KR20030055506A - A method for manufacturing of cerium hydroxide removal of fluoride from the bastnasite - Google Patents

A method for manufacturing of cerium hydroxide removal of fluoride from the bastnasite Download PDF

Info

Publication number
KR20030055506A
KR20030055506A KR1020010085069A KR20010085069A KR20030055506A KR 20030055506 A KR20030055506 A KR 20030055506A KR 1020010085069 A KR1020010085069 A KR 1020010085069A KR 20010085069 A KR20010085069 A KR 20010085069A KR 20030055506 A KR20030055506 A KR 20030055506A
Authority
KR
South Korea
Prior art keywords
cerium
sodium sulfate
rare earth
sodium
sulfate
Prior art date
Application number
KR1020010085069A
Other languages
Korean (ko)
Other versions
KR100453552B1 (en
Inventor
윤호성
김성돈
김철주
김준수
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR10-2001-0085069A priority Critical patent/KR100453552B1/en
Publication of KR20030055506A publication Critical patent/KR20030055506A/en
Application granted granted Critical
Publication of KR100453552B1 publication Critical patent/KR100453552B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE: A method for preparing cerium hydroxide from bastnasite is provided, in which cerium compound is separated through roasting and sulfuric acid leaching of the bastnasite and remove fluorine contained in the cerium compound by using metal salts. CONSTITUTION: In a method for preparing high purity cerium hydroxide from bastnasite, the method comprises the steps of drying and crushing bastnasite; roasting bastnasite, followed by leaching out cerium from the roasted bastnasite with sulfuric acid; separating and recovering cerium by adding sodium sulfate to the sulfuric acid leachate; precipitating cerium sodium sulfate and removing fluorine by adding sodium sulfate and aluminum sulfate to the separated and recovered solution containing cerium fluoride negative ions; and adding a sodium hydroxide aqueous solution to cerium sodium sulfate, wherein quadrivalent cerium ions as well as trivalent rare earth elements are selectively reacted with sodium sulfate in the step of separating and recovering cerium by adding sodium sulfate to the sulfuric acid leachate, TREO (total rare earth oxides) concentration of the leachate is 50 to 100 g/L, addition amount of sodium sulfate is 1.5 to 2.5 equivalents, and reaction temperature is 30 to 60 deg.C, and wherein purity of cerium hydroxide is 99% or more in the step of adding a sodium hydroxide aqueous solution to cerium sodium sulfate.

Description

불탄산염 희토류정광으로부터 불소를 제거한 수산화세륨 제조방법{A method for manufacturing of cerium hydroxide removal of fluoride from the bastnasite}A method for manufacturing of cerium hydroxide removal of fluoride from the bastnasite}

본 발명은 불탄산염 희토류정광으로부터 불소를 제거한 수산화세륨 제조방법에 관한 것으로서 이는 특히, 바스트나사이트(bastnasite)를 산화배소 및 황산침출 공정을 통하여 세륨화합물을 분리하고, 상기 세륨화합물에 포함되는 불소를 금속염을 이용하여 제거토록 하는 불탄산염 희토류정광으로부터 불소를 제거한 수산화세륨 제조방법에 관한 것이다.The present invention relates to a method for producing cerium hydroxide from which fluorine is removed from fluoride rare earth concentrates. In particular, a cerium compound is separated from bastnasite by roasting and sulfuric acid leaching, and fluorine is contained in the cerium compound. The present invention relates to a method for producing cerium hydroxide in which fluorine is removed from a fluorocarbonate rare earth concentrate to be removed using a metal salt.

일반적으로 수산화세륨은, 불탄산염 희토류정광 바스트나사이트의 산화배소 및 황산침출 공정을 통한 혼합희토류 함유 용액에서 세륨함유 용액을 분리·회수하고, 상기 세륨함유 용액으로부터 세륨화합물의 원료인 수산화세륨이 제조된다.In general, cerium hydroxide is separated and recovered from the cerium-containing solution in the mixed rare earth-containing solution through the roasting and sulfuric acid leaching process of rare carbonate rare earth concentrate bustnasite, cerium hydroxide which is a raw material of cerium compound from the cerium-containing solution is prepared do.

상기 수산화 세륨은, 첨단기능 소재원료로서 사용되기 위해서는 세륨의 고순도화가 요구되어지고 있으며, 상기와 같은 고순도 수산화세륨을 제조하기 위해서는 혼합 희토류원소로부터 세륨을 고도 분리·회수하여야 하는 것이다.The cerium hydroxide is required to be highly purified of cerium in order to be used as a raw material for advanced functional materials. In order to manufacture the cerium hydroxide as described above, cerium hydroxide must be highly separated and recovered from the mixed rare earth element.

그러나, 상기와 같은 세륨은, 세륨함유 용액에서 분리·회수될때 그 내측에 다량의 불소가 함유되어 있어 수산화세륨 제조 시, 제조수율 그리고 세륨화합물 제조 등 후속공정에서 불화세륨으로 세륨화합물 내 존재하여 제품의 순도 및 성능을 저하시키게 되는 단점이 있는 것이다.However, the cerium as described above contains a large amount of fluorine inside when separated and recovered from the cerium-containing solution, and thus, the cerium fluoride is present in the cerium fluoride in the cerium hydroxide in the production process and in the subsequent process such as the cerium compound production. There is a disadvantage in that the purity and performance of the.

상기와 같은 단점을 보완하기 위한 세륨의 제조방법으로 산도조절법과 ion-sieve 법이 제공되었다.The acidity control method and the ion-sieve method were provided as a method of preparing cerium to compensate the above disadvantages.

상기 산도조절법은, 3가에서 4가로 산화 또는 환원되는 특성을 갖는 희토류 원소 분리를 위하여 희토류 정광의 분해 및 침출을 통한 침출용액으로부터 세륨을 산화하여 다른 3가의 희토류원소로부터 분리하는 것이다.The acidity control method is to separate cerium from other trivalent rare earth elements by oxidizing cerium from the leaching solution through the decomposition and leaching of rare earth concentrates for the separation of rare earth elements having the characteristic of being oxidized or reduced from trivalent to tetravalent.

