KR20030055637A - Method of polymerization and copolymerization of ethylene using carbodiimde ligand chelated catalyst - Google Patents

Method of polymerization and copolymerization of ethylene using carbodiimde ligand chelated catalyst Download PDF

Info

Publication number
KR20030055637A
KR20030055637A KR1020010085675A KR20010085675A KR20030055637A KR 20030055637 A KR20030055637 A KR 20030055637A KR 1020010085675 A KR1020010085675 A KR 1020010085675A KR 20010085675 A KR20010085675 A KR 20010085675A KR 20030055637 A KR20030055637 A KR 20030055637A
Authority
KR
South Korea
Prior art keywords
compound
magnesium
group
carbodiimide
polymerization
Prior art date
Application number
KR1020010085675A
Other languages
Korean (ko)
Other versions
KR100825615B1 (en
Inventor
양춘병
정승환
홍보기
노성균
Original Assignee
삼성종합화학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성종합화학주식회사 filed Critical 삼성종합화학주식회사
Priority to KR1020010085675A priority Critical patent/KR100825615B1/en
Publication of KR20030055637A publication Critical patent/KR20030055637A/en
Application granted granted Critical
Publication of KR100825615B1 publication Critical patent/KR100825615B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/64003Titanium, zirconium, hafnium or compounds thereof the metallic compound containing a multidentate ligand, i.e. a ligand capable of donating two or more pairs of electrons to form a coordinate or ionic bond
    • C08F4/64006Bidentate ligand
    • C08F4/6401Neutral ligand
    • C08F4/64013NN
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/655Pretreating with metals or metal-containing compounds with aluminium or compounds thereof
    • C08F4/6555Pretreating with metals or metal-containing compounds with aluminium or compounds thereof and magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65904Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Abstract

PURPOSE: A method for polymerizing and copolymerizing ethylene by using a catalyst chelated with a carbodiimide-based ligand is provided, to obtain an ethylene polymer or copolymer having a large bulk density and the narrow distribution of molecular weight. CONSTITUTION: The method comprises the step of polymerizing or copolymerizing ethylene in the presence of a transition metal compound catalyst component of group IV chelated with a carbodiimide-based ligand, a magnesium-containing support and an organometallic compound cocatalyst of group II or III. The transition metal compound catalyst component of group IV chelated with a carbodiimide-based ligand, is prepared by reacting a Grignard compound of dialkyl magnesium with an alkoxy aluminum to obtain an alkoxy aluminum-magnesium compound; reacting the obtained alkoxy aluminum-magnesium compound with a carbodiimide-based ligand; and reacting the obtained one with a transition metal of group IV. Preferably the carbodiimide-based ligand is represented by the formula 1, wherein W, Y and Z are independently an alkyl group, a phenyl group or a heteroatom-containing alkyl group.

Description

카르보디이미드계열 리간드의 킬레이트 화합물 촉매를 이용한 에틸렌 중합 및 공중합방법{METHOD OF POLYMERIZATION AND COPOLYMERIZATION OF ETHYLENE USING CARBODIIMDE LIGAND CHELATED CATALYST}Ethylene Polymerization and Copolymerization Method Using Chelating Compound Catalyst of Carbodiimide-Based Ligand {METHOD OF POLYMERIZATION AND COPOLYMERIZATION OF ETHYLENE USING CARBODIIMDE LIGAND CHELATED CATALYST}

본 발명은 에틸렌의 중합방법 및 에틸렌과 알파-올레핀과의 공중합 방법에 관한 것이며, 보다 상세하게는 카르보디이미드계열 리간드에 의해 킬레이트결합된 제 Ⅳ족 전이금속 화합물을 촉매로 사용하는 에틸렌 중합 및 에틸렌/알파-올레핀 공중합 방법에 관한 것이다.The present invention relates to a polymerization method of ethylene and a copolymerization method of ethylene and alpha-olefin, and more particularly, ethylene polymerization and ethylene using a Group IV transition metal compound chelate-bonded with a carbodiimide-based ligand as a catalyst. / Alpha-olefin copolymerization method.

전이금속 화합물을 촉매로 하여 올레핀을 중합하는 올레핀 중합 반응에 있어서, 전이금속 화합물의 반응환경을 변화시킴으로써, 생성되는 폴리머의 특성을 향상시키고자 하는 노력이 지속되어 왔다. 특히 전이금속 화합물의 리간드를 시클로펜타디엔 리간드로 변화시킨 메탈로센 화합물을 이용하여 전이금속 화합물이 올레핀과 반응하는 반응 환경을 조절하고자 하는 노력은 상당한 진전을 이루고 있다.In olefin polymerization reactions in which olefins are polymerized using a transition metal compound as a catalyst, efforts have been made to improve the properties of polymers produced by changing the reaction environment of transition metal compounds. In particular, efforts to control the reaction environment in which the transition metal compound reacts with the olefin using the metallocene compound obtained by converting the ligand of the transition metal compound into the cyclopentadiene ligand have made significant progress.

1980년대 들어 메탈로센 화합물을 이용한 균일계 촉매는 알파-올레핀과의 우수한 (공)중합 특성으로 인하여 충격 강도, 투명성 등에서 우수한 특성을 나타내어 각광을 받기 시작하였다.In the 1980s, homogeneous catalysts using metallocene compounds started to get the spotlight due to their excellent (co) polymerization properties with alpha-olefins, such as impact strength and transparency.

특히 시클로펜타디에닐기에 전자적 또는 입체 공간적인 환경을 조절하는 인데닐기(indenyl), 시클로헵타디엔기(cycloheptadiene), 플루오레닐기(fluorenyl)와 같은 특수한 치환기를 갖는 메탈로센 화합물을 합성함으로써, 입체규칙성 및 폴리머의 분자량 크기를 조절할 수 있는 메탈로센 촉매가 개발되어, 그 활용 분야를 넓혀가고 있다.In particular, by synthesizing a metallocene compound having special substituents such as indenyl, cycloheptadiene, and fluorenyl, which controls an electronic or steric spatial environment in a cyclopentadienyl group, Metallocene catalysts that can regulate the regularity and molecular weight size of polymers have been developed and are expanding their applications.

최근에는, 메탈로센 화합물을 무기 담지체에 담지시켜 비균일계 촉매로 제조함으로써, 우수한 공중합체를 생성하면서도 폴리머의 입자 성상을 조절할 수 있는 촉매의 개발이 활발히 진전되고 있다. 예를 들어, 미국 특허 제5,439,995호 및 미국 특허 제5,455,316호 등에서는 지르코노센 및 티타노센 화합물을 마그네슘 또는 실리카 화합물에 담지시켜, 입자 성상이 우수하고 공중합 특성이 우수한 비균일계 촉매의 제조를 발표하였다.In recent years, by developing a metallocene compound on an inorganic carrier to produce a non-uniform catalyst, development of a catalyst capable of controlling the particle properties of a polymer while producing an excellent copolymer has been actively progressed. For example, U. S. Patent No. 5,439, 995 and U. S. Patent No. 5,455, 316 disclose that the zirconocene and titanocene compounds are supported on magnesium or silica compounds to produce non-uniform catalysts having excellent particle properties and excellent copolymerization properties. It was.

그러나 현재까지 알려진 메탈로센 촉매는, 복잡한 유기금속화학적 합성이 요구되고 올레핀 중합시 조촉매로서 값비싼 메틸알루미녹산(MAO) 또는 보론화합물을 사용해야 하는 단점이 있어, 보다 합성이 용이한 화합물에 대한 욕구가 지속되고 있으며, 한편으로는 메탈로센 촉매에 의해 제조된 폴리머는 분자량 분포가 좁아서(Mw/Mn = 2~5) 폴리머의 가공 측면에서도 불리한 면을 갖고 있다.However, metallocene catalysts known to date have the disadvantage of requiring complex organometallic synthesis and using expensive methylaluminoxane (MAO) or boron compounds as cocatalysts in the polymerization of olefins. Desire continues, and on the other hand, the polymer produced by the metallocene catalyst has a narrow molecular weight distribution (Mw / Mn = 2 to 5), which has disadvantages in terms of processing of the polymer.

최근 들어, 비메탈로센 촉매(non-metallocene catalyst) 또는 초메탈로센 촉매(beyond metallocene catalyst) 혹은 유기금속성 촉매(organometallic catalyst)로 불리우는 전이금속 화합물을 촉매 성분으로 바이덴테이트(bidentate) 또는 트리덴테이트(tridentate)된 킬레이트 화합물을 사용하여 메탈로센 화합물처럼 합성이까다롭지 않으면서도, 좁은 분자량 분포를 갖는 폴리머를 생성하는 촉매를 개발하려는 노력이 이루어지고 있다.Recently, a transition metal compound called a non-metallocene catalyst or a supermetallocene catalyst or an organometallic catalyst is a bidentate or tree as a catalyst component. Efforts have been made to develop catalysts that use dentated chelate compounds to produce polymers with narrow molecular weight distributions, while not as complex as metallocene compounds.

예컨대 일본 공개특허 소63-191811호에는 티탄할라이드 화합물의 할라이드 리간드를 TBP 리간드(6-tert-butyl-4-methylphenoxy)로 치환한 화합물을 촉매 성분으로 하여 에틸렌 및 프로필렌을 중합한 결과가 보고되어 있는데, MAO를 조촉매로 사용하여 에틸렌 및 프로필렌을 중합한 결과, 고활성이면서도 분자량이 높은(평균 분자량 = 3,600,000 이상) 폴리머가 형성된 것으로 기재되어 있다.For example, Japanese Patent Application Laid-Open No. 63-191811 reports a result of polymerizing ethylene and propylene using a compound in which a halide ligand of a titanium halide compound is substituted with a TBP ligand (6- tert- butyl-4-methylphenoxy) as a catalyst component. The polymerization of ethylene and propylene using MAO as a cocatalyst resulted in the formation of a polymer with high activity and high molecular weight (average molecular weight = 3,600,000 or more).

한편, 미국 특허 제5,134,104호에는 TiCl4의 할라이드 리간드를 부피가 큰 아민 리간드로 바꾼 디옥틸아민티탄할라이드(C8H17)2NTiCl3화합물을 촉매 성분으로 한 올레핀 중합용 촉매를 발표하였다.U.S. Patent No. 5,134,104 discloses a catalyst for olefin polymerization using a dioctylaminetitanium halide (C 8 H 17 ) 2 NTiCl 3 compound as a catalyst component in which a halide ligand of TiCl 4 is replaced with a bulky amine ligand.

또, 미국의 J. Am. Chem. Soc 제117호 3008면에는 전이금속의 입체적 공간을 제한할 수 있는 킬레이트 화합물로 티탄이나 지르코니움 전이금속에 1,1'-바이-2,2'-나프톡시 리간드(1,1'-bi-2,2'-naphthol)를 킬레이트결합시킨 화합물 및 그 유도체를 사용한 올레핀 중합용 촉매를 발표하였고, 일본 공개특허 평6-340711호 및 유럽특허 EP 제0606125A2호에는 티탄할라이드 및 지르코니움 할라이드 화합물의 할라이드 리간드를 킬레이트된 페녹시기로 치환하여 고분자량의 폴리머를 생성하면서도 분자량 분포가 좁은 킬레이트 올레핀 중합용 촉매를 발표하였다.In addition, American J. Am. Chem. Soc No. 117 3008 is a chelating compound that can limit the steric space of transition metals and is a 1,1'-bi-2,2'-naphthoxy ligand (1,1'-bi) to titanium or zirconium transition metal -2,2'-naphthol) and a catalyst for olefin polymerization using a chelate-linked compound and derivatives thereof are disclosed. Japanese Unexamined Patent Publication No. Hei 6-340711 and EP 0606125A2 disclose titanium and halide compounds A catalyst for chelating olefin polymerization having a narrow molecular weight distribution while producing a high molecular weight polymer by replacing a halide ligand with a chelated phenoxy group was disclosed.

