and polystyrene compositions containing it as an impact modifier
KR20200034602A (en) Thermoplastic resin composition
KR101555085B1 (en) Method for producing a Rubber Modified Styrene Resin Using Styrene-Butadiene Copolymer
JPH037708A (en) Production of rubber-modified styrene resin
KR100193023B1 (en) Process for production of thermoplastic styrene resins with high impact resistnace and high brilliance properties
KR100893873B1 (en) Continuous Process for Preparing Thermoplastic Copolymer Resin Having Excellent Heat Resistance
EP1668059B1 (en) High impact polystyrene and process for preparing same
KR100751020B1 (en) Continuous Polymerization Process of High Impact Polystyrene Resin with High Heat Resistance and High Gloss and High Falling Dart Impact
KR100411696B1 (en) Thermoplastic Resin Compositions With High Gloss And High Impact Resistance And Process For Preparing The Same
MX2011006484A (en) Rubber-reinforced vinyl aromatic (co)polymer, having an optimum balance of physico-mechanical properties and a high gloss.
KR20030056061A (en) High Gloss Thermoplastic Resin Composition Having High Flowability and Method of Preparing the Same
US5473014A (en) Rubber modified styrenic resin composition having high gloss and impact strength
KR100751022B1 (en) Continuous Polymerization Process of Rubber-modified Styrenic Resin with Super High Gloss
KR100384385B1 (en) Preparation method of rubber-modified styrene-based resin with high gloss and impact resistance
EP2470591A1 (en) High impact polymers and methods of making and using same
JPS60130614A (en) Rubber-modified aromatic monovinyl polymer resin composition
JPH0134453B2 (en)
JP3236056B2 (en) Method for producing rubber-modified styrenic resin
KR100375817B1 (en) Thermoplastic Resin Having High Gross and High Impact Strength Resistance and Method of Preparing the Same
JPS60233116A (en) Rubber-reinforced aromatic monovinyl resin composition
JPS59221318A (en) Rubber modified aromatic monovinyl resin composition
JPH0376338B2 (en)
JPH07173231A (en) Method and apparatus for producing high-impact styrenic resin

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application