그러나, 상기 산도조절법은 설비가 간단하고 조업이 간편하여 세륨을 회수할때 널리 이용되고 있는 방법이나 세륨의 산화에 사용되는 산화제로 인하여 불순물이 침전되어 침전물을 오염시키며, 용액의 산도를 엄격하게 조절해야 하는 단점이 있다.However, the acidity control method is a facility that is simple and easy to operate, it is widely used when recovering cerium or impurities are precipitated due to the oxidizing agent used in the oxidation of cerium, contaminating the precipitate, strictly controlling the acidity of the solution There is a downside to it.

또한, 산화제 첨가량의 증가에 따라 세륨의 회수율은 증가하나 다른 희토류가 공침되어 세륨의 순도는 감소하기 때문에 산도조절법에 의해 고회수율과 고품위를 얻기 위하여는 한 번의 산화침전 보다는 두 번 이상의 다단 산화침전이 요구된다.In addition, the recovery rate of cerium increases with increasing amount of oxidizing agent, but the purity of cerium decreases due to the co-precipitation of other rare earths. Therefore, in order to obtain high recovery and high quality by acidity control method, two or more stages of oxidative precipitation are obtained. Required.

한편, 상기 산도조절법의 단점을 보완한 "황산침출용액으로부터 ion-sieve 법이 사용되며, 상기 ion-sieve법은 4가 세륨 이온의 특성을 이용한 것으로서 이를 설명하면 다음과 같다.On the other hand, "the ion-sieve method is used from the sulfuric acid leaching solution, which complements the disadvantages of the acidity control method, and the ion-sieve method uses the characteristics of tetravalent cerium ions.

즉, 황산침출 용액 내에는 다량의 불소가 함유되어 있는데 상기 불소는 4가의 세륨과 결합하여 불화세륨 음이온을 형성하고, 기타 희토류원소들은 3가의 양이온으로 존재한다.That is, the sulfuric acid leaching solution contains a large amount of fluorine, which combines with tetravalent cerium to form a cerium fluoride anion, and other rare earth elements exist as trivalent cations.

따라서, 양이온 교환수지를 이용하여 침출용액중의 희토류 양이온들을 양이온교환수지에 흡착시켜 불화세륨 음이온을 기타 희토류 원소들로부터 분리하는 방법이다.Therefore, the cation exchange resin is used to adsorb rare earth cations in the leaching solution to the cation exchange resin to separate the cerium fluoride anion from other rare earth elements.

그러나, 상기와 같은 ion-sieve법은, 산도조절법과 비교하여 세륨의 분리능이 크고 공정이 단순한 장점을 가지고 있으나 양이온 교환수탑에서 이루어지므로 희토류 이온들의 흡·탈착 공정 및 흡·탈착 공정 후 양이온교환수지의 산처리, 수처리 등 부수적인 공정이 수반됨으로써 폐산 및 폐수가 다량 발생하는 단점이 있는것이다.However, the ion-sieve method as described above has the advantages of a higher resolution of cerium and a simpler process compared to the acidity control method. However, since the ion-sieve method is performed in a cation exchange water tower, the cation exchange resin after the adsorption / desorption process of the rare earth ions and the adsorption / desorption process It is a disadvantage that a large amount of waste acid and waste water are generated by accompanying ancillary processes such as acid treatment and water treatment.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 산도조절법 및 ion-sieve법을 동시에 사용하여 세륨의 분리·회수방법에서 드러난 문제점들을 효과적으로 해결하고, 공정을 단순화 하고 공정시간을 단축시키면서 고순도의 세륨을 제조하도록 하는 불탄산염 희토류정광으로부터 불소를 제거한 수산화세륨 제조방법을 제공하는 데 있다.An object of the present invention for solving the above problems, by using the acidity control method and ion-sieve at the same time effectively solve the problems revealed in the separation and recovery method of cerium, simplifying the process and shortening the process time of high purity The present invention provides a method for preparing cerium hydroxide from which fluorine is removed from a fluorocarbonate rare earth concentrate for preparing cerium.

도1은 본 발명에 따른 수산화세륨의 제조를 위한 처리공정도이다.1 is a process chart for the production of cerium hydroxide according to the present invention.

도2는 본 발명의 Na2SO4 첨가량에 따른 CeNa(SO4)2의 XRD 패턴을 도시한 그래프도이다.FIG. 2 is a graph showing an XRD pattern of CeNa (SO 4 ) 2 according to the amount of Na 2 SO 4 added according to the present invention. FIG.

도3은 본 발명에 의해 제조된 CeNa(SO4)2의 입자분포도를 도시한 그래프도이다.Figure 3 is a graph showing the particle distribution of CeNa (SO 4 ) 2 prepared by the present invention.

도4는 본 발명의 CeNa(SO4)2로부터 제조된 CeO2의 XRD 패턴을 도시한 그래프도이다.4 is a graph showing an XRD pattern of CeO 2 prepared from CeNa (SO 4 ) 2 of the present invention.

도5는 본 발명의 불소가 제거된 CeNa(SO4)2로부터 제조된 CeO2의 XRD 패턴을 도시한 그래프도이다.5 is a graph showing an XRD pattern of CeO 2 prepared from fluorine-free CeNa (SO 4 ) 2 according to the present invention.