한편, 최근 들어서는 아민계열의 킬레이트된 전이금속 화합물을 이용한 비메탈로센(non-metallocene)계 올레핀 중합용 촉매가 주목을 받고 있다.Organometallics 1996, 15, 2672 및 Chem. Commun.1996, 2623에는 여러 가지 형태의 디아미드(diamide)화합물을 킬레이트결합시킨 티탄화합물을 합성하여 올레핀 중합용 촉매로 활용한 예를 소개하고 있으며, J. Am. Chem. Soc., 1998, 120, 8640에는 디아미드에 의해 킬레이트결합된 티탄화합물 및 지르코니움화합물을 이용한 프로필렌 중합반응이 소개되어 있다. 또 Organometallics 1998, 17, 4795에는 [(아릴-NCH2CH2)2O] 및 [(아릴-NCH2CH2)2S]에 의해 킬레이트된 티탄 또는 지르코니움을 이용한 중합용 촉매가 소개되어 있고, Organometallics 1998, 17, 4541에는 [N,N-디페닐-2,4-펜타디이민] 리간드에 의해 킬레이트 결합된 티탄, 바나디움, 크롬 화합물을 이용한 올레핀 중합용 촉매가 소개되어 있다. 또한 J. Am. Chem. Soc., 1996, 118, 10008에는 (아릴NCH2CH2CH2N아릴)에 의해 킬레이트 결합된 티탄화합물이 올레핀 중합용 촉매로 소개되어 있다. 또한 미국 특허 제5,502,128호에는 아미디네이트 (amidinate) 리간드에 의해 킬레이트 결합된 티탄 지르코니움 화합물을 이용한 sPS 중합 방법이 소개되어 있으며, Organometallics 1999, 18, 2046에는 포핀이미드 (phophinimide)계열의 아미드 화합물에 의해 결합된 티탄 또는 지르코니움 화합물을 이용한 고활성의 비메탈로센촉매가 소개되어 있다.On the other hand, recently, a catalyst for non-metallocene-based olefin polymerization using an amine-based chelate transition metal compound has been attracting attention. Organanometallics 1996, 15, 2672 and Chem. Commun. 1996 and 2623 show examples of synthesizing titanium compounds chelate-bonded with various types of diamide compounds and using them as catalysts for olefin polymerization. J. Am. Chem. Soc., 1998, 120, 8640 introduce propylene polymerization using titanium and zirconium compounds chelate-bonded by diamide. Organometallics 1998, 17 and 4795 also introduced catalysts for polymerization using titanium or zirconium chelated by [(aryl-NCH 2 CH 2 ) 2 O] and [(aryl-NCH 2 CH 2 ) 2 S]. In addition, Organometallics 1998, 17, 4541 introduce a catalyst for olefin polymerization using titanium, vanadium, and chromium compounds chelate bonded by [N, N-diphenyl-2,4-pentadiimine] ligand. See also J. Am. Chem. Soc., 1996, 118, 10008 introduce a titanium compound chelate-bonded by (aryl NCH 2 CH 2 CH 2 Naryl) as a catalyst for olefin polymerization. U.S. Patent No. 5,502,128 also discloses a sPS polymerization method using a titanium zirconium compound chelate-bonded by an amidinate ligand. Highly active nonmetallocene catalysts using titanium or zirconium compounds bound by compounds have been introduced.

그러나 상기한 킬레이트된 티탄 및 지르코니움 화합물을 이용한 비메탈로센계열의 올레핀 중합용 촉매는, 값비싼 MAO 또는 보론(Boron)화합물을 조촉매로 사용하는 균일계 촉매로 개발되어 왔다. 따라서 무기 담지체에 의해 활성화되는 비균일계 촉매로 기존의 대부분의 중합공정 특히 기상중합공정과 같은 우수한 입자성상을 지닌 촉매가 요구되는 공정에는 직접적인 적용이 어렵다는 문제점이 있었다. 그러므로 비메탈로센 화합물 또는 메탈로센 화합물을 촉매 성분으로 하면서 대부분의 기존 공정에 적용하고 있는 MgCl2와 같은 무기 담지체에 의해 손쉽게 활성화될 수 있는 촉매를 이용한 중합방법의 개발이 요구되고 있다.However, the catalyst for the non-metallocene series olefin polymerization using the chelated titanium and zirconium compounds has been developed as a homogeneous catalyst using expensive MAO or boron compounds as cocatalysts. Therefore, there is a problem in that it is difficult to directly apply to a non-uniform catalyst activated by an inorganic support, a process requiring a catalyst having excellent particle properties such as most of the existing polymerization process, especially gas phase polymerization process. Therefore, there is a demand for the development of a polymerization method using a catalyst which can be easily activated by an inorganic carrier such as MgCl 2 that is applied to most existing processes while using a nonmetallocene compound or a metallocene compound as a catalyst component.

본 발명은, 상기와 같은 문제점을 해결하여, 독특한 합성 방법에 의해 제조된 카르보디이미드 계열 리간드에 의해 킬레이트 결합된 금속 화합물을 촉매 성분으로 하면서, 마그네슘할라이드와 같은 무기 담지체와 일반적인 유기금속 화합물 조촉매를 사용하여, 좁은 분자량 분포를 가지면서도, 균일한 공중합체 조성분포를 갖는 에틸렌 중합 및 공중합방법을 제공하는 것을 목적으로 한다.The present invention has solved the above problems, using a metal compound chelate-bonded by a carbodiimide-based ligand produced by a unique synthesis method as a catalyst component, inorganic support such as magnesium halide and general organometallic compound It is an object to provide an ethylene polymerization and copolymerization method having a narrow molecular weight distribution and a uniform copolymer composition distribution using a catalyst.

본 발명의 에틸렌중합 및 공중합방법은;Ethylene polymerization and copolymerization method of the present invention;

(1) ⅰ) 디알킬마그네슘 형태의 그리냐드 화합물과 알콕시알루미늄과의 반응을 통해 알콕시알루미늄-마그네슘화합물을 얻고,(1) a) an alkoxyaluminum-magnesium compound is obtained by reacting a Grignard compound in the form of a dialkyl magnesium with an alkoxy aluminum,

ⅱ) 상기 ⅰ)에서 얻어진 화합물을 카르보디이미드계열 리간드와 반응시킨 후,Ii) reacting the compound obtained in iii) with a carbodiimide ligand,

ⅲ) 생성물을 주기율표 제 Ⅳ족 전이금속 화합물과 반응시키는 방법에 의해 얻어지는 카르보디이미드계열 리간드에 의해 킬레이트 결합된 주기율표 제 Ⅳ족 전이금속 화합물 촉매성분과;Iii) a periodic table Group IV transition metal compound catalyst component cheated by a carbodiimide-based ligand obtained by a method of reacting a product with a Group IV transition metal compound of the periodic table;

(2) 마그네슘 함유 담지체; 및(2) magnesium-containing carriers; And

(3) 주기율표 제 Ⅱ족 또는 제 Ⅲ족 유기금속 화합물 조촉매의 존재 하에서 이루어지는 것을 특징으로 한다.(3) Periodic Table The composition is made in the presence of a Group II or Group III organometallic compound promoter.

본 발명의 에틸렌 중합 및 공중합방법은 또한, 상기 (1)의 카르보디이미드계열 리간드에 의해 킬레이트결합된 주기율표 제 Ⅳ족 전이금속 화합물 촉매성분이, ⅲ)의 반응 후에 다시 알콕시알루미늄-마그네슘화합물과의 반응을 거쳐 얻어지는 것임을 특징으로 한다.In the ethylene polymerization and copolymerization method of the present invention, the periodic table group IV transition metal compound catalyst component chelate-bonded with the carbodiimide-based ligand of (1) is further reacted with the alkoxyaluminum-magnesium compound after reaction of i)). It is characterized by being obtained through reaction.

본 발명의 에틸렌 중합 및 공중합방법은 또한, 상기 카르보디이미드계열 리간드가 하기 화학식 (1)로 표시되는 것임을 특징으로 한다.The ethylene polymerization and copolymerization method of the present invention is also characterized in that the carbodiimide-based ligand is represented by the following formula (1).

(1) (One)

(여기서, W, Y, Z는 각각 독립적으로 알킬, 페닐 또는 헤테로원자를 포함하는 알킬기를 나타낸다)Wherein each of W, Y, and Z independently represents an alkyl group including alkyl, phenyl or heteroatoms.

본 발명은 또한, 상기 카르보디이미드계열 리간드가 디메틸카르보디이미드, 디시클로헥실카르보디이미드, 1,3-비스트리메틸시릴카르보디이미드인 것을 특징으로 한다.The present invention is also characterized in that the carbodiimide-based ligand is dimethylcarbodiimide, dicyclohexylcarbodiimide, or 1,3-bistrimethylsilylcarbodiimide.

한편, 본 발명의 에틸렌 중합 및 공중합방법에 있어서의 상기 마그네슘 함유 담지체는, MgPh2·nMgCl2·mR2O (여기서, Ph는 페닐, n=0.37 ~ 0.7, m≥1, R2O는 에테르를 각각 나타낸다)로 표시되는 유기마그네슘화합물과 유기염소화합물을, 유기염소화합물과 마그네슘의 몰비를 0.5 이상으로 하여 반응시켜 제조되는 것이다.On the other hand, the magnesium-containing support in the ethylene polymerization and copolymerization method of the present invention is MgPh 2 · nMgCl 2 · mR 2 O (wherein Ph is phenyl, n = 0.37 to 0.7, m ≧ 1, R 2 O is And an organic magnesium compound and an organic chlorine compound represented by each of the ethers) are produced by reacting the molar ratio of the organic chlorine compound and magnesium to 0.5 or more.

나아가, 본 발명은 상기 주기율표 제 Ⅳ족 전이금속 화합물이 일반식 M(OR)aX4-a(여기서, M은 Ti, Zr 또는 Hf이며, R은 탄화수소기, X는 할로겐원자, 그리고 a는 0≤a≤2의 정수를 나타낸다)를 만족시키는 화합물인 것을 특징으로 한다.Furthermore, in the present invention, the Group IV transition metal compound of the periodic table is a general formula M (OR) a X 4-a , wherein M is Ti, Zr or Hf, R is a hydrocarbon group, X is a halogen atom, and a is It is a compound which satisfy | fills the integer of 0 <= a <= 2).

본 발명의 에틸렌중합 및 공중합방법에 있어서, 상기 유기금속 화합물 조촉매 성분은 MRn(여기서, M은 주기율표 Ⅱ족 또는 ⅢA족 금속원자를 나타내고, R은 탄소수 1 ~ 20의 알킬기를 나타내며, n은 상기 금속원자의 원자가를 나타낸다)의 일반식으로 표시되는 것이다.In the ethylene polymerization and copolymerization method of the present invention, the organometallic compound promoter component is MR n (wherein M represents a periodic table group II or IIIA metal atom, R represents an alkyl group having 1 to 20 carbon atoms, n is The valence of the metal atom).

이하, 본 발명을 좀 더 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 에틸렌 중합 및 공중합방법에서 사용되는 카르보디이미드계열 리간드에 의해 킬레이트결합된 주기율표 제 Ⅳ족 전이금속 화합물 촉매는,The periodic table Group IV transition metal compound catalyst chelated by a carbodiimide-based ligand used in the ethylene polymerization and copolymerization method of the present invention is

ⅰ) 디알킬마그네슘 형태의 그리냐드 화합물과 알콕시알루미늄과의 반응을 통해 얻어진 알콕시알루미늄-마그네슘화합물을,Iii) an alkoxyaluminum-magnesium compound obtained through the reaction of a Grignard compound in the form of a dialkyl magnesium with alkoxyaluminum,

ⅱ) 카르보디이미드계열의 킬레이트 리간드와 반응시킨 다음,Ii) react with a carbodiimide family of chelate ligands,

ⅲ) 이를 주기율표 제 Ⅳ족 전이금속 화합물과 반응시켜 제조된다.V) reacted with a Group IV transition metal compound of the Periodic Table.