상기한 목적을 달성하기 위하여 본 발명은, 불탄산염 희토류광을 건조, 파쇄하는 단계;In order to achieve the above object, the present invention comprises the steps of drying, crushing the fluorite rare earth light;

파쇄된 불탄산염 희토류광을 산화배소처리하여 황산침출하는 단계;Oxidizing and roasting the crushed fluorate rare earth light to leach sulfuric acid;

상기 황산침출용액에 황산나트륨을 첨가하여 세륨을 분리하는 단계;Separating sodium by adding sodium sulfate to the sulfuric acid leaching solution;

상기 세륨용액에 황산나트륨과 황산알루미늄을 첨가하여 황산나트륨세륨 및 불소를 제거하는 단계;및,Removing sodium cerium sulfate and fluorine by adding sodium sulfate and aluminum sulfate to the cerium solution; and

황산나트륨세륨에 수산화나트륨 수용액을 첨가하는 단계를 포함하는 구성으로 이루어진 불탄산염 희토류정광으로부터 불소를 제거한 수산화세륨 제조방법 을 제공한다.Provided is a method for preparing cerium hydroxide from which fluorine is removed from a rare carbonate carbonate having a structure comprising the step of adding an aqueous sodium hydroxide solution to sodium cerium sulfate.

이하, 첨부된 도면에 의거하여 본 발명의 실시예를 설명하면 다음과 같다.Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

도1에 도시한 바와같이, 불탄산염 희토류광의 수분을 제거하기 위하여 건조및 파쇄파쇄한다.As shown in FIG. 1, drying and crushing are performed in order to remove moisture of the fluorite rare earth light.

상기 건조및 파쇄된 불탄산염 희토류광을 적정한 온도와 시간으로 산화배소 처리한 후 산화배소광을 적정농도의 황산으로 침출한다.The dried and crushed fluorite rare earth light is subjected to roasting at an appropriate temperature and time, and then the roasted oxide is leached into sulfuric acid at an appropriate concentration.

이어서, 황산침출 후 여과과정을 거친 침출용액 중의 희토류이온 농도를 적정 농도로 유지하도록 증류수로 희석하여 황산나트륨을 첨가하면 3가의 양이온 희토류원소들은 황산나트륨과 결합하여 황산나트륨 희토류로 침전된다.Subsequently, after distillation of sulfuric acid, distilled water is added to dilute with sodium distilled water to maintain the rare earth ion concentration in the filtered leaching solution at an appropriate concentration.

계속하여, 상기 세륨은 불화세륨 음이온 형태로 용액 중에 잔류시킴으로써 고액분리를 수행하여 희토류원소들로부터 세륨을 분리 회수한다.Subsequently, the cerium is subjected to solid-liquid separation by remaining in solution in the form of a cerium fluoride anion to recover the cerium from the rare earth elements.

이어서, 분리 회수된 불화세륨 음이온 함유 용액 내 존재하는 세륨은 4가이므로 불화세륨 음이온으로부터 세륨을 회수하기 위해서는 우선 4가의 세륨을 3가로 환원시킨다.Subsequently, since cerium present in the separated and recovered cerium fluoride anion-containing solution is tetravalent, tetravalent cerium is first reduced to trivalent to recover cerium from the cerium fluoride anion.

본 발명에서 환원제는, 반응 후 생성물이 오염에 영향이 없는 과산화수소를 사용하였다.In the present invention, the reducing agent used hydrogen peroxide in which the product did not affect the contamination after the reaction.

그리고, 3가로 환원된 세륨은 용액 내 음이온 또는 임의로 첨가된 이온들과 결합하여 수산화세륨 전환에 필요한 중간화합물을 형성하게되고, 이에 환원제만을 첨가하였을 때는 3가로 환원된 세륨과 불소가 결합하여 불화세륨을 형성하면서 침전된다.The trivalent reduced cerium combines with anions or optionally added ions in the solution to form an intermediate compound for cerium hydroxide conversion, and when only a reducing agent is added, the trivalent reduced cerium and fluorine combine to form cerium fluoride. Precipitates while forming

그러나, 이렇게 형성된 불화세륨은 수산화세륨으로의 전환 시 전환율이 떨어질 뿐만 아니라 NaF 등 부산물의 제거가 어려운 단점이 있었다.However, the cerium fluoride thus formed has a disadvantage in that the conversion rate of the cerium hydroxide is not only reduced, but also difficult to remove by-products such as NaF.

그러므로, 본 발명에서는 고순도 세륨화합물의 출발원료가 되는 수산화세륨 제조 시 공정 상 문제로 발생될 수 있는 불소를 황산나트륨과 황산알루미늄을 첨가하여 효과적으로 제거하는 것이다.Therefore, the present invention effectively removes fluorine, which may be a problem in manufacturing cerium hydroxide, which is a starting material of a high purity cerium compound, by adding sodium sulfate and aluminum sulfate.

상기와 같은 제조공정에 의한 수산화세륨의 제조방법을 실시예에 의하여 구체적으로 설명한다.The manufacturing method of cerium hydroxide by the above manufacturing process is demonstrated concretely by an Example.

[실시예1]Example 1

황산나트륨을 이용한 세륨의 분리회수방법Separation Recovery Method of Cerium Using Sodium Sulfate

황산침출용액의 TREO(전체 산화희토류) 농도, 황산나트륨의 첨가량 및 반응온도 등을 변수로 선정하여, 3가 희토류원소들이 황산나트륨과 결합하여 침전될 때, 이들이 세륨 분리에 미치는 영양을 고찰하였다.TREO (total rare earth oxide) concentration of sulfuric acid leaching solution, the amount of sodium sulfate added and reaction temperature were selected as variables, and the nutritional effects of cerium separation on trivalent rare earth elements precipitated in combination with sodium sulfate.

상기 황산나트륨을 이용한 세륨의 분리 회수는 4가 세륨 이외의 3가 희토류원소들을 황산나트륨과 선택적으로 반응시킴으로서 세륨을 분리·회수하는 방법이다.Separation and recovery of cerium using sodium sulfate is a method of separating and recovering cerium by selectively reacting trivalent rare earth elements other than tetravalent cerium with sodium sulfate.

상기 방법은, 4가 세륨이온의 특성을 이용하는 것인데 산화배소 및 황산침출을 거친 침출용액내 희토류원소들을 반응식 1과 같이 결합하여 불화세륨 음이온으로 존재하며, 기타 3가 희토류원소들은 양이온으로 존재한다.The above method utilizes the properties of tetravalent cerium ions. The rare earth elements in the leaching solution undergoing the oxidation and sulfuric acid leaching are combined as a cerium fluoride anion as shown in Scheme 1, and the other trivalent rare earth elements are present as cations.

Ce4++ Re3++ 6F-----→ [CeF6]2-+ Re3+ Ce 4+ + Re 3+ + 6F - ---- → [CeF 6] 2- + Re 3+

[CeF6]2-+ Re3++ 2Na2SO4----→ [CeF6]2-+ ReNa(SO4)2↓ + 3Na+ [CeF 6 ] 2- + Re 3+ + 2Na 2 SO 4 ---- → [CeF 6 ] 2- + ReNa (SO 4 ) 2 ↓ + 3Na +

따라서, 상기 침출용액을 반응식 2와 같이 황산나트륨을 첨가하면 3가의 희토류 양이온들은 황산나트륨과 결합하여 황산나트륨 희토류를 형성하여 침전되고, 불화세륨음이온을 기타 희토류원소들로부터 분리한다.Therefore, when sodium sulfate is added to the leaching solution as shown in Scheme 2, trivalent rare earth cations are combined with sodium sulfate to form sodium sulfate rare earth, and the cerium fluoride anion is separated from other rare earth elements.

상기와 같은 방법은, 공정이 간단하며 회수된 세륨의 회수율 및 품위가 높은 장점을 가지고 있다.Such a method has the advantage that the process is simple and the recovery rate and quality of the recovered cerium are high.

본 발명에서는, 침출용액의 TREO 농도를 변화시키면서 3가 희토류이온들의 황산나트륨희토류 침전을 수행하였다. 표 1은 침출용액의 TREO 농도변화에 따라 ICP 분석을 통하여 3가 희토류이온들을 제거한 용액중에 함유되어 있는 전체 희토류 원소중에 세륨원소의 백분율을 나타낸 것이다.In the present invention, sodium sulfate rare earth precipitation of trivalent rare earth ions was carried out while varying the TREO concentration of the leaching solution. Table 1 shows the percentage of cerium elements in the total rare earth elements contained in the solution from which trivalent rare earth ions were removed by ICP analysis according to the TREO concentration change of the leaching solution.

침출용액의 TREO 농도 변화에 따른 3가 희토류원소들의 제거 후 용액의 전체 희토류에 대한 세륨 함량의 백분율 및 세륨회수율Percentage of Cerium Content and Cerium Recovery Rate of Total Rare Earth in Solution after Elimination of Trivalent Rare Earth Elements by Changes of TREO Concentration in Leachate Solution TREO (g/ℓ)TREO (g / ℓ) 5555 7070 105105 Ce/TRE(%)Ce / TRE (%) 99.799.7 99.899.8 96.196.1 세륨회수율(%)Cerium recovery rate (%) 82.582.5 82.282.2 79.379.3

표 1에 의하면, 일정량의 황산나트륨을 첨가하여 침출용액 내 전체 희토류산화물의 농도 증가에 따라 3가 희토류이온들의 제거 후 용액 내 전체 희토류에 대한 세륨의 함량은 TREO 농도 약 70g/ℓ까지는 큰 변화가 없으나 TREO 농도 약 105g/ℓ에서는 함량이 떨어지는 것을 알 수 있으며, 또한 침출용액의 TREO 농도가 낮을수록 세륨 회수율이 증가하며, 따라서 TREO 농도는 약 70g/ℓ가 적절한 것을 알 수 있다.According to Table 1, after the removal of trivalent rare earth ions with the increase of the concentration of the total rare earth oxides in the leaching solution by adding a certain amount of sodium sulfate, the content of cerium in the total rare earths in the solution showed a significant change up to about 70 g / l TREO concentration. However, the TREO concentration is about 105 g / ℓ can be seen that the content is falling, and the lower the TREO concentration of the leaching solution, the higher the recovery of cerium, so that the TREO concentration is about 70 g / ℓ can be seen that appropriate.

침출용액의 황산나트륨 첨가량 변화에 따른 3가 희토류원소들 제거 후 용액의 전체 희토류에 대한 세륨 함량의 백분율 및 세륨회수율Percentage of Cerium Content and Cerium Recovery Rate of Total Rare Earth in Solution after Removal of Trivalent Rare Earth Elements by Changes in Sodium Sulfate Addition Na2SO4EquivalentNa 2 SO 4 Equivalent 1.01.0 1.51.5 2.02.0 2.52.5 3.03.0 Ce Recovery(%)Ce Recovery (%) 86.386.3 82.282.2 82.282.2 70.670.6 73.173.1 Ce GradeCe grade 93.293.2 98.698.6 99.899.8 99.799.7 99.899.8

표 2는 일정한 TREO 농도의 침출용액에 황산나트륨의 첨가량을 변화시키면서 3가의 희토류 제거를 수행한 결과를 나타내고 있는데, 황산나트륨의 첨가량이 증가할수록 3가 희토류 제거 후 용액 내 존재하는 세륨의 회수율은 감소하며, 따라서 회수율과 품위를 감안하여 황산나트륨의 첨가량은 2 당량이 적절한 것을 알 수 있다.Table 2 shows the results of trivalent rare earth removal by changing the amount of sodium sulfate added to the leaching solution at a constant TREO concentration.The recovery of cerium present in the solution after trivalent rare earth removal decreases as the amount of sodium sulfate is increased. Therefore, it is understood that the amount of sodium sulfate added is appropriate in consideration of the recovery rate and the grade.

또한, 반응온도를 변화시키면서 복염침전을 수행한 결과, 반응온도가 증가할수록 황산나트륨희토류 침전이 용이하게 일어나며 세륨의 순도가 증가하나, 반면에 세륨의 회수율이 감소하며 따라서 반응온도는 50℃ 정도가 적절한 것을 알 수 있다.In addition, as a result of double salt precipitation by changing the reaction temperature, sodium sulfate rare earth precipitates easily occur as the reaction temperature increases, while the purity of cerium increases, whereas the recovery rate of cerium decreases, so the reaction temperature is about 50 ° C. It can be seen that.