상기 ⅰ)단계의 공정에서 알콕시알루미늄-마그네슘 화합물을 제조하기 위해 사용되는 알콕시알루미늄 화합물은, R3-nAl(OR')n(여기서, R, R'는 알킬, n은 1, 2 또는 3)의 일반식으로 표시할 수 있는 것으로, 예컨대 알킬알루미늄과 알코올화합물을 반응시켜 제조할 수 있다.The alkoxyaluminum compound used to prepare the alkoxyaluminum-magnesium compound in the process of step iii) is R 3-n Al (OR ') n (wherein R, R' is alkyl and n is 1, 2 or 3). It can be represented by the general formula of), for example, it can be produced by reacting an alkyl aluminum and an alcohol compound.

알콕시알루미늄 화합물의 제조에 사용되는 상기 알킬알루미늄은 일반식 RnAlX3-n(R은 탄소수 1~20의 알킬, X는 할로겐 또는 히드리드, n은 1, 2 또는 3)을 만족하는 것이 바람직하며, 예컨대 트리에틸알루미늄, 트리이소부틸알루미늄과 같이 탄소수 1 ~ 20의 알킬기를 가진 트리알킬알루미늄 및 이들의 혼합물이 보다 바람직하다. 경우에 따라서는, 에틸알루미늄디클로라이드, 디에틸알루미늄클로라이드, 에틸알루미늄세스퀴클로라이드, 디이소부틸알루미늄히드리드와 같은 한 개 이상의 할로겐 또는 히드리드기를 갖는 유기알루미늄 화합물을 사용할 수도 있다.The alkyl aluminum used in the preparation of the alkoxy aluminum compound preferably satisfies the general formula R n AlX 3-n (R is alkyl having 1 to 20 carbon atoms, X is halogen or hydride, and n is 1, 2 or 3). For example, trialkylaluminum having an alkyl group having 1 to 20 carbon atoms such as triethylaluminum and triisobutylaluminum and mixtures thereof are more preferable. In some cases, an organoaluminum compound having one or more halogen or hydride groups, such as ethylaluminum dichloride, diethylaluminum chloride, ethylaluminum sesquichloride, diisobutylaluminum hydride, may be used.

또한, 상기 알코올로서는 알킬기의 탄소수가 3개 이상인 프로필알코올, 이소프로필알코올, 부틸알코올, 이소부틸알코올, 2-에틸헥산올, 옥탄올 등이 적합하다.As the alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, 2-ethylhexanol, octanol and the like having 3 or more carbon atoms of an alkyl group are suitable.

이 반응에 있어서, 상기 알코올과 상기 알킬알루미늄과의 반응 몰비는 1 : 0.2 ~ 1 : 5.0이 바람직하며, 1 : 0.5 ~ 1 : 2.5가 더욱 바람직하다.In this reaction, the reaction molar ratio of the alcohol and the alkyl aluminum is preferably 1: 0.2 to 1: 5.0, and more preferably 1: 0.5 to 1: 2.5.

한편, 상기 디알킬마그네슘 형태의 그리냐드 화합물은 일반식 MgR2(R은 탄소수 1 ~ 30의 알킬기)로 표시되는 것이며, 예컨대 디부틸마그네슘, 부틸에틸마그네슘, 부틸옥틸마그네슘 등이 바람직하다.Meanwhile, the Grignard compound of the dialkyl magnesium form is represented by the general formula MgR 2 (R is an alkyl group having 1 to 30 carbon atoms), for example, dibutyl magnesium, butyl ethyl magnesium, butyl octyl magnesium, and the like.

그리고 디알킬마그네슘 형태의 그리냐드 화합물과 알콕시알루미늄 화합물과의 반응비는 몰비로서 1 : 0.2 ~ 1 : 5.0이 바람직하며, 1 : 0.5 ~ 1 : 2.5가 더욱 바람직하다.In addition, the reaction ratio of the dialkylmagnesium-type Grignard compound and the alkoxyaluminum compound is preferably 1: 0.2 to 1: 5.0, more preferably 1: 0.5 to 1: 2.5 as the molar ratio.

상기 반응은 일반식 RH(R은 탄소수 1 ~ 20의 알킬기)를 만족하는 지방족 탄화수소 용매 중에서 이루어지며, 예컨대 헥산, 헵탄 등의 용매 중에서 특히 순조롭게 진행된다.The reaction is carried out in an aliphatic hydrocarbon solvent that satisfies the general formula RH (R is an alkyl group having 1 to 20 carbon atoms), and proceeds particularly smoothly in solvents such as hexane and heptane.

상기한 알콕시알루미늄-마그네슘 화합물의 제조에 있어서의 반응온도로는 온화한 반응조건인 상온 ~ 50℃ 미만이 바람직하다. 그리고 반응시간은 1시간 ~ 3시간 사이가 적합하며, 1시간 이상이면 충분한 반응이 이루어진다.As reaction temperature in manufacture of said alkoxy aluminum-magnesium compound, normal temperature-less than 50 degreeC which is a mild reaction condition is preferable. And the reaction time is suitably between 1 hour and 3 hours, if more than 1 hour is sufficient reaction.

ⅱ) 단계의 반응에서는, 상기 ⅰ) 단계의 반응에서 얻어진 알콕시알루미늄-마그네슘화합물을 카르보디이미드계열의 리간드와 반응시킨다.In the reaction of step ii), the alkoxyaluminum-magnesium compound obtained in the reaction of step iii) is reacted with a ligand of carbodiimide series.

카르보디이미드계열의 리간드는 다음의 일반식을 만족하는 화합물이며, 디메틸카르보디이미드, 디시클로헥실카르보디이미드, 1,3-비스트리메틸시릴카르보디이미드 등의 화합물이 특히 적합하다.Carbodiimide-based ligands are compounds that satisfy the following general formula, and compounds such as dimethyl carbodiimide, dicyclohexylcarbodiimide, and 1,3-bistrimethylsilylcarbodiimide are particularly suitable.

(여기서, W, Y, Z는 각각 독립적으로 알킬, 페닐 또는 헤테로원자를 포함하는 알킬기를 나타낸다)Wherein each of W, Y, and Z independently represents an alkyl group including alkyl, phenyl or heteroatoms.

이 알콕시알루미늄-마그네슘 화합물과 카르보디이미드계열의 리간드와의 반응은, 헥산, 헵탄 등의 지방족 탄화수소와 같은 비극성 용매 중에서 순조롭게 진행되며, 반응온도는, 온순한 반응조건인 상온 ~ 50℃ 미만의 온도가 바람직하다.The reaction between the alkoxyaluminum-magnesium compound and the carbodiimide-based ligand proceeds smoothly in a nonpolar solvent such as aliphatic hydrocarbons such as hexane and heptane, and the reaction temperature is lower than room temperature to 50 ° C, which is a mild reaction condition. desirable.

한편, 상기 알콕시알루미늄-마그네슘 화합물과 카르보디이미드계열 리간드의반응비는 몰비로서 1 : 0.2 ~ 1 : 5.0이 바람직하며, 1 : 0.5 ~ 1 : 2.5이면 더욱 바람직하다.On the other hand, the reaction ratio of the alkoxyaluminum-magnesium compound and the carbodiimide-based ligand is preferably 1: 0.2 to 1: 5.0 as a molar ratio, and more preferably 1: 0.5 to 1: 2.5.

반응시간은 1 ~ 3시간 사이가 적합하며, 1시간 이상이면 충분한 반응이 이루어진다.The reaction time is suitably between 1 and 3 hours, and more than 1 hour is sufficient reaction.

ⅲ) 단계에서는, 상기 방법으로 제조된 카르보디이미드계열 리간드를 함유하는 알콕시알루미늄-마그네슘화합물을 주기율표 제 Ⅳ족 전이금속 화합물과 반응시키고, 경우에 따라서는 다시 알콕시알루미늄-마그네슘 화합물을 첨가하여 반응시킴으로써, 액상의 킬레이트된 전이금속 화합물이 제조된다.In step iii), the alkoxyaluminum-magnesium compound containing the carbodiimide-based ligand prepared by the above method is reacted with a Group IV transition metal compound of the periodic table, and in some cases, by addition of the alkoxyaluminum-magnesium compound Liquid chelated transition metal compounds are prepared.

즉, 상기 ⅱ) 단계에서 제조된 카르보디이미드계열 리간드를 함유하는 알콕시알루미늄-마그네슘 화합물을, 상온에서 주기율표 제 Ⅳ족의 전이금속 화합물에 적가한 후, 65℃ ~ 70℃ 에서 1시간 이상 반응시켜 킬레이트된 주기율표 제 Ⅳ족 전이금속 화합물을 제조한다.That is, the alkoxyaluminum-magnesium compound containing the carbodiimide-based ligand prepared in step ii) is added dropwise to the transition metal compound of Group IV of the periodic table at room temperature, and then reacted at 65 ° C to 70 ° C for at least 1 hour. A chelated periodic table Group IV transition metal compound is prepared.

이때에 사용되는 카르보디이미드계열 리간드를 함유하는 알콕시알루미늄-마그네슘 화합물과 주기율표 제 Ⅳ족 전이금속 화합물의 몰비는, 상기 알콕시알루미늄-마그네슘화합물 중의 마그네슘 1몰당 전이금속 화합물 0.5 ~ 2.0몰의 비율이 바람직하다.The molar ratio of the alkoxyaluminum-magnesium compound containing the carbodiimide-based ligand and the Group IV transition metal compound used at this time is preferably a ratio of 0.5 to 2.0 mol of the transition metal compound per mol of magnesium in the alkoxyaluminum-magnesium compound. Do.

사용되는 주기율표 제 Ⅳ족 전이금속 화합물은, 일반식 M(OR)aX4-a(여기서, M은 Ti, Zr 또는 Hf이며, R은 탄화수소기, X는 할로겐원자, 그리고 a는 0≤a≤2의 정수를 나타낸다)를 만족시키는 화합물이며, 예컨대 MCl4, MBr4와 같은 전이금속할라이드 화합물, MCl2(OR)2, MCl3(OR), MBr2(OR)2, MBr3(OR) 등과 같이 적어도 2개 이상의 할라이드기를 함유하는 전이금속 화합물이다.The periodic table Group IV transition metal compound used is a general formula M (OR) a X 4-a (wherein M is Ti, Zr or Hf, R is a hydrocarbon group, X is a halogen atom, and a is 0 ≦ a). And a transition metal halide compound such as MCl 4 , MBr 4 , MCl 2 (OR) 2 , MCl 3 (OR), MBr 2 (OR) 2 , MBr 3 (OR And a transition metal compound containing at least two or more halide groups.

순조로운 반응을 위해서는, 상기 전이금속 화합물들은 THF 등과 같은 에테르계열의 용매와 반응시켜 얻어지는 MCl4(THF)2등과 같은 애덕트(adduct) 형태의 전이금속할라이드 화합물을 사용하는 것이 바람직하다.For a smooth reaction, it is preferable to use an adduct-type transition metal halide compound such as MCl 4 (THF) 2 obtained by reacting the transition metal compounds with an ether-based solvent such as THF.

상기 킬레이트된 전이금속 화합물의 제조시에는, 반응 부산물로 마그네슘할라이드 화합물이 생성되는데, 이는 탄화수소 용매에 용해되지 않으므로 쉽게 분리가 가능하다.In the preparation of the chelated transition metal compound, a magnesium halide compound is produced as a reaction by-product, which is not dissolved in a hydrocarbon solvent and thus can be easily separated.

헵탄, 헥산 등의 비극성 용매에 용해되어 있는 킬레이트된 전이금속 화합물은 매우 안정하며, 탄화수소 용매에 녹아 있는 상태로 별도의 분리 공정이 없이 직접 사용할 수 있다. 즉, 상기 킬레이트된 전이금속 화합물은 헥산, 헵탄 등의 비극성 용매에 용해되어 있는 액상의 형태로 조촉매 성분과 함께 올레핀 중합용 촉매 성분으로 사용할 수 있다.Chelated transition metal compounds dissolved in non-polar solvents such as heptane and hexane are very stable and can be used directly in a hydrocarbon solvent without a separate separation process. That is, the chelated transition metal compound may be used as a catalyst component for olefin polymerization together with the cocatalyst component in the form of a liquid dissolved in a nonpolar solvent such as hexane and heptane.