반응온도에 따른 3가 희토류원소들 제거 후 용액의 전체 희토류에 대한 세륨 함량의 백분율 및 세륨회수율Percentage of cerium content and total cerium recovery of total rare earths in solution after removal of trivalent rare earth elements according to reaction temperature 반응온도(℃)Reaction temperature (℃) 2525 3535 5050 6060 Ce Recovery(%)Ce Recovery (%) 92.792.7 84.984.9 82.282.2 81.881.8 Ce GradeCe grade 91.291.2 97.397.3 99.899.8 99.799.7

황산나트륨 복염침전에 의하여 3가 희토류원소들을 분리제거 한 세륨착화물음이온 함유 용액으로서 조성은 표 4와 같으며, 희토류원소들 중 세륨의 함량이 99.8%로서 고순도 분리가 이루어졌음을 알 수 있다.Cerium complex anion-containing solution in which trivalent rare earth elements were separated and removed by sodium sulfate double-precipitation, and the composition is shown in Table 4. The content of cerium in rare earth elements was 99.8%, indicating that high purity separation was achieved.

3가 희토류이온 제거 후 용액의 조성Composition of solution after removal of trivalent rare earth ions ElementElement CeCe LaLa PrPr NdNd ContentContent 2.92%2.92% 81 ppm81 ppm < 1 ppm<1 ppm 10 ppm10 ppm

또한, 상기 불황세륨 음이온 함유용액으로 부터 수산화세륨을 제조하는 방법을 실시예를 통하여 상세하게 설명한다.In addition, a method of preparing cerium hydroxide from the cerium sulphate anion-containing solution will be described in detail with reference to Examples.

[실시예2]Example 2

불화세륨 음이온 함유용액으로부터 수산화세륨 제조시 불소의 제거Removal of Fluoride in Cerium Hydroxide Preparation from Cerium Fluoride Anion-Containing Solution

불화세륨 음이온 함유 용액으로부터 불화세륨 음이온의 세륨과 불소를 분리한 후 중간생성물을 형성시켜 이를 고액 분리한다. 연속하여 중간생성물을 수산화나트륨 수용액에 첨가함으로서 수산화세륨이 제조된다.The cerium fluoride anion containing cerium fluoride anion is separated from cerium fluoride and fluorine, and then an intermediate product is formed to solid-separate it. Cerium hydroxide is prepared by successively adding the intermediate to an aqueous sodium hydroxide solution.

일반적으로 3가의 희토류이온은 불소와 반응하여 백색의 불화희토를 형성한다. 따라서 환원제인 과산화수소를 불화세륨 음이온 함유 용액에 첨가함으로서 아래의 화학식과 같이 불화세륨이 형성되는데, 불화세륨은 평균입자 크기가 약 2㎛ 정도로서 이를 원료로 수산화세륨 제조 시 전환율이 낮으며 또한 수산화세륨 제조 후 수세척 시 NaF 등 반응부산물의 제거가 어려운 단점이 있다.Generally, trivalent rare earth ions react with fluorine to form white fluoride rare earths. Therefore, by adding hydrogen peroxide, a reducing agent, to a solution containing cerium fluoride anion, cerium fluoride is formed as shown in the following formula, and the cerium fluoride has an average particle size of about 2 μm, which has a low conversion rate when preparing cerium hydroxide as a raw material, and also produces cerium hydroxide. After washing with water, it is difficult to remove reaction byproducts such as NaF.

불화세륨으로부터 수산화세륨은 반응식3,4에 의해 제조된다.Cerium hydroxide from cerium fluoride is prepared by Schemes 3 and 4.

[CeF6]2-+ 1/2H2O2→ CeF3↓ + HF + 2F- [CeF 6] 2- + 1 / 2H 2 O 2 → CeF 3 ↓ + HF + 2F -

CeF3+ 3NaOH → Ce(OH)3↓ + 3NaFCeF 3 + 3 NaOH → Ce (OH) 3 ↓ + 3NaF

그리고, 불화세륨 음이온 용액에 황산나트륨을 첨가한 후 과산화수소를 첨가하면 황산나트륨세륨이 형성되며, 이를 원료로 수산화세륨을 제조하면 입자의 크기가 증가하여 수세척 시 반응부산물의 제거가 용이하고 또한 수산화세륨으로의 전환도 빨리 이루어진다.In addition, sodium peroxide is added to the cerium fluoride anion solution, and then hydrogen peroxide is formed, and sodium cerium sulfate is formed. When cerium hydroxide is prepared as a raw material, the size of the particles increases, so that the reaction by-products are easily removed when washing with water. The conversion also takes place quickly.

황산나트륨세륨으로부터 수산화세륨이 반응식5,6에 의해 구해진다.Cerium hydroxide is calculated | required from Reaction Formula 5, 6 from sodium cerium sulfate.

[CeF6]2-+ 1/2H2O2+ 2Na2SO4→CeNa(SO4)2↓+ 1/2O2↑+ 3NaF + HF + 2F- [CeF 6] 2- + 1 / 2H 2 O 2 + 2Na 2 SO 4 → CeNa (SO 4) 2 ↓ + 1 / 2O 2 ↑ + 3NaF + HF + 2F -

CeNa(SO4)2+ 3NaOH → Ce(OH)3↓ + 2Na2SO4 CeNa (SO 4 ) 2 + 3 NaOH → Ce (OH) 3 ↓ + 2Na 2 SO 4

상기 반응식에 의해 제조되는 불화세륨 음이온 함유용액에 황산나트륨의 첨가량을 변화시키면서 과산화수소 첨가 후 형성된 황산나트륨세륨의 XRD 회절분석 결과가 도2에 나타나 있으며, 황산나트륨의 첨가량은 최소한 2당량 이상이어야 황산나트륨세륨의 결정체가 형성됨을 알 수 있다.XRD diffraction analysis results of sodium cerium sulfate formed after hydrogen peroxide addition while changing the amount of sodium sulfate added to the cerium fluoride anion-containing solution prepared by the above reaction scheme are shown in FIG. It can be seen that formed.