한편, 상기 ⅲ)의 반응의 반응중에 생성되는 마그네슘 할라이드에 포함되어 손실된 알콕시알루미늄-마그네슘 성분을 보충하기 위해서는, 상기 반응에서 생성된 킬레이트된 전이금속 화합물을 다시 상기 ⅰ)에서 제조된 알콕시알루미늄-마그네슘 화합물과 반응시킨 것을 에틸렌 중합 및 공중합의 촉매 성분으로 사용할 수도 있다.On the other hand, in order to make up for the alkoxyaluminum-magnesium component contained in the magnesium halide generated during the reaction of the reaction of iii), the chelated transition metal compound produced in the reaction is again alkoxyaluminum-prepared in iii). What reacted with a magnesium compound can also be used as a catalyst component of ethylene polymerization and copolymerization.

본 발명의 에틸렌 중합 및 공중합방법에 있어서 사용되는 (2)의 마그네슘 함유 담지체에 대해 설명한다.The magnesium containing carrier of (2) used in the ethylene polymerization and copolymerization method of this invention is demonstrated.

본 발명에 사용되는 마그네슘 함유 담지체는 특허출원 제2000-85050호에 기재된 공지된 방법에 의해 제조될 수 있다.The magnesium-containing carrier used in the present invention can be produced by the known method described in Patent Application No. 2000-85050.

상기 공지방법에 의한 마그네슘 함유 담지체는, 전자공여체의 존재하에 마그네슘과 아릴 또는 알킬할라이드를 반응시켜 제조되는 유기마그네슘 화합물 착체 [MgPhnMgCl2·mR2O]를 탄화수소 용매중에서 유기염소화합물로 염소화함으로써 제조한다.The magnesium-containing carrier according to the above known method is an organic magnesium compound complex [MgPh 2 · nMgCl 2 · mR 2 O] prepared by reacting magnesium with aryl or alkyl halide in the presence of an electron donor as an organic chlorine compound in a hydrocarbon solvent. Prepared by chlorination.

이 반응은 -20℃ ~ 80℃의 온도에서 이루어지는 것이 바람직하며, 유기염소화합물/Mg의 몰비는 0.5 이상이 되도록 한다.The reaction is preferably carried out at a temperature of -20 ° C to 80 ° C, and the molar ratio of organochlorine compound / Mg is 0.5 or more.

이렇게 제조된 마그네슘 함유 담지체는 AlR3(R은 탄소수 1 ~ 20의 알킬기를 나타낸다)의 일반식으로 표시되는 알킬알루미늄과 반응시킨 후 사용할 수 있다.The magnesium-containing carrier thus prepared may be used after reacting with an alkylaluminum represented by the general formula of AlR 3 (R represents an alkyl group having 1 to 20 carbon atoms).

제조된 마그네슘 화합물은, 입자 성상이 구형이면서 입자크기가 크고 입자크기 분포가 균일하여, 본 발명에 의한 킬레이트된 전이 금속 화합물을 활성화시켜 우수한 입자 성상을 갖는 폴리머를 제조하기에 적합하다. 자세한 제조 방법의 예는 실시예를 통해서 설명하였다.The prepared magnesium compound has a spherical particle shape, a large particle size, and a uniform particle size distribution, which is suitable for activating a chelated transition metal compound according to the present invention to prepare a polymer having excellent particle properties. An example of a detailed manufacturing method was demonstrated through the Example.

한편, 본 발명에 따른 에틸렌 중합 및 공중합은 주기율표 제 Ⅱ족 또는 제 Ⅲ족 유기금속 화합물 조촉매의 존재 하에서 이루어진다.On the other hand, the ethylene polymerization and copolymerization according to the present invention is carried out in the presence of a periodic table of Group II or Group III organometallic compound promoter.

본 발명의 방법에 있어서 사용되는 조촉매 성분으로는, MRn(여기에서 M은 마그네슘, 칼슘, 아연, 보론, 알루미늄, 갈륨과 같은 주기율표 Ⅱ족 또는 ⅢA족 금속성분이며, R은 메틸, 에틸, 부틸, 헥실, 옥틸, 데실과 같은 탄소수 1 ~ 20의 알킬기를 나타내며, n은 금속 성분의 원자가를 나타낸다)의 일반식으로 표시되는 유기금속 화합물이 바람직하며, 이들 중에서도 특히 바람직한 유기금속 화합물로는 트리에틸알루미늄, 트리이소부틸알루미늄과 같은 탄소수 1~6의 알킬기를 가진 트리알킬알루미늄과 이들의 혼합물이다.As the promoter component used in the method of the present invention, MR n (where M is a periodic table group II or IIIA metal component such as magnesium, calcium, zinc, boron, aluminum, gallium, and R is methyl, ethyl, The organometallic compound represented by the general formula of a C1-C20 alkyl group such as butyl, hexyl, octyl, decyl, and n represents the valence of the metal component is preferable, and among these, particularly preferred organometallic compounds are Trialkylaluminum having alkyl groups of 1 to 6 carbon atoms such as ethylaluminum and triisobutylaluminum, and mixtures thereof.

경우에 따라서는 에틸알루미늄 디클로라이드, 디에틸알루미늄 클로라이드, 에틸알루미늄 세스퀴클로라이드, 디이소부틸알루미늄히드리드와 같은 하나 이상의 할로겐 또는 히드리드기를 포함하는 유기알루미늄 화합물도 사용될 수 있다.In some cases, an organoaluminum compound comprising at least one halogen or hydride group such as ethylaluminum dichloride, diethylaluminum chloride, ethylaluminum sesquichloride, diisobutylaluminum hydride may also be used.

상기 올레핀 중합 촉매성분들은, 별도의 반응을 거치지 않고 각각의 촉매 성분을 중합과정에 순차적 또는 동시에 주입하거나, 또는 이들을 혼합하여 주입할 수 있다.The olefin polymerization catalyst components may be injected sequentially or simultaneously with each catalyst component in the polymerization process, or a mixture thereof without undergoing a separate reaction.

본 발명의 에틸렌 중합 및 공중합방법에서는, 상기 방법으로 제조된 카르보디이미드계열 리간드에 의해 킬레이트 결합된 주기율표 제 Ⅳ족 전이금속 화합물 촉매성분과 상기 마그네슘 함유 담지체 및 상기 주기율표 제 Ⅱ족 또는 제 Ⅲ족 유기금속 화합물 조촉매를 사용하여, 에틸렌의 단독중합 및 에틸렌과 알파-올레핀과의 공중합을 실시한다.In the ethylene polymerization and copolymerization method of the present invention, a periodic table group IV transition metal compound catalyst component chelate-bonded with a carbodiimide-based ligand prepared by the above method, the magnesium-containing support and the periodic table group II or III Using an organometallic compound promoter, homopolymerization of ethylene and copolymerization of ethylene and alpha-olefins are carried out.

본 발명에 있어서 에틸렌과 공중합하는 상기 알파 올레핀으로는, 탄소수 3 ~ 10의 알파-올레핀이 적합하며, 예컨대 프로필렌, 1-부텐, 1-펜텐, 1-헥센, 4-메틸-1-펜텐, 1-옥텐 등의 알파 올레핀을 들 수 있다.As said alpha olefin copolymerized with ethylene in this invention, a C3-C10 alpha-olefin is suitable, For example, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1- pentene, 1 Alpha olefins, such as octene, are mentioned.

본 발명에 의한 올레핀 중합방법은, 슬러리 또는 기상중합방법에 의해 수행하기에 적합하다.The olefin polymerization method according to the present invention is suitable to be carried out by a slurry or a gas phase polymerization method.

슬러리중합은, 헥산, 헵탄, 펜탄, 시클로헥산, 벤젠, 톨루엔 등과 같은 지방족 및 방향족 탄화수소를 용매로 사용하여, 50℃에서 120℃의 온도에서 수행하는 것이 바람직하다. 슬러리중합에 있어서, 상기 촉매의 투입량은 변화될 수 있으며, 탄화수소 용매 1ℓ당 약 0.005m㏖ ~ 1m㏖의 촉매를 사용하는 것이 바람직하고, 용매 1ℓ당 0.01m㏖ ~ 0.1m㏖을 사용하는 것이 더욱 바람직하다.The slurry polymerization is preferably performed at a temperature of 50 ° C. to 120 ° C. using aliphatic and aromatic hydrocarbons such as hexane, heptane, pentane, cyclohexane, benzene, toluene, and the like as a solvent. In slurry polymerization, the dosage of the catalyst may vary, preferably about 0.005 mmol to about 1 mmol of catalyst per liter of hydrocarbon solvent, and more preferably 0.01 mmol to 0.1 mmol per liter of solvent. desirable.

한편, 분자량 크기의 조절은 온도 및 올레핀 압력의 조절, 수소압의 조절 등을 통해 이루어질 수 있다. 에틸렌 중합시에 있어서의 에틸렌의 압력은 2 ~ 50kg중/㎠이 적합하다.On the other hand, the control of the molecular weight size can be made through the control of temperature and olefin pressure, the control of hydrogen pressure and the like. The pressure of ethylene at the time of ethylene polymerization is suitably 2-50 kg / cm <2>.

본 발명의 방법에 의해 제조되는 에틸렌/알파 올레핀 공중합체는, 균일한 공중합체 조성분포를 가지며, 분자량 분포가 좁아서, 충격강도가 매우 크며, 끈적끈적(sticky)한 저분자량의 폴리머를 함유하고 있지 않기 때문에, 수퍼헥센그레이드(super hexene grade)와 같은 고충격용 LLDPE에 적합하다.The ethylene / alpha olefin copolymer produced by the method of the present invention has a uniform copolymer composition distribution, has a narrow molecular weight distribution, has a very high impact strength, and does not contain a sticky low molecular weight polymer. It is suitable for high impact LLDPE, such as super hexene grade.

이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following examples.

(실시예)(Example)

이하의 실시예에 있어서, 촉매 제조에 사용한 탄화수소 용매는 나트륨 존재하에 증류함으로써, 그리고 할로겐화 탄화수소는 칼슘하이드라이드 존재하에서 증류함으로써 수분을 제거한 것을 사용하였다. 또, 촉매 제조를 위한 이하의 모든 반응은 질소 분위기에서 진행하였다.In the following examples, the hydrocarbon solvent used for preparing the catalyst was removed by distillation in the presence of sodium, and the halogenated hydrocarbon was distilled in the presence of calcium hydride. In addition, all the following reactions for catalyst preparation were performed in nitrogen atmosphere.

(실시예 1)(Example 1)

[디시클로헥실카르보디이미드 리간드에 의해 킬레이트된 티탄 화합물 (A-1)의 제조][Preparation of Titanium Compound (A-1) Chelated with Dicyclohexylcarbodiimide Ligand]

800m㏖의 트리에틸알루미늄을 헥산에 희석시켜 800㎖가 되게 한 다음, 1ℓ용량의 플라스크에 넣고, 상온의 냉각수에 의해 플라스크의 온도가 상온을 유지하도록 하면서, 2-에틸헥산올 2400m㏖을 1시간에 걸쳐 서서히 적가한 후, 1시간 동안 교반하여 무색 투명한 용액을 제조하였다. 상기 2-에틸헥산올의 적가에 의해 가스가 생성되는 것이 관찰되었다.After diluting 800 mmol of triethylaluminum in hexane to make 800 ml, it was placed in a 1 L flask, and the temperature of the flask was kept at room temperature by cooling water at room temperature, while 2400 mmol of 2-ethylhexanol was kept for 1 hour. After slowly dropping over, it was stirred for 1 hour to prepare a colorless transparent solution. It was observed that gas was generated by the dropwise addition of 2-ethylhexanol.

상기 제조된 용액에 디부틸마그네슘의 1.0M 헵탄용액 400㎖를 주입하고, 1시간 동안 교반하여, 알콕시알루미늄-마그네슘 화합물을 제조하였다.400 ml of 1.0M heptane solution of dibutylmagnesium was injected into the solution prepared above, and stirred for 1 hour to prepare an alkoxyaluminum-magnesium compound.