그러나, 도 3에 도시한 바와같이, 상기 황산나트륨세륨의 입도분포에서 1㎛근처에서 존재하는 입자는 불화세륨이며, 따라서 황산나트륨세륨 제조 시 불화세륨도 일부 생성이 되는 것을 알 수 있다.However, as shown in FIG. 3, the particles present in the particle size distribution of the sodium cerium sulfate near 1 μm are cerium fluoride, and thus, some cerium fluoride may be produced during the production of sodium cerium sulfate.

상기 수산화세륨은, 황산나트륨세륨을 수산화나트륨 수용액에 첨가함으로서 제조되는데, 도 4에서 도시한 바와같이, 황산나트륨세륨으로부터 수산화세륨을 제조한 후 900℃로 소성하여 산화세륨으로 전환시켜 XRD 회절분석을 한 결과로서 34-394는 산화세륨 그리고 8-45는 불화세륨의 참고 peak이며, 따라서 불화세륨이 일부 포함되어 있는 것을 알 수 있다.The cerium hydroxide is prepared by adding sodium cerium sulfate to an aqueous sodium hydroxide solution, and as shown in FIG. 4, after preparing cerium hydroxide from sodium cerium sulfate, calcining at 900 ° C., converting to cerium oxide, and performing XRD diffraction analysis. For example, 34-394 is the reference peak of cerium oxide and 8-45 is the reference peak of cerium fluoride.

따라서, 불소의 제거를 위하여 용액에 황산알루미늄을 첨가한 후에 과산화수소수를 첨가하면 반응식7과 같은 반응이 일어난다.Therefore, when aluminum sulfate is added to the solution for the removal of fluorine, hydrogen peroxide solution is added, a reaction as in Scheme 7 occurs.

[CeF6]2-+ 1/2H2O2+ 2Na2SO4+ 1/2Al2(SO4)3→CeNa(SO4)2↓+ 1/2O2+ H++ 3/2Na2SO4+ [AlF6]-3 [CeF 6 ] 2- + 1 / 2H 2 O 2 + 2Na 2 SO 4 + 1 / 2Al 2 ( SO 4 ) 3 → CeNa (SO 4 ) 2 ↓ + 1 / 2O 2 + H + + 3 / 2Na 2 SO 4 + [AlF 6 ] -3

상기 반응식7에 의하면, 용액 내 존재하는 불소는 알루미늄이온과 결합하여 불화알루미늄 음이온을 형성함으로서 불화세륨으로의 침전을 억제할 수 있었다.According to Reaction Formula 7, the fluorine present in the solution was able to inhibit the precipitation to cerium fluoride by forming aluminum fluoride anion in combination with the aluminum ion.

또한, 불소성분 제거를 위하여 투입되는 황산알루미늄의 첨가량 변화에 따른 실험결과를 표 5에 나타내었으며, 불소성분을 완전히 제거하기 위해서는 약 2.5 당량의 황산알루미늄이 필요하며, 반응온도는 약 50℃ 이상에서 2시간의 반응이 필요한 것을 알 수 있었다.In addition, the experimental results according to the change in the amount of aluminum sulfate added to remove the fluorine component is shown in Table 5. To completely remove the fluorine component, about 2.5 equivalents of aluminum sulfate are required, and the reaction temperature is about 50 ° C. or more. It was found that a reaction of 2 hours was required.

PIGE를 이용하여 황산나트륨세륨 내 불소 성분 분석Analysis of fluorine in sodium cerium sulfate using PIGE 시료명Sample name 제조조건Manufacture conditions F(%)F (%) CeF3 CeF 3 H2O2첨가에 의한 불화세륨 제조Cerium fluoride production by H 2 O 2 addition 27.027.0 CNSCNS Na2SO4및 H2O2첨가(온도 35°C)Na 2 SO 4 and H 2 O 2 addition (temperature 35 ° C) 5.45.4 CNSCNS Na2SO4및 H2O2첨가(온도 45°C)Na 2 SO 4 and H 2 O 2 addition (temperature 45 ° C) 5.85.8 CNS(Al)CNS (Al) Na2SO4, Al2(SO4)3및 H2O2첨가(온도 45°C)Na 2 SO 4 , Al 2 (SO 4 ) 3 and H 2 O 2 added (temperature 45 ° C) 0.0540.054 CNS(Al)CNS (Al) Na2SO4, Al2(SO4)3및 H2O2첨가(온도 50°C)Na 2 SO 4 , Al 2 (SO 4 ) 3 and H 2 O 2 added (temperature 50 ° C) 0.0320.032 CNS(Al)CNS (Al) Na2SO4, Al2(SO4)3및 H2O2첨가(온도 60°C)Na 2 SO 4 , Al 2 (SO 4 ) 3 and H 2 O 2 added (temperature 60 ° C) 0.0250.025

상기와 같이 불소가 제거된 황산나트륨세륨화합물로부터 제조된 수산화세륨은 도5에서와 같이 900℃에서 소성하여 얻은 산화세륨의 XRD 회절분석 결과로서 4-593은 산화세륨의 참고 peak로서 불화세륨의 결정 peak 나타나지 않으며, 따라서 수산화세륨 내에 불소가 존재하지 않음을 알 수 있었다.Cerium hydroxide prepared from the fluorine-free sodium cerium sulfate compound as described above is a result of XRD diffraction analysis of cerium oxide obtained by calcining at 900 ° C as shown in FIG. It was found that no fluorine was present in the cerium hydroxide.