상기 용액에 다시 82.4g의 디시클로헥실카르보디이미드(400m㏖)를 주입한 후, 상온에서 1시간 동안 교반하였다.82.4 g of dicyclohexylcarbodiimide (400 mmol) was added to the solution, followed by stirring at room temperature for 1 hour.

이렇게 제조된 화합물을 133.684 g의 TiCl4(THF)2(400m㏖)와 상온에서 6시간 동안 반응시켰다. 반응에 의해 초기에 밝은 노란색이었던 TiCl4(THF)2고체가 서서히 붉은 색으로 변하면서 흰색의 마그네슘할라이드 고체를 생성하였다.The compound thus prepared was reacted with 133.684 g of TiCl 4 (THF) 2 (400 mmol) for 6 hours at room temperature. By reaction, TiCl 4 (THF) 2 solid, which was initially light yellow, gradually turned red, producing a white magnesium halide solid.

다시 알콕시알루미늄-마그네슘 화합물(Mg 400m㏖)을 주입하고, 상온에서 6시간 동안 반응시켰다.The alkoxyaluminum-magnesium compound (Mg 400 mmol) was further injected and reacted at room temperature for 6 hours.

교반을 멈추고 20분 정도 기다리면, 밑부분에 흰색 고체가 가라앉는데, 상층의 붉은 용액을 밑부분의 흰색 고체로부터 분리하여 다른 플라스크에 옮겨, 액상의킬레이트된 티탄화합물 촉매 성분(A-1)을 얻었다.After stopping the stirring for 20 minutes, the white solid at the bottom settles, and the red solution of the upper layer is separated from the white solid at the bottom and transferred to another flask to remove the liquid chelated titanium compound catalyst component (A-1). Got it.

[마그네슘함유 담지체(B)의 제조][Production of Magnesium-Containing Carrier (B)]

교반기와 온도조절기가 구비된 1ℓ 용량의 유리 반응기내에서, 디부틸에테르 307㎖(1.8㏖)와 활성제로서 4㎖ 부틸클로라이드에 0.29g의 요오드가 용해된 용액의 존재하에서, 29.2g의 마그네슘 분말(1.2㏖)과 436㎖의 클로로벤젠(4.3㏖)을 반응시켰다. 반응은 80 ~ 100℃의 온도에서 불활성기체(질소) 분위기 하에서 10시간 동안 교반하면서 진행되었다.In a 1 liter glass reactor equipped with a stirrer and a thermostat, 29.2 g of magnesium powder (in the presence of 307 ml (1.8 mol) of dibutyl ether and 0.29 g of iodine dissolved in 4 ml butyl chloride as an activator) 1.2 mol) and 436 ml of chlorobenzene (4.3 mol) were reacted. The reaction proceeded with stirring for 10 hours under an inert gas (nitrogen) atmosphere at a temperature of 80 ~ 100 ℃.

그런 다음, 반응 혼합물을 교반하지 않는 상태에서 12시간 동안 정치시킨 후, 액체상을 침전물로부터 분리하였다. 액체상은 MgPh0.5MgCl2·2(C4H9)2O의 조성을 갖는 유기마그네슘 화합물이 클로로벤젠에 용해된 용액(농도: 0.92㏖ Mg/ℓ)이다.Then, the reaction mixture was left for 12 hours without stirring, and then the liquid phase was separated from the precipitate. A: liquid phase MgPh 2 · 0.5MgCl 2 · 2 ( C 4 H 9) is an organomagnesium compound having the composition 2 O dissolved in chlorobenzene solution (0.92㏖ Mg / ℓ concentration).

얻어진 용액 120㎖(Mg 0.11㏖)를 교반기가 구비된 반응기에 투입하고, 42㎖의 n-헥산에 용해된 10.6㎖ CCl4(CCl40.11㏖)를 50℃의 온도에서 1시간에 걸쳐 반응기내로 첨가하였다. 반응혼합물을 60분 동안 동일 온도에서 교반한 다음, 용매를 제거하고, 60℃의 온도에서 침전물을 100㎖의 n-헥산으로 4회 세척하였다. 그 결과, 11.8g의 분말상 유기마그네슘 담지체가 n-헥산내에 현탁된 상태로 얻어졌다.120 mL (Mg 0.11 mol) of the obtained solution was added to a reactor equipped with a stirrer, and 10.6 mL CCl 4 (CCl 4 0.11 mol) dissolved in 42 mL of n-hexane was added to the reactor at a temperature of 50 ° C. over 1 hour. Was added. The reaction mixture was stirred at the same temperature for 60 minutes, then the solvent was removed, and the precipitate was washed four times with 100 ml of n-hexane at a temperature of 60 ° C. As a result, 11.8 g of a powdered organic magnesium carrier was obtained in a suspended state in n-hexane.

[에틸렌 중합 반응][Ethylene polymerization reaction]

충분히 질소 치환된 내용적 2ℓ의 오토클레이브에, 실온에서 중합 용매인 헥산을 1000㎖를 가한 후, 오토클레이브내의 질소를 에틸렌으로 치환하였다.To a fully nitrogen-substituted 2 liter autoclave, 1000 ml of hexane as a polymerization solvent was added at room temperature, and then nitrogen in the autoclave was substituted with ethylene.

상온에서 3m㏖의 트리옥틸알루미늄을 주입하고, 위에서 제조한 킬레이트된 티탄화합물 촉매 성분(A-1) 0.05m㏖과 고체상의 마그네슘함유 담지체성분(B) 0.2g을 주입하였다.3 mmol of trioctyl aluminum were injected at room temperature, and 0.05 mmol of the chelated titanium compound catalyst component (A-1) prepared above and 0.2 g of a magnesium-containing carrier component (B) were injected.

60℃에서 수소를 1.5㎏중/㎠로 가하고, 온도를 80℃로 승온한 후, 에틸렌으로 가압하여 총압력을 6㎏중/㎠로 유지하였다.Hydrogen was added at 1.5 kg / cm 2 at 60 ° C., the temperature was raised to 80 ° C., and then pressurized with ethylene to maintain the total pressure at 6 kg / cm 2.

중합은 1시간 동안 진행하였다.The polymerization proceeded for 1 hour.

중합이 완료된 후, 중합된 폴리머를 헥산으로부터 분리하여 건조하였다.After the polymerization was completed, the polymerized polymer was separated from hexane and dried.

중합 결과, 310g의 폴리에틸렌이 회수되었으며, 얻어진 폴리머는 M.I.(g/10min)가 0.7, MFRR이 25.1로 나타나, 분자량 분포가 좁은 폴리머가 얻어졌음을 확인할 수 있었다.As a result of polymerization, 310 g of polyethylene was recovered, and the obtained polymer had M.I. (g / 10min) of 0.7 and MFRR of 25.1, indicating that a polymer having a narrow molecular weight distribution was obtained.

[에틸렌 / 1-헥센 공중합 반응][Ethylene / 1-hexene copolymerization reaction]

내용적 2ℓ의 오토클레이브에, 진공 펌프를 연결하여 산소 및 수분을 제거한 다음, 에틸렌 가스로 채웠다. 상기 진공 펌프 연결 및 에틸렌 가스 퍼지를 3회 이상 반복하여 반응기 내부를 에틸렌 가스로 퍼지시켰다.To a 2 liter autoclave, a vacuum pump was connected to remove oxygen and moisture and then charged with ethylene gas. The vacuum pump connection and ethylene gas purge were repeated three more times to purge the reactor interior with ethylene gas.

상기 오토클레이브내에 중합 용매로서 헥산을 900㎖ 주입하고, 1-헥센을 90㎖ 투입하여 10분간 교반하였다.900 ml of hexane was injected into the autoclave as a polymerization solvent, 90 ml of 1-hexene was added and stirred for 10 minutes.

다시, 상온에서 3m㏖의 트리옥틸알루미늄을 주입하고 위에서 제조한 킬레이트된 티탄 화합물 촉매성분(A-1) 0.05m㏖과 고체상의 마그네슘함유 담지체(B) 0.1g을 주입하였다.Again, 3 mmol of trioctyl aluminum was injected at room temperature, and 0.05 mmol of the chelated titanium compound catalyst component (A-1) prepared above and 0.1 g of a magnesium-containing carrier (B) were injected.

60℃에서 수소를 1.5㎏중/㎠로 가하고 온도를 80 ℃로 승온한 후, 에틸렌으로 가압하여 총압력을 6㎏중/㎠로 유지하였다.Hydrogen was added at 1.5 kg / cm 2 at 60 ° C. and the temperature was raised to 80 ° C., and then pressurized with ethylene to maintain the total pressure at 6 kg / cm 2.

중합은 20분 동안 진행하였다.The polymerization proceeded for 20 minutes.

중합 후 에탄올 용액을 투입하여 반응을 중단시켰으며, 산성 알코올 용액을 첨가하여 제조된 폴리머를 분리해 내었다.After the polymerization, the reaction was stopped by adding an ethanol solution, and an acidic alcohol solution was added to separate the prepared polymer.

분리된 폴리머는 M.I.가 1.2이었으며, MFRR은 23.1 이었다.The isolated polymer had a M.I. of 1.2 and an MFRR of 23.1.

분리한 폴리머의 특성을 표 1에 나타내었다.The properties of the separated polymers are shown in Table 1.

표 1에서의 낮은 MFRR 값은 생성된 폴리머의 분자량 분포가 좁다는 것을 의미하며, 동일한 양의 공중합체를 함유하는 폴리머의 DSC 분석을 통하여 얻어지는 Tm값과, TREF(temperature rising elution fractionation) 분석 결과로부터 균일한 공중합체 조성분포가 얻어졌음을 확인할 수 있었다.The low MFRR values in Table 1 mean that the molecular weight distribution of the polymer produced is narrow, and from the Tm values obtained by DSC analysis of polymers containing the same amount of copolymer and from the results of temperature rising elution fractionation (TREF) It was confirmed that a uniform copolymer composition distribution was obtained.

(실시예 2)(Example 2)

[디메틸카르보디이미드 리간드에 의해 킬레이트된 티탄 화합물(A-2)의 제조][Production of Titanium Compound (A-2) Chelated by Dimethylcarbodiimide Ligand]

디시클로헥실카르보디이미드 대신 디메틸카르보디이미드 리간드를 사용한 것을 제외하고는 실시예 1에서와 동일한 방법에 의해 킬레이트된 티탄 화합물 촉매 성분(A-2)을 제조하였다.A chelated titanium compound catalyst component (A-2) was prepared in the same manner as in Example 1 except that a dimethylcarbodiimide ligand was used instead of dicyclohexylcarbodiimide.

[마그네슘 함유 담지체(B)의 제조][Production of Magnesium-Containing Carrier (B)]

실시예 1에서와 동일한 방법으로 마그네슘 함유 담지체(B)를 제조하였다.A magnesium-containing carrier (B) was prepared in the same manner as in Example 1.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

위에서 제조한 킬레이트된 티탄 화합물 촉매성분(A-2)을 사용한 것을 제외하고는 실시예 1에서와 동일한 방법으로 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였다. 중합 결과를 표 1에 나타내었다.Ethylene polymerization and copolymerization of ethylene / 1-hexene were carried out in the same manner as in Example 1, except that the chelated titanium compound catalyst component (A-2) prepared above was used. The polymerization results are shown in Table 1.

(실시예 3)(Example 3)

[1,3-비스트리메틸시릴카르보디이미드에 의해 킬레이트된 티탄화합물 (A-3)의 제조][Preparation of Titanium Compound (A-3) Chelated with 1,3-Bistrimethylsilylcarbodiimide]

디시클로헥실카르보디이미드 대신 1,3-비스트리메틸시릴카르보디이미드 리간드를 사용한 것을 제외하고는 실시예 1과 동일한 방법에 의해 킬레이트화된 티탄화합물 촉매 성분(A-3)을 제조하였다.A chelated titanium compound catalyst component (A-3) was prepared in the same manner as in Example 1 except that the 1,3-bistrimethylsilylcarbodiimide ligand was used instead of the dicyclohexylcarbodiimide.