이상에서 살펴본 바와 같은 본 발명은, 황산나트륨을 이용하여 혼합희토용액중의 세륨을 분리하고, 분리·회수된 불화세륨 용액으로부터 불소를 제거함으로서 각종 용도에 적합한 세륨화합물의 원료로 사용되는 고순도 수산화세륨을 용이하게 제조한다.As described above, the present invention provides a high-purity cerium hydroxide used as a raw material for cerium compounds suitable for various purposes by separating cerium in a mixed rare earth solution using sodium sulfate and removing fluorine from the separated and recovered cerium fluoride solution. It is easy to manufacture.

또한, 황산화분해반응시 불소와 아황산가스의 방출로 인한 대기오염 등 환경문제를 해결함과 동시에 희토류원소로부터 세륨의 분리회수시 낮은 회수율과 저품위 등의 문제점들을 해결한다.In addition, it solves environmental problems such as air pollution due to the release of fluorine and sulfurous acid gas during sulphation decomposition, and solves problems such as low recovery rate and low quality when separating and recovering cerium from rare earth elements.

더하여, 분리·회수된 세륨용액으로부터 불소를 동시에 제거하는 것이다.In addition, fluorine is simultaneously removed from the separated and recovered cerium solution.

본 발명은 특정한 실시예에 관련하여 도시하고 설명 하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 정신이나 분야를 벗어나지 않는 한도내에서본 발명이 다양하게 개량 및 변화될수 있다는 것을 당업계에서 통상의 지식을 가진자는 용이하게 알수 있음을 밝혀 두고자 한다.While the invention has been shown and described with respect to specific embodiments thereof, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit or scope of the invention as provided by the following claims. I would like to clarify that those who have knowledge of this can easily know.

Claims (5)

불탄산염 희토류정광으로부터 고순도 수산화세륨을 제조하는 방법에 있어서,In the method for producing high purity cerium hydroxide from fluorocarbonate rare earth concentrate, 불탄산염 희토류광을 건조·파쇄하는 단계;Drying and crushing the carbonate rare earth light; 파쇄된 불탄산염 희토류광을 산화배소처리하여 황산을 침출하는 단계;Oxidizing and roasting the crushed fluorate rare earth ore to leach sulfuric acid; 황산침출용액에 황산나트륨을 첨가하여 세륨을 분리·회수하는 단계;Separating and recovering cerium by adding sodium sulfate to the sulfuric acid leaching solution; 불화세륨 음이온이 함유된 분리·회수용액에 황산나트륨과 황산알루미늄을 첨가하여 황산나트륨세륨의 침전 및 불소를 제거하는 단계;및,Adding sodium sulfate and aluminum sulfate to a separation and recovery solution containing cerium fluoride anion to remove precipitates of sodium cerium sulfate and fluorine; and 황산나트륨세륨에 수산화나트륨 수용액을 첨가하는 단계를 포함하여 구성되는 불탄산염 희토류정광으로부터 불소를 제거한 수산화세륨 제조방법.A method of producing cerium hydroxide from which fluorine is removed from a fluoride rare earth concentrate comprising the step of adding an aqueous sodium hydroxide solution to sodium cerium sulfate. 제1항에 있어서, 상기 황산나트륨을 첨가하여 세륨을 분리·회수하는 단계는, 4가의 세륨 이외의 3가 희토류 원소들을 황산나트륨과 선택적으로 반응시키고, 침출용액의 TREO 농도가 50∼100 g/, 황산나트륨의 첨가량이 1.5∼2.5당량 그리고 반응온도가 30∼60℃인 것을 특징으로 하는 불탄산염 희토류정광으로부터 불소를 제거한 수산화세륨 제조방법.The method of claim 1, wherein the separating and recovering cerium by adding sodium sulfate selectively reacts trivalent rare earth elements other than tetravalent cerium with sodium sulfate, and the TREO concentration of the leaching solution is 50 to 100 g / L , A method for producing cerium hydroxide from which fluorine is removed from a fluoride rare earth concentrate, wherein the amount of sodium sulfate added is 1.5 to 2.5 equivalents and the reaction temperature is 30 to 60 ° C. 제1항에 있어서, 상기 황산나트륨세륨에 수산화나트륨 수용액을 첨가하는 단계는, 수산화세륨의 순도가 99% 이상인 것을 특징으로 하는 불탄산염 희토류정광으로부터 불소를 제거한 수산화세륨 제조방법.The method of claim 1, wherein the adding of sodium hydroxide aqueous solution to the sodium cerium sulfate has a purity of 99% or more of cerium hydroxide. 제1항에 있어서, 상기 황산나트륨을 이용한 황산나트륨세륨의 제조시 황산나트륨의 첨가량이 2당량 인것을 특징으로 하는 불탄산염 희토류정광으로부터 불소를 제거한 수산화세륨 제조방법.The method of claim 1, wherein the amount of sodium sulfate added in the preparation of sodium cerium sulfate using sodium sulfate is 2 equivalents. 제1항에 있어서, 상기 황산알루미늄을 이용한 불소의 제거시 불화세륨 음이온 함유 용액에 첨가되는 황산알미늄의 량이 1.5∼3.0 당량, 반응온도가 30∼60℃ 그리고 반응시간이 1∼3시간인 것을 특징으로 하는 불탄산염 희토류정광으로부터 불소를 제거한 수산화세륨 제조방법.The method of claim 1, wherein the amount of aluminum sulfate added to the cerium fluoride anion-containing solution is 1.5 to 3.0 equivalents, the reaction temperature is 30 to 60 DEG C, and the reaction time is 1 to 3 hours. A method of producing cerium hydroxide from which fluorine is removed from a fluorocarbonate rare earth concentrate.
KR10-2001-0085069A 2001-12-26 2001-12-26 A method for manufacturing of cerium hydroxide removal of fluoride from the bastnasite KR100453552B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0085069A KR100453552B1 (en) 2001-12-26 2001-12-26 A method for manufacturing of cerium hydroxide removal of fluoride from the bastnasite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0085069A KR100453552B1 (en) 2001-12-26 2001-12-26 A method for manufacturing of cerium hydroxide removal of fluoride from the bastnasite

Publications (2)

Publication Number Publication Date
KR20030055506A true KR20030055506A (en) 2003-07-04
KR100453552B1 KR100453552B1 (en) 2004-10-20

Family

ID=32213418

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0085069A KR100453552B1 (en) 2001-12-26 2001-12-26 A method for manufacturing of cerium hydroxide removal of fluoride from the bastnasite

Country Status (1)

Country Link
KR (1) KR100453552B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100591383B1 (en) * 2004-12-20 2006-06-19 한국지질자원연구원 A method for separation and recovery of cerium hydroxide from waste slurry of cerium abrasive
US20130336856A1 (en) * 2012-05-04 2013-12-19 Vale S/A System and method for rare earths extraction
KR101486439B1 (en) * 2013-04-15 2015-01-27 한국세라믹기술원 Manufacturing method of cerium carbonate using ceria abrasive material waste
CN104593622A (en) * 2014-12-29 2015-05-06 乐山盛和稀土股份有限公司 Technology for obtaining cerium enrichment with a partition larger than 99% by optimal extraction of fluoride carbonate rare earths by hydrochloric acid
CN112662866A (en) * 2020-12-16 2021-04-16 江西理工大学 Method for reducing sulfate radical content in rare earth oxide by carbonization roasting
CN112941304A (en) * 2021-01-27 2021-06-11 赣州求真科技有限公司 Rare earth roasting method
CN113502393A (en) * 2021-06-22 2021-10-15 赖石胜 Method for leaching rare earth in ion adsorption type rare earth original mountain ore

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422068B1 (en) 2013-11-14 2014-07-23 한국지질자원연구원 Recovery method of rare earth elements and non rare earth elements from rare earth ore
KR101687319B1 (en) 2014-10-14 2016-12-16 재단법인 포항산업과학연구원 Method for manufacturing fluorine removal environment processing agent containing rare earth

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191422A (en) * 1986-02-18 1987-08-21 Mitsubishi Chem Ind Ltd Production of cerium hydroxide
JPH05208816A (en) * 1992-01-28 1993-08-20 Sumitomo Metal Mining Co Ltd Production of cerium hydroxide and cerium oxide

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100591383B1 (en) * 2004-12-20 2006-06-19 한국지질자원연구원 A method for separation and recovery of cerium hydroxide from waste slurry of cerium abrasive
US20130336856A1 (en) * 2012-05-04 2013-12-19 Vale S/A System and method for rare earths extraction
JP2015519474A (en) * 2012-05-04 2015-07-09 ヴァーレ、ソシエダージ、アノニマVale S.A. Rare earth extraction systems and methods
US9663842B2 (en) * 2012-05-04 2017-05-30 Vale S.A. System and method for rare earths extraction
KR101486439B1 (en) * 2013-04-15 2015-01-27 한국세라믹기술원 Manufacturing method of cerium carbonate using ceria abrasive material waste
CN104593622A (en) * 2014-12-29 2015-05-06 乐山盛和稀土股份有限公司 Technology for obtaining cerium enrichment with a partition larger than 99% by optimal extraction of fluoride carbonate rare earths by hydrochloric acid
CN112662866A (en) * 2020-12-16 2021-04-16 江西理工大学 Method for reducing sulfate radical content in rare earth oxide by carbonization roasting
CN112662866B (en) * 2020-12-16 2022-04-01 江西理工大学 Method for reducing sulfate radical content in rare earth oxide by carbonization roasting
CN112941304A (en) * 2021-01-27 2021-06-11 赣州求真科技有限公司 Rare earth roasting method
CN112941304B (en) * 2021-01-27 2022-07-15 赣州求真科技有限公司 Rare earth roasting method
CN113502393A (en) * 2021-06-22 2021-10-15 赖石胜 Method for leaching rare earth in ion adsorption type rare earth original mountain ore

Also Published As

Publication number Publication date
KR100453552B1 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
CN106319218B (en) Method for recovering rare earth, aluminum and silicon from rare earth-containing aluminum-silicon waste
JP7225681B2 (en) Lithium leaching method and lithium recovery method
RU2597096C2 (en) Methods of producing titanium oxide and other products
CN101760651B (en) Process for extracting vanadium by acid leaching of stone coal
US20230040892A1 (en) A process for producing alumina and a lithium salt
CN111057848A (en) Method for extracting lithium from lithium-containing solution by solvent extraction
CN112320780B (en) Method for recycling iron phosphate waste
JP6336469B2 (en) Method for producing scandium-containing solid material with high scandium content
EP2412675A1 (en) Process for isolating vanadium
KR100453552B1 (en) A method for manufacturing of cerium hydroxide removal of fluoride from the bastnasite
WO2021042176A1 (en) Process for preparing alumina
AU756317B2 (en) Separation and concentration method
CN109336177B (en) Method for cleanly producing high-purity vanadium pentoxide by using hydrogen peroxide and ammonia water
CN110972479B (en) Method for producing zinc oxide by twice leaching method
AU2021332926A1 (en) A method for producing lithium hydroxide from lithium-containing raw material
US4135917A (en) Process for recovering gallium from alkali aluminate solutions resulting from treatment of aluminum-containing ores
CN114436329A (en) Method for preparing high-purity vanadium pentoxide by sodium-vanadium solution two-step method
CN115448352B (en) Method for preparing cerium dioxide and magnesium fluoride from bastnaesite
US11691888B2 (en) Process for the preparation of high purity alumina
KR101543922B1 (en) Method for preparing manganese oxide from manganese dust
CN115448337B (en) Method for recycling fluorine resources in bastnaesite
CN117327930B (en) Method for recovering vanadium from primary shale stone coal
CN118108244A (en) Pretreatment method of beryllium sulfate solution
CN115818605A (en) Iron phosphate dihydrate, preparation method thereof and preparation method of lithium iron phosphate cathode material
CN117431396A (en) Treatment method of molybdenite

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121005

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140925

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20161004

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170918

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180927

Year of fee payment: 15