[마그네슘 함유 담지체(B)의 제조][Production of Magnesium-Containing Carrier (B)]

실시예 1에서와 동일한 방법으로 마그네슘 함유 담지체(B)를 제조하였다.A magnesium-containing carrier (B) was prepared in the same manner as in Example 1.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

위에서 제조한 킬레이트된 티탄 화합물 촉매성분(A-3)을 사용한 것을 제외하고는 실시예 1에서와 동일한 방법으로 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였다. 중합 결과를 표 1에 나타내었다.Ethylene polymerization and copolymerization of ethylene / 1-hexene were carried out in the same manner as in Example 1, except that the chelated titanium compound catalyst component (A-3) prepared above was used. The polymerization results are shown in Table 1.

(실시예 4)(Example 4)

[디시클로헥실카르보디이미드에 의해 킬레이트된 티탄 화합물(A-4)의 제조][Production of Titanium Compound (A-4) Chelated by Dicyclohexylcarbodiimide]

2-에틸헥산올 대신에 이소프로판올(2400m㏖)을 사용한 것을 제외하고는 실시예 1과 동일한 방법에 의해 킬레이트된 티탄 화합물 촉매 성분(A-4)을 제조하였다.A chelated titanium compound catalyst component (A-4) was prepared in the same manner as in Example 1 except that isopropanol (2400 mmol) was used instead of 2-ethylhexanol.

[마그네슘 함유 담지체(B)의 제조][Production of Magnesium-Containing Carrier (B)]

실시예 1에서와 동일한 방법으로 마그네슘 함유 담지체(B)를 제조하였다.A magnesium-containing carrier (B) was prepared in the same manner as in Example 1.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

위에서 제조한 킬레이트된 티탄 화합물 촉매성분(A-4)을 사용한 것을 제외하고는 실시예 1에서와 동일한 방법으로 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였다. 중합 결과를 표 1에 나타내었다.Ethylene polymerization and copolymerization of ethylene / 1-hexene were carried out in the same manner as in Example 1, except that the chelated titanium compound catalyst component (A-4) prepared above was used. The polymerization results are shown in Table 1.

(실시예 5)(Example 5)

[디시클로헥실카르보디이미드에 의해 킬레이트된 티탄 화합물(A-5)의 제조][Production of Titanium Compound (A-5) Chelated with Dicyclohexylcarbodiimide]

2-에틸헥산올 대신에 n-부탄올(2400m㏖)을 사용한 것을 제외하고는 실시예 1과 동일한 방법에 의해 킬레이트된 티탄 화합물 촉매 성분(A-5)을 제조하였다.A chelated titanium compound catalyst component (A-5) was prepared in the same manner as in Example 1 except that n-butanol (2400 mmol) was used instead of 2-ethylhexanol.

[마그네슘 함유 담지체(B)의 제조][Production of Magnesium-Containing Carrier (B)]

실시예 1에서와 동일한 방법으로 마그네슘 함유 담지체(B)를 제조하였다.A magnesium-containing carrier (B) was prepared in the same manner as in Example 1.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

위에서 제조한 킬레이트된 티탄 화합물 촉매성분(A-5)을 사용한 것을 제외하고는 실시예 1에서와 동일한 방법으로 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였다. 중합 결과를 표 1에 기재하였다.Ethylene polymerization and copolymerization of ethylene / 1-hexene were carried out in the same manner as in Example 1, except that the chelated titanium compound catalyst component (A-5) prepared above was used. The polymerization results are shown in Table 1.

(실시예 6)(Example 6)

[디시클로헥실카르보디이미드에 의해 킬레이트된 티탄 화합물(A-6)의 제조][Production of Titanium Compound (A-6) Chelated by Dicyclohexylcarbodiimide]

TiCl4(THF)2대신에 Ti(O-iPr)2Cl2(400m㏖)를 사용한 것을 제외하고는 실시예 1과 동일한 방법에 의해 킬레이트된 티탄 화합물 촉매 성분(A-6)을 제조하였다.A chelated titanium compound catalyst component (A-6) was prepared in the same manner as in Example 1 except that Ti (O-iPr) 2 Cl 2 (400 mmol) was used instead of TiCl 4 (THF) 2 .

[마그네슘 함유 담지체(B)의 제조][Production of Magnesium-Containing Carrier (B)]

실시예 1에서와 동일한 방법으로 마그네슘 함유 담지체(B)를 제조하였다.A magnesium-containing carrier (B) was prepared in the same manner as in Example 1.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

위에서 제조한 킬레이트된 티탄 화합물 촉매성분(A-5)을 사용한 것을 제외하고는 실시예 1에서와 동일한 방법으로 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였다. 중합 결과를 표 1에 기재하였다.Ethylene polymerization and copolymerization of ethylene / 1-hexene were carried out in the same manner as in Example 1, except that the chelated titanium compound catalyst component (A-5) prepared above was used. The polymerization results are shown in Table 1.

(실시예 7)(Example 7)

[디시클로헥실카르보디이미드에 의해 킬레이트된 티탄 화합물(A-7)의 제조][Production of Titanium Compound (A-7) Chelated by Dicyclohexylcarbodiimide]

TiCl4(THF)2대신에 TiCl4(400m㏖)를 사용한 것을 제외하고는 실시예 1과 동일한 방법에 의해 킬레이트된 티탄 화합물 촉매 성분(A-7)을 제조하였다.A chelated titanium compound catalyst component (A-7) was prepared in the same manner as in Example 1 except that TiCl 4 (400 mmol) was used instead of TiCl 4 (THF) 2 .

[마그네슘 함유 담지체(B)의 제조][Production of Magnesium-Containing Carrier (B)]

실시예 1에서와 동일한 방법으로 마그네슘 함유 담지체(B)를 제조하였다.A magnesium-containing carrier (B) was prepared in the same manner as in Example 1.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

위에서 제조한 킬레이트된 티탄 화합물 촉매성분(A-7)을 사용한 것을 제외하고는 실시예 1에서와 동일한 방법으로 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였다. 중합 결과를 표 1에 기재하였다.Ethylene polymerization and copolymerization of ethylene / 1-hexene were carried out in the same manner as in Example 1, except that the chelated titanium compound catalyst component (A-7) prepared above was used. The polymerization results are shown in Table 1.

(실시예 8)(Example 8)

[디시클로헥실카르보디이미드에 의해 킬레이트된 티탄 화합물(A-8)의 제조][Production of Titanium Compound (A-8) Chelated with Dicyclohexylcarbodiimide]

800m㏖의 트리에틸알루미늄을 헥산에 희석시켜 800㎖가 되게 한 다음, 1ℓ용량의 플라스크에 넣고, 상온의 냉각수에 의해 플라스크의 온도가 상온을 유지하도록 하면서, 2-에틸헥산올 2400m㏖을 1시간에 걸쳐 서서히 적가한 후, 1시간 동안 교반하여 무색 투명한 용액을 제조하였다. 상기 2-에틸헥산올의 적가에 의해 가스가 생성되는 것이 관찰되었다.After diluting 800 mmol of triethylaluminum in hexane to make 800 ml, it was placed in a 1 L flask, and the temperature of the flask was kept at room temperature by cooling water at room temperature, while 2400 mmol of 2-ethylhexanol was kept for 1 hour. After slowly dropping over, it was stirred for 1 hour to prepare a colorless transparent solution. It was observed that gas was generated by the dropwise addition of 2-ethylhexanol.

상기 제조된 용액에 디부틸마그네슘의 1.0M 헵탄용액 400㎖를 주입하고, 1시간 동안 교반하여, 알콕시알루미늄-마그네슘 화합물을 제조하였다.400 ml of 1.0M heptane solution of dibutylmagnesium was injected into the solution prepared above, and stirred for 1 hour to prepare an alkoxyaluminum-magnesium compound.

상기 용액에 다시 82.4g의 디시클로헥실카르보디이미드(400m㏖)를 주입한 후, 상온에서 1시간 동안 교반하였다.82.4 g of dicyclohexylcarbodiimide (400 mmol) was added to the solution, followed by stirring at room temperature for 1 hour.

이렇게 제조된 화합물을 133.684 g의 TiCl4(THF)2(400m㏖)와 상온에서 6시간 동안 반응시켰다. 반응에 의해 초기에 밝은 노란색이었던 TiCl4(THF)2고체가 서서히 붉은 색으로 변하면서 흰색의 마그네슘할라이드 고체를 생성하였다.The compound thus prepared was reacted with 133.684 g of TiCl 4 (THF) 2 (400 mmol) for 6 hours at room temperature. By reaction, TiCl 4 (THF) 2 solid, which was initially light yellow, gradually turned red, producing a white magnesium halide solid.

교반을 멈추고 20분 정도 기다리면, 밑부분에 흰색 고체가 가라앉는데, 상층의 붉은 용액을 밑부분의 흰색 고체로부터 분리하여 다른 플라스크에 옮겨, 액상의 킬레이트된 티탄화합물 촉매 성분(A-8)을 얻었다.After stopping the stirring for 20 minutes, the white solid at the bottom settles, and the red solution from the upper layer is separated from the white solid at the bottom and transferred to another flask to remove the liquid chelated titanium compound catalyst component (A-8). Got it.

[마그네슘 함유 담지체(B)의 제조][Production of Magnesium-Containing Carrier (B)]

실시예 1에서와 동일한 방법으로 마그네슘 함유 담지체(B)를 제조하였다.A magnesium-containing carrier (B) was prepared in the same manner as in Example 1.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

위에서 제조한 킬레이트된 티탄 화합물 촉매성분(A-8)을 사용한 것을 제외하고는 실시예 1에서와 동일한 방법으로 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였다. 중합 결과를 표 1에 기재하였다.Ethylene polymerization and copolymerization of ethylene / 1-hexene were carried out in the same manner as in Example 1, except that the chelated titanium compound catalyst component (A-8) prepared above was used. The polymerization results are shown in Table 1.

(비교예 1)(Comparative Example 1)

[티탄 촉매 성분의 제조][Production of Titanium Catalyst Component]

19.2g의 마그네슘 금속을 1ℓ용량의 플라스크에 넣고, 디부틸에테르 20㎖를 주입하였다.19.2 g of magnesium metal was placed in a 1 L flask, and 20 ml of dibutyl ether was injected.

온도를 80℃로 올린 다음, 요오드 2g과 클로로부탄 50㎖를 혼합한 용액에서 5㎖를 취하여 주입함으로써 마그네슘 표면을 활성화시켰다.After raising the temperature to 80 ° C., 5 ml of the solution of 2 g of iodine and 50 ml of chlorobutane was taken and injected to activate the magnesium surface.

다시, 20㎖의 클로로벤젠을 200㎖의 디부틸에테르와 함께 주입하고, 90℃의 온도에서 400㎖의 클로로벤젠을 적가하여 반응을 지속하였다. 90℃에서의 반응을 5시간 이상 지속하여 그리냐드 시약의 제조를 완성하였다.Again, 20 ml of chlorobenzene was injected with 200 ml of dibutyl ether, and 400 ml of chlorobenzene was added dropwise at a temperature of 90 deg. The reaction at 90 ° C. was continued for at least 5 hours to complete the preparation of the Grignard reagent.

액상의 그리냐드 시약을 고체 성분으로부터 분리해 내어, 분리된 상층 용액 부분 중의 120㎖(100m㏖ Mg함량)를 1ℓ용량의 플라스크에 넣은 다음, 40℃의 온도에서 사염화탄소 20㎖를 서서히 적가하고, 온도를 80℃로 승온하여 1시간 이상 반응시킴으로써 구형의 마그네슘할라이드를 제조하였다. 다시 상층 용액을 따라 내고, 헥산으로 3회 세척하여, 고체의 마그네슘할라이드 담지체 성분을 분리해내었다.The liquid Grignard reagent was separated from the solid component, 120 ml (100 mmol Mg) in the separated supernatant portion were placed in a 1 L flask, and 20 ml of carbon tetrachloride was slowly added dropwise at a temperature of 40 DEG C. The spherical magnesium halide was manufactured by heating up at 80 degreeC and making it react for more than 1 hour. The supernatant solution was again decanted and washed three times with hexane to separate the solid magnesium halide carrier component.

이렇게 제조된 담지체에 헥산을 300㎖ 주입한 후, TiCl430㎖를 주입하고 60℃에서 1시간 가열하였다. 반응이 완료된 후에, 60℃에서 상층 용액을 따라내고, 헥산으로 3회 세척하여, 촉매의 제조를 완성하였다.300 mL of hexane was injected into the carrier thus prepared, and 30 mL of TiCl 4 was injected and heated at 60 ° C. for 1 hour. After the reaction was completed, the supernatant solution was decanted at 60 ° C. and washed three times with hexane to complete the preparation of the catalyst.

티탄 담지율은 3.5% 이었다.The titanium loading rate was 3.5%.

[에틸렌 중합 반응 및 공중합 반응][Ethylene polymerization reaction and copolymerization reaction]

촉매 성분 A-1 대신에 위에서 제조한 티탄 촉매 성분을 사용하고, 마그네슘 함유 담지체를 사용하지 않은 것을 제외하고는, 실시예 1에서와 동일한 방법에 의해, 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였다. 중합 결과는 표 1에 나타내었다.Ethylene polymerization and copolymerization of ethylene / 1-hexene by the same method as in Example 1, except that the titanium catalyst component prepared above was used instead of the catalyst component A-1, and no magnesium containing carrier was used. The reaction was carried out. The polymerization results are shown in Table 1. Indicated.

(비교예 2)(Comparative Example 2)

[Ti 촉매 성분의 제조][Preparation of Ti Catalyst Component]

82.4g의 디시클로헥실카르보디이미드(400m㏖)를 톨루엔 용액 400㎖에 용해한 후, TiCl440㎖(400m㏖)를 주입하고 90℃에서 4시간 반응시켰다. 반응이 진전됨에 따라 무색이었던 용액이 진한 갈색을 띄게 되었다. 반응 후에 진공 펌프로 톨루엔을 제거하고, 남은 고체를 헥산으로 충분히 세척하여, 미반응된 카르보디이미드 화합물 및 TiCl4를 제거하여, 갈색의 용액 상태의 Ti 촉매 성분을 얻었다.After dissolving 82.4 g of dicyclohexylcarbodiimide (400 mmol) in 400 ml of toluene solution, 40 ml (400 mmol) of TiCl 4 were injected and reacted at 90 ° C for 4 hours. As the reaction progressed, the colorless solution became dark brown. After the reaction, toluene was removed with a vacuum pump, and the remaining solid was sufficiently washed with hexane to remove the unreacted carbodiimide compound and TiCl 4 to obtain a Ti catalyst component in a brown solution.

[마그네슘 함유 담지체(B)의 제조][Production of Magnesium-Containing Carrier (B)]

실시예 1에서와 동일한 방법으로 마그네슘 함유 담지체(B)를 제조하였다.A magnesium-containing carrier (B) was prepared in the same manner as in Example 1.

[촉매(C)의 제조][Production of Catalyst (C)]

상기 Ti 촉매성분을 톨루엔 400㎖에 용해한 후, 상기 마그네슘 함유 담지체(B) 20g을 현탁시킨 슬러리 100㎖에 주입하고, 60℃에서 1 시간 동안 교반하였다. 교반을 멈추고 헥산 20㎖를 주입하여 3회 세척하여, 분말상 고체가 n-헥산에 현탁된 상태의 촉매(C)를 얻었다.After dissolving the Ti catalyst component in 400 ml of toluene, 20 g of the magnesium-containing carrier (B) was poured into 100 ml of the suspended slurry, followed by stirring at 60 ° C for 1 hour. After stirring was stopped, 20 ml of hexane was injected and washed three times to obtain a catalyst (C) in a state where a powdery solid was suspended in n-hexane.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

실시예 1에 있어서의 킬레이트된 티탄 화합물 촉매성분(A-1)과 마그네슘 함유 담지체를 사용하는 대신에 위에서 제조한 촉매(C)를 사용한 것을 제외하고는, 실시예 1에서와 동일한 방법에 의해 에틸렌중합 및 에틸렌/1-헥센 공중합반응을 실시하였다. 중합 결과를 표 1에 나타내었다.By the same method as in Example 1, except that the catalyst (C) prepared above was used instead of the chelate titanium compound catalyst component (A-1) and the magnesium-containing carrier in Example 1 Ethylene polymerization and ethylene / 1-hexene copolymerization were carried out. The polymerization results are shown in Table 1.

(비교예 3)(Comparative Example 3)

[티탄 촉매 성분의 제조][Production of Titanium Catalyst Component]

800m㏖의 트리에틸알루미늄을 헥산에 희석시켜 800㎖가 되게 한 다음, 1ℓ용량의 플라스크에 넣고, 상온의 냉각수에 의해 플라스크의 온도가 상온을 유지하도록 하면서, 2-에틸헥산올 2400m㏖을 1시간에 걸쳐 서서히 적가한 후, 1시간 동안 교반하여 무색 투명한 용액을 제조하였다. 상기 2-에틸헥산올의 적가에 의해 가스가 생성되는 것이 관찰되었다.After diluting 800 mmol of triethylaluminum in hexane to make 800 ml, it was placed in a 1 L flask, and the temperature of the flask was kept at room temperature by cooling water at room temperature, while 2400 mmol of 2-ethylhexanol was kept for 1 hour. After slowly dropping over, it was stirred for 1 hour to prepare a colorless transparent solution. It was observed that gas was generated by the dropwise addition of 2-ethylhexanol.

상기 제조된 용액에 디부틸마그네슘의 1.0M 헵탄용액 400㎖를 주입하고, 1시간 동안 교반하여, 알콕시알루미늄-마그네슘 화합물을 제조하였다.400 ml of 1.0M heptane solution of dibutylmagnesium was injected into the solution prepared above, and stirred for 1 hour to prepare an alkoxyaluminum-magnesium compound.

상기 용액에 133.684 g의 TiCl4(THF)2(400m㏖)를 첨가하여 상온에서 6시간동안 반응시켰다. 반응이 진행함에 따라 초기에 밝은 노란색이었던 TiCl4(THF)2고체가 서서히 붉은 색으로 변하면서 흰색의 마그네슘할라이드 고체를 생성하였다.133.684 g of TiCl 4 (THF) 2 (400 mmol) was added to the solution and allowed to react for 6 hours at room temperature. As the reaction proceeded, the initially light yellow TiCl 4 (THF) 2 solid gradually turned red, producing a white magnesium halide solid.

반응이 완료되면 교반을 멈추고 20분 정도 기다리면, 밑부분에 흰색 고체가 가라앉는데, 상층의 붉은 용액을 밑부분의 이 흰색 고체로부터 분리하여 다른 플라스크에 옮겨, 액상의 티탄 화합물 촉매 성분을 얻었다.When the reaction was completed, the stirring was stopped and waited for about 20 minutes. The white solid sank at the bottom, and the red solution of the upper layer was separated from the white solid at the bottom and transferred to another flask to obtain a liquid titanium compound catalyst component.

[마그네슘 함유 담지체(B)의 제조][Production of Magnesium-Containing Carrier (B)]

실시예 1에서와 동일한 방법으로 마그네슘 함유 담지체(B)를 제조하였다.A magnesium-containing carrier (B) was prepared in the same manner as in Example 1.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

실시예 1에 있어서의 킬레이트된 티탄화합물 촉매(A-1) 대신에 위에서 제조한 티탄 화합물 촉매성분을 사용한 것을 제외하고는, 실시예 1에서와 동일한 방법으로 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였으며, 중합 결과를 표 1에 기재하였다.Ethylene polymerization and copolymerization of ethylene / 1-hexene in the same manner as in Example 1, except that the titanium compound catalyst component prepared above was used instead of the chelated titanium compound catalyst (A-1) in Example 1. The reaction was carried out and the polymerization results are shown in Table 1.

(비교예 4)(Comparative Example 4)

[디시클로헥실카르보디이미드 리간드에 의해 킬레이트된 티탄 화합물 (A-1)의 제조][Preparation of Titanium Compound (A-1) Chelated with Dicyclohexylcarbodiimide Ligand]

실시예 1에서와 동일한 방법에 의해 킬레이트된 티탄화합물 촉매성분(A-1)을 제조하였다.Chelated titanium compound catalyst component (A-1) was prepared in the same manner as in Example 1.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

마그네슘 함유 담지체 성분(B)를 사용하지 않은 것을 제외하고는 실시예 1에서와 동일한 방법으로 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였으며, 중합 결과를 표 1에 기재하였다.Ethylene polymerization and copolymerization of ethylene / 1-hexene were carried out in the same manner as in Example 1 except that the magnesium-containing carrier component (B) was not used, and the polymerization results are shown in Table 1.

(비교예 5)(Comparative Example 5)

[디시클로헥실카르보디이미드 리간드에 의해 킬레이트된 티탄 화합물 (A-1)의 제조][Preparation of Titanium Compound (A-1) Chelated with Dicyclohexylcarbodiimide Ligand]

실시예 1에서와 동일한 방법에 의해 킬레이트된 티탄화합물 촉매성분(A-1)을 제조하였다.Chelated titanium compound catalyst component (A-1) was prepared in the same manner as in Example 1.

[마그네슘 함유 담지체(B)의 제조][Production of Magnesium-Containing Carrier (B)]

실시예 1에서와 동일한 방법으로 마그네슘 함유 담지체(B)를 제조하였다.A magnesium-containing carrier (B) was prepared in the same manner as in Example 1.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

조촉매로서 실시예 1에 있어서의 트리옥틸알루미늄 3m㏖을 주입하는 대신에 PMAO 3m㏖을 사용한 것을 제외하고는, 실시예 1에서와 동일한 방법으로 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였으며, 중합 결과를 표 1에 기재하였다.The copolymerization reaction of ethylene polymerization and ethylene / 1-hexene was carried out in the same manner as in Example 1 except that 3 mmol of PMAO was used instead of 3 mmol of trioctyl aluminum in Example 1 as a cocatalyst. The polymerization results are shown in Table 1.

(비교예 6)(Comparative Example 6)

[디시클로헥실카르보디이미드 리간드에 의해 킬레이트된 티탄 화합물 (A-1)의 제조][Preparation of Titanium Compound (A-1) Chelated with Dicyclohexylcarbodiimide Ligand]

실시예 1에서와 동일한 방법에 의해 킬레이트된 티탄화합물 촉매성분(A-1)을 제조하였다.Chelated titanium compound catalyst component (A-1) was prepared in the same manner as in Example 1.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

조촉매로서 실시예 1에 있어서의 트리옥틸알루미늄 3m㏖을 주입하는 대신에PMAO 3m㏖을 사용하였으며, 마그네슘 함유 담지체성분(B)를 사용하지 않은 것을 제외하고는, 실시예 1에서와 동일한 방법으로 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였으며, 중합 결과를 표 1에 기재하였다.Instead of injecting 3 mmol of trioctyl aluminum in Example 1 as a cocatalyst, 3 mmol of PMAO was used, and the same method as in Example 1 was used except that the magnesium-containing carrier component (B) was not used. Copolymerization of ethylene polymerization and ethylene / 1-hexene was carried out, and the polymerization results are shown in Table 1.

에틸렌 중합 및 에틸렌/1-헥센 공중합 결과Ethylene Polymerization and Ethylene / 1-hexene Copolymerization Results 에틸렌 중합반응Ethylene polymerization 에틸렌/1-헥센 공중합반응Ethylene / 1-hexene Copolymerization 활성(a) Active (a) M.I.(b)(g/10min)MI (b) (g / 10min) MFRRMFRR B/D(c)(g/㎖)B / D (c) (g / ml) M.I.(b)(g/10min)MI (b) (g / 10min) MFRRMFRR ΔH(J/g)ΔH (J / g) Tm(℃)Tm (℃) 실시예 1Example 1 55005500 0.70.7 25.125.1 0.420.42 1.21.2 23.123.1 105.8105.8 122.1122.1 실시예 2Example 2 58005800 1.01.0 28.328.3 0.420.42 1.51.5 25.425.4 106.8106.8 122.3122.3 실시예 3Example 3 45004500 0.90.90.90.9 26.326.3 0.410.41 1.91.9 24.424.4 110.3110.3 123.2123.2 실시예 4Example 4 47004700 0.70.7 28.328.3 0.420.42 1.61.6 23.823.8 98.698.6 122.2122.2 실시예 5Example 5 52005200 1.31.3 24.324.3 0.410.41 1.21.2 23.423.4 107.5107.5 122.5122.5 실시예 6Example 6 41004100 0.60.6 27.327.3 0.410.41 1.31.3 25.225.2 108.1108.1 123.0123.0 실시예 7Example 7 45004500 0.80.8 26.326.3 0.420.42 1.61.6 24.824.8 102.3102.3 123.2123.2 실시예 8Example 8 37003700 0.40.4 26.726.7 0.400.40 1.01.0 25.425.4 104.2104.2 122.9122.9 비교예 1Comparative Example 1 35003500 0.60.6 30.730.7 0.370.37 1.21.2 30.130.1 105.6105.6 125.0125.0 비교예 2Comparative Example 2 25002500 0.20.2 30.730.7 0.370.37 0.60.6 30.430.4 125.8125.8 125.0125.0 비교예 3Comparative Example 3 24002400 0.60.6 28.728.7 0.380.38 0.70.7 29.829.8 103.2103.2 125.2125.2 비교예 4Comparative Example 4 22002200 0.60.6 31.031.0 -- 1.21.2 30.830.8 87.587.5 123.4123.4 비교예 5Comparative Example 5 23002300 0.30.3 24.724.7 0.320.32 0.30.3 27.527.5 86.486.4 123.2123.2 비교예 6Comparative Example 6 25002500 0.60.6 30.730.7 -- 1.21.2 30.130.1 107.1107.1 125.7125.7

(a) 활성단위 : g-PE/(m㏖-Ti×hr)(a) Active unit: g-PE / (mmol-Ti × hr)

(b) ASTM D1238, 190℃, 2.16㎏(b) ASTM D1238, 190 ° C., 2.16 kg

(c) 겉보기 밀도(c) apparent density

본 발명의 방법에 의하면, 높은 겉보기 밀도를 가지면서, 좁은 분자량 분포 및 균일한 공중합체 조성 분포를 갖는 에틸렌 및 에틸렌/알파-올레핀의 중합체 및 공중합체의 중합이 가능하다.According to the method of the present invention, it is possible to polymerize polymers and copolymers of ethylene and ethylene / alpha-olefins having a high apparent density while having a narrow molecular weight distribution and a uniform copolymer composition distribution.

Claims (7)

(1) ⅰ) 디알킬마그네슘 형태의 그리냐드 화합물과 알콕시알루미늄과의 반응을 통해 알콕시알루미늄-마그네슘화합물을 얻고,(1) a) an alkoxyaluminum-magnesium compound is obtained by reacting a Grignard compound in the form of a dialkyl magnesium with an alkoxy aluminum, ⅱ) 상기 ⅰ)에서 얻어진 화합물을 카르보디이미드계열 리간드와 반응시킨 후,Ii) reacting the compound obtained in iii) with a carbodiimide ligand, ⅲ) 생성물을 주기율표 제 Ⅳ족 전이금속 화합물과 반응시키는 방법에 의해 얻어지는 카르보디이미드계열 리간드에 의해 킬레이트 결합된 주기율표 제 Ⅳ족 전이금속 화합물 촉매성분과;Iii) a periodic table Group IV transition metal compound catalyst component cheated by a carbodiimide-based ligand obtained by a method of reacting a product with a Group IV transition metal compound of the periodic table; (2) 마그네슘 함유 담지체; 및(2) magnesium-containing carriers; And (3) 주기율표 제 Ⅱ족 또는 제 Ⅲ족 유기금속 화합물 조촉매의 존재 하에서 이루어지는 것을 특징으로 하는 에틸렌 중합 및 공중합 방법.(3) A process for ethylene polymerization and copolymerization, characterized in that the presence of a Group II or Group III organometallic compound promoter of the periodic table is present. 제 1 항에 있어서, 상기 (1)의 카르보디이미드계열 리간드에 의해 킬레이트결합된 주기율표 제 Ⅳ족 전이금속 화합물 촉매성분은, ⅲ)의 반응 후에 다시 알콕시알루미늄-마그네슘화합물과의 반응을 거쳐 얻어지는 것임을 특징으로 하는 에틸렌 중합 및 공중합방법.The process according to claim 1, wherein the periodic table group IV transition metal compound catalyst component chelate-bonded by the carbodiimide ligand of (1) is obtained by reaction with an alkoxyaluminum-magnesium compound after the reaction of i). Ethylene polymerization and copolymerization method characterized by. 제 1 항 또는 제 2 항에 있어서, 상기 카르보디이미드계열 리간드는 하기 화학식 (1)로 표시되는 것임을 특징으로 하는 에틸렌 중합 및 공중합방법.The ethylene polymerization and copolymerization method according to claim 1 or 2, wherein the carbodiimide-based ligand is represented by the following general formula (1). (1) (One) (여기서, W, Y, Z는 각각 독립적으로 알킬, 페닐 또는 헤테로원자를 포함하는 알킬기를 나타낸다)Wherein each of W, Y, and Z independently represents an alkyl group including alkyl, phenyl or heteroatoms. 제 3 항에 있어서, 상기 카르보디이미드계열 리간드는, 디메틸카르보디이미드, 디시클로헥실카르보디이미드 또는 1,3-비스트리메틸시릴카르보디이미드인 것을 특징으로 하는 에틸렌 중합 및 공중합 방법.The method of claim 3, wherein the carbodiimide-based ligand is dimethyl carbodiimide, dicyclohexylcarbodiimide or 1,3-bistrimethylsilylcarbodiimide. 제 1 항 또는 제 2 항에 있어서, 상기 마그네슘함유 담지체는, MgPh2·nMgCl2·mR2O(여기서, Ph는 페닐, n=0.37 ~ 0.7, m≥1, R2O는 에테르를 각각 나타낸다)로 표시되는 유기마그네슘화합물과 유기염소화합물을, 유기염소화합물과 마그네슘의 몰비를 0.5 이상으로 하여 반응시켜 제조한 것임을 특징으로 하는 에틸렌중합 및 공중합방법.The method of claim 1 or 2, wherein the magnesium-containing support, MgPh 2 · nMgCl 2 · mR 2 O (wherein Ph is phenyl, n = 0.37 ~ 0.7, m ≥ 1, R 2 O is ether, respectively) And an organic magnesium compound and an organic chlorine compound represented by the above formula are reacted with a molar ratio of organic chlorine compound and magnesium of 0.5 or more. 제 1 항 또는 제 2 항에 있어서, 상기 주기율표 제 Ⅳ족 전이금속 화합물은, 일반식 M(OR)aX4-a(여기서, M은 Ti, Zr 또는 Hf이며, R은 탄화수소기, X는 할로겐원자, 그리고 a는 0≤a≤2의 정수를 나타낸다)를 만족시키는 화합물인 것을 특징으로 하는 에틸렌 중합 및 공중합방법.3. The compound of claim 1, wherein the Group IV transition metal compound of the periodic table is a general formula M (OR) a X 4-a , wherein M is Ti, Zr or Hf, R is a hydrocarbon group, and X is Halogen atom, and a represents an integer of 0 ≦ a ≦ 2). 제 1 항 또는 제 2 항에 있어서, 상기 유기금속 화합물 조촉매 성분은 MRn(여기서, M은 주기율표 Ⅱ족 또는 ⅢA족 금속원자를 나타내고, R은 탄소수 1~20의 알킬기를 나타내며, n은 상기 금속원자의 원자가를 나타낸다)의 일반식으로 표시되는 것임을 특징으로 하는 에틸렌중합 및 공중합 방법.The organometallic compound promoter component of claim 1 or 2, wherein MR n (wherein M represents a group II or IIIA metal atom of the periodic table, R represents an alkyl group having 1 to 20 carbon atoms, and n represents Ethylene polymerization and copolymerization method characterized by the above-mentioned.
KR1020010085675A 2001-12-27 2001-12-27 Method of polymerization and copolymerization of ethylene using carbodiimde ligand chelated catalyst KR100825615B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010085675A KR100825615B1 (en) 2001-12-27 2001-12-27 Method of polymerization and copolymerization of ethylene using carbodiimde ligand chelated catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010085675A KR100825615B1 (en) 2001-12-27 2001-12-27 Method of polymerization and copolymerization of ethylene using carbodiimde ligand chelated catalyst

Publications (2)

Publication Number Publication Date
KR20030055637A true KR20030055637A (en) 2003-07-04
KR100825615B1 KR100825615B1 (en) 2008-04-25

Family

ID=32213901

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010085675A KR100825615B1 (en) 2001-12-27 2001-12-27 Method of polymerization and copolymerization of ethylene using carbodiimde ligand chelated catalyst

Country Status (1)

Country Link
KR (1) KR100825615B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830319B1 (en) * 2001-12-27 2008-05-16 삼성토탈 주식회사 Method of polymerization or copolymerization of ethylene using carbodiimde ligand chelated catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2243171T3 (en) * 1999-06-17 2005-12-01 Firmenich Sa STEREO-SPECIFIC ISOMERIZATION OF ALILIC AMINES WITH THE HELP OF QUIRAL PHOSPHORATED LINKS
KR100567100B1 (en) * 2000-03-24 2006-03-31 에스케이 주식회사 Single-site catalysts for ethylene polymerization, their preparation and uses
KR100830319B1 (en) * 2001-12-27 2008-05-16 삼성토탈 주식회사 Method of polymerization or copolymerization of ethylene using carbodiimde ligand chelated catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830319B1 (en) * 2001-12-27 2008-05-16 삼성토탈 주식회사 Method of polymerization or copolymerization of ethylene using carbodiimde ligand chelated catalyst

Also Published As

Publication number Publication date
KR100825615B1 (en) 2008-04-25

Similar Documents

Publication Publication Date Title
AU729091B2 (en) Catalyst for the production of olefin polymers
US6610627B2 (en) Catalyst for the production of olefin polymers
KR100240519B1 (en) Chealate catalyst for polymerising olefin
US6506919B1 (en) Metallocene compounds and their use for olefin polymerization
KR101795748B1 (en) Method for preparing polyolefin
KR100430979B1 (en) Producing process for an olefin polymerization chelate catalyst
KR100421552B1 (en) Catalyst and olefin polymerization method using the same
US6841498B2 (en) Catalyst system for ethylene (co)polymerization
KR100491627B1 (en) Method for polymerization and copolymerization of ethylene using carbodiimide ligand chelated catalyst
KR100825615B1 (en) Method of polymerization and copolymerization of ethylene using carbodiimde ligand chelated catalyst
KR100714847B1 (en) Olefin Polymerization Catalyst and Polymerization Process Using the Same
KR100830319B1 (en) Method of polymerization or copolymerization of ethylene using carbodiimde ligand chelated catalyst
KR100830317B1 (en) Method of polymerization or copolymerization of ethylene using cyclopentadiene and carbodiimde ligand chelated catalyst
KR100430849B1 (en) Manufacturing method of new olefin polymerization chelate catalyst
KR100491628B1 (en) Method for polymerization and copolymerization of ethylene using carbodiimide ligand chelated catalyst
KR100427145B1 (en) Chelate catalyst for olefin polymerization and olefin polymerization method using the same
EP1330476B1 (en) Catalyst composition and process for olefin polymerization and copolymerization using supported metallocene catalyst systems
US6872683B2 (en) Method for preparing chelated catalyst for olefin polymerization
KR20050010600A (en) A catalyst for olefin polymerization and co-polymerization and a method for olefin polymerization and co-polymerization with using the same
JP4112939B2 (en) Catalyst precursor for homopolymerization or copolymerization of olefin and polymerization method using the catalyst precursor
KR100826080B1 (en) Copolymerization method of ethylene/diene having high melt strength

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130401

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140305

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150303

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee