KR20030054077A - Method to coat ceramic powder with TiO2 and Method to improve wettability of B4C-Al composite material - Google Patents

Method to coat ceramic powder with TiO2 and Method to improve wettability of B4C-Al composite material Download PDF

Info

Publication number
KR20030054077A
KR20030054077A KR1020010084178A KR20010084178A KR20030054077A KR 20030054077 A KR20030054077 A KR 20030054077A KR 1020010084178 A KR1020010084178 A KR 1020010084178A KR 20010084178 A KR20010084178 A KR 20010084178A KR 20030054077 A KR20030054077 A KR 20030054077A
Authority
KR
South Korea
Prior art keywords
titanium
powder
boron carbide
ceramic powder
titanium oxide
Prior art date
Application number
KR1020010084178A
Other languages
Korean (ko)
Inventor
강신후
이봉섭
Original Assignee
서울대학교 공과대학 교육연구재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 공과대학 교육연구재단 filed Critical 서울대학교 공과대학 교육연구재단
Priority to KR1020010084178A priority Critical patent/KR20030054077A/en
Publication of KR20030054077A publication Critical patent/KR20030054077A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62821Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE: A method for coating titanium oxide(TiO2) on ceramic powder homogeneously by a sol-gel process is provided. Also, a method for improving wettability of ceramic-metal composites is provided by thermal treating TiO2- coated boron carbide(B4C)-aluminum powder at low temperature. CONSTITUTION: The TiO2-coated ceramic powder is prepared by the following steps of: dispersing ceramic powder into alcohol; adding 0.001-0.1M(based on the total solution) titanium tetraisopropoxide; adding a mixed solution of alcohol and water, having a concentration 3-6times higher than titanium tetraisopropoxide for coating titanium hydroxide on ceramic powder; and calcining. Also, the wettability of boron carbide-metal(Al) composites is improved by thermal treating TiO2-coated B4C powder at 900-1200deg.C under vacuum, resulting in formation of a titanium boride(TiB2) coating layer on the surface of B4C powder.

Description

세라믹 분말에의 산화티탄 코팅방법 및 이를 이용한 탄화붕소-알루미늄 복합재료의 적심성 향상방법{Method to coat ceramic powder with TiO2 and Method to improve wettability of B4C-Al composite material}Method for coating ceramic powder with TiO2 and Method to improve wettability of B4C-Al composite material}

본 발명은 세라믹 분말에의 산화티탄 코팅방법 및 이를 이용한 탄화붕소-알루미늄 복합재료의 적심성 향상방법에 관한 것으로, 더욱 상세하게는 졸-겔 법을 이용하여 세라믹 분말에 산화티탄(TiO2)을 코팅하는 방법 및 상기 방법에 의하여 제조된 산화티탄이 코팅된 탄화붕소(B4C) 분말을 가열처리하여 붕화티탄층을 형성시킴으로써 세라믹-금속 복합재료의 적심성을 향상시키는 방법에 관한 것이다.The present invention relates to a titanium oxide coating method on a ceramic powder and a method for improving the wettability of a boron carbide-aluminum composite material using the same, and more particularly, to titanium oxide (TiO 2 ) on a ceramic powder using a sol-gel method. The present invention relates to a method of coating and a method of improving the wettability of a ceramic-metal composite material by heat treating a titanium oxide coated boron carbide (B 4 C) powder prepared by the method to form a titanium boride layer.

세라믹-금속 복합재료는 세라믹의 경도와 금속의 인성이 결합된 새로운 특성을 나타내는 재료로 최근 크게 각광받고 있다. 이러한 세라믹-금속 복합재료의 제조에 있어서 중요한 문제로 대두되는 것이 적심성이다. 세라믹-금속 복합재료의 제조시, 그 계의 적심성(wettability)이 우수하면, 서로 다른 상이 접촉면에서 강하게 결합하고, 액상이 필요한 위치에 잘 배열할 수 있게 되며, 나아가 제조공정도 경제적으로 되기 때문이다. 반면에, 적심성이 좋지 않은 경우에는 공정 중에 압력을 가해야 하는데, 이 경우 압력을 가하더라도 세라믹상이 많이 들어가는 복합재료를 치밀하게 만드는 데 만족스럽지 않은 경우가 많고, 두 상의 계면이 취약하기 쉽다. 따라서, 세라믹-금속 복합재료의 제조에 있어서 가능한 적심성을 향상시키는 것이 매우 필요하나, 많은 계에서 만족할 만한 적심성이 얻어지지 않아 문제가 되고 있다.Ceramic-metal composite materials have recently been in the spotlight as a material exhibiting a new property combining the hardness of the ceramic and the toughness of the metal. Wetness is an important issue in the manufacture of such ceramic-metal composites. In the manufacture of ceramic-metal composite materials, if the wettability of the system is excellent, the different phases can be strongly bonded at the contact surface, and the liquid phase can be well arranged in the required position, and the manufacturing process is also economical. to be. On the other hand, if the wetness is not good, it is necessary to apply pressure during the process, in which case it is often not satisfactory to make the composite material containing many ceramic phases compact, and the interface of the two phases tends to be fragile. Therefore, it is very necessary to improve the wettability as much as possible in the manufacture of the ceramic-metal composite material, but in many systems, satisfactory wettability is not obtained, which is a problem.

탄화붕소(B4C)-알루미늄(Al) 복합재료의 제조에 있어서도 적심성이 문제가 된다. 탄화붕소는 매우 높은 경도와 우수한 중성자 흡수능, 내마모성, 내화성, 열전성을 가졌고, 또한 가벼워서 다양한 용도에의 활용이 가능하지만, 그 파괴인성과 소결성이 떨어져서 금속과의 복합화가 시도되었다. 특히 탄화붕소-알루미늄 복합재료는 고인성 중성자 흡수재, 방탄 재료, 경도와 인성을 겸비한 가벼운 구조재료, 컴퓨터 하드디스크 부품 등으로 사용될 수 있다.Wetting is also a problem in the production of a boron carbide (B 4 C) -aluminum (Al) composite material. Boron carbide has very high hardness, excellent neutron absorption ability, abrasion resistance, fire resistance, and thermoelectricity, and is light, so that it can be used in various applications. In particular, the boron carbide-aluminum composite material may be used as a high toughness neutron absorber, a bulletproof material, a light structural material having hardness and toughness, and a computer hard disk component.

탄화붕소-알루미늄 복합재료 제조의 경우, 복합재료의 치밀화를 위하여 일반적인 분말야금법 대신 용침법(infiltration)을 사용한다. 그러나, 이 방법에 의하여 탄화붕소-알루미늄 복합재료를 제조하는 경우 적심성을 얻기 위하여 금속의 녹는점보다 상당히 높은 온도 조건을 필요로 한다. 고온 조건에서는 원하지 않는 여러 가지 반응 생성물들, 예컨대 물성에 매우 나쁜 영향을 주는 탄화알루미늄(Al4C3) 등이 발생되어 물성을 바람직하지 못한 방향으로 변화시키게 된다. 특히 탄화붕소가 가장 중요하게 활용되는 분야의 하나인 중성자 흡수재 용도 등에서는, 충분한 흡수능을 얻기 위해 탄화붕소의 함량이 높아야 하고, 이와 함께 헬륨 축적 등으로 생긴 균열의 확산을 막는 인성의 제공과 빠른 열전도를 위하여 알루미늄의 함량 역시 최대한 높아야 하므로, 탄화붕소와 알루미늄의 함량을 떨어뜨리는 모든 반응들을 가능한 억제하는 것이 필요하다.For the production of boron carbide-aluminum composites, infiltration is used instead of the general powder metallurgy for densification of the composites. However, the preparation of boron carbide-aluminum composites by this method requires temperature conditions significantly higher than the melting point of the metal in order to achieve redness. Under high temperature conditions, various unwanted reaction products, such as aluminum carbide (Al 4 C 3 ), which have a very bad effect on physical properties, are generated and change the physical properties in an undesirable direction. In particular, in the case of neutron absorbent material, which is one of the most important applications of boron carbide, the content of boron carbide should be high in order to obtain sufficient absorbing capacity, and also provide toughness and fast thermal conductivity to prevent the diffusion of cracks caused by helium accumulation. In order for the aluminum content to be as high as possible, it is necessary to suppress all reactions that lower the content of boron carbide and aluminum.

물론 용도에 따라서는 적당한 반응물이 생기게 함으로써 필요한 성질을 경제적으로 얻을 수도 있으나, 중성자 흡수재 등 원래의 상을 유지할 필요가 있는 용도에서는 이러한 부생성물 발생 현상이 큰 문제가 된다. 따라서, 필요한 적심성을 얻으면서도 치밀화 공정을 되도록 저온에서 진행함으로써 화학 반응의 구동력을 줄이고, 빠른 시간 안에 진행시킴으로써 반응이 진행되는 시간을 줄일 수 있는 기술이 요구되고 있다.Of course, depending on the use, it is possible to economically obtain the required properties by producing a suitable reactant, but in the use of maintaining the original phase, such as a neutron absorber, such a by-product generation phenomenon is a big problem. Therefore, there is a demand for a technology capable of reducing the driving force of the chemical reaction by reducing the driving force of the chemical reaction by performing the densification process at a low temperature while obtaining the necessary wettability.

본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은, 졸-겔 법을 이용하여 미세한 세라믹 분말에 산화티탄을 균일하게 코팅시키는 방법을 제공하는 것이다.The present invention is to solve the problems of the prior art as described above, an object of the present invention is to provide a method for uniformly coating titanium oxide on fine ceramic powder using the sol-gel method.

본 발명의 또다른 목적은, 상기의 방법에 의하여 산화티탄이 코팅된 탄화붕소-알루미늄 분말을 저온에서 단시간 열처리하여 붕화티탄 코팅층을 형성시킴으로써 적심성을 향상시킬 수 있는 경제적인 방법을 제공하는 것이다.Still another object of the present invention is to provide an economical method of improving the wettability by forming a titanium boride coating layer by heat treating a titanium oxide-coated boron carbide-aluminum powder for a short time at low temperature.

도 1은 본 발명의 일실시예에서 사용한 평균입경 약 30㎛의 탄화붕소 분말의 전자 현미경 사진,1 is an electron micrograph of a boron carbide powder having an average particle diameter of about 30 μm used in one embodiment of the present invention;

도 2는 수산화티탄이 표면에 도포된 탄화붕소 분말의 전자현미경 사진,2 is an electron micrograph of the boron carbide powder coated with titanium hydroxide on the surface,

도 3은 탄화붕소 분말에 코팅된 산화티탄을 열처리하여 형성된 붕화티탄(TiB2) 코팅층의 전자현미경 사진,3 is an electron micrograph of a titanium boride (TiB 2 ) coating layer formed by heat treating titanium oxide coated on boron carbide powder,

도 4는 본 발명에 따라 탄화붕소 분말에 형성된 코팅층이 붕화티탄임을 보여주는 X 선회절분석 결과,4 is an X-ray diffraction analysis showing that the coating layer formed on the boron carbide powder according to the present invention is titanium boride,

도 5는 본 발명에 따라 붕화티탄 코팅층이 형성된 탄화붕소 분말(우측)과 코팅처리하지 않은 탄화붕소 분말(좌측)의 성형체에 대하여 1000℃에서 알루미늄을 용침시킬 때의 시간에 따른 양상을 비교한 사진,FIG. 5 is a photograph comparing the time-dependent aspects of infiltration of aluminum at 1000 ° C. with respect to a molded article of a boron carbide powder (right) and an uncoated boron carbide powder (left) on which a titanium boride coating layer is formed according to the present invention. ,

도 6은 코팅처리하지 않은 탄화붕소 분말에 일반적인 방법으로 알루미늄을 용침시킨 시편의 X 선회절분석 결과,FIG. 6 shows the results of X-ray diffraction analysis of specimens in which aluminum was infiltrated to the boron carbide powder without coating.

도 7은 본 발명에 따라 붕화티탄 코팅층이 형성된 탄화붕소 분말에 알루미늄을 1000℃에서 40분간 용침시킨 시편의 X 선회절분석 결과,7 is an X-ray diffraction analysis of a specimen in which aluminum was infiltrated with boron carbide powder having a titanium boride coating layer formed thereon for 40 minutes according to the present invention.

도 8은 세라믹 분말 중의 붕화티탄 함량에 따른 인성과 경도를 나타낸 그래프이다.8 is a graph showing the toughness and hardness according to the titanium boride content in the ceramic powder.

상기한 바와 같은 목적을 달성하기 위하여, 본 발명에 의한 졸-겔 법을 이용한 세라믹 분말에의 산화티탄 코팅방법은, 세라믹 분말을 알코올에 분산하여 교반한 후, 티타늄 테트라이소프로포사이드를 전체 용액의 0.001M 내지 0.1M 농도로 가하고, 상기 티타늄 테트라이소프로포사이드 농도의 3배 내지 6배의 농도로 알코올과 섞인 증류수를 가하여 가수분해시킴으로써 수산화티탄을 세라믹 분말에 도포하는 단계(a); 및 상기 단계(a)의 수산화티탄이 도포된 세라믹 분말을 소결하여 산화티탄 코팅층을 얻는 단계(b)로 구성되는 것을 특징으로 한다.In order to achieve the above object, the titanium oxide coating method on the ceramic powder using the sol-gel method according to the present invention, after dispersing and stirring the ceramic powder in alcohol, the titanium tetraisoproposide of the total solution (A) applying titanium hydroxide to the ceramic powder by adding hydrochloric acid at a concentration of 0.001M to 0.1M and adding distilled water mixed with alcohol at a concentration of 3 to 6 times the titanium tetraisopropoxide concentration; And (b) obtaining a titanium oxide coating layer by sintering the ceramic powder coated with titanium hydroxide of step (a).

본 발명에 따른 산화티탄 코팅방법에 있어서, 상기 단계(a)는 티타늄 테트라이소프로포사이드를 세라믹 분말 1g 당 0.0010몰 내지 0.015몰 비율로 가하는 것을 특징으로 한다.In the titanium oxide coating method according to the present invention, the step (a) is characterized in that the titanium tetraisopropoxide is added in a ratio of 0.0010 mol to 0.015 mol per 1g of ceramic powder.

본 발명에 따른 탄화붕소-금속 복합재료의 적심성 향상방법은, 상기의 산화티탄 코팅방법에 의하여 제조된 산화티탄이 코팅된 탄화붕소 분말을 진공 조건에서 900℃ 내지 1200℃의 온도로 열처리하여 적심성이 우수한 붕화티탄 코팅층을 탄화붕소 분말의 표면에 형성시키는 것을 특징으로 한다.In the method for improving the wettability of the boron carbide-metal composite material according to the present invention, the titanium oxide-coated boron carbide powder prepared by the titanium oxide coating method is subjected to heat treatment at a temperature of 900 ° C. to 1200 ° C. under vacuum conditions. It is characterized by forming a titanium boride coating layer excellent in the core on the surface of the boron carbide powder.

본 발명에 따른 탄화붕소-금속 복합재료의 적심성 향상방법에 있어서, 상기 금속은 알루미늄 또는 그 합금인 것을 특징으로 한다.In the method for improving the wettability of the boron carbide-metal composite according to the present invention, the metal is characterized in that aluminum or an alloy thereof.

세라믹-금속 복합재료 제조에 있어서 그 적심성을 향상시키기 위해서는 계면에 적심성이 우수한 물질 층이 존재할 필요가 있다. 금속이 알루미늄일 경우 화학증착을 통한 붕화티탄, 탄화티탄(TiC), 질화티탄(TiN) 등 티탄계 화합물의 코팅이 효과적이라는 것이 알려져 있으나, 세라믹이 분말 형태일 경우 상기 물질을 균일하게 코팅하기가 대단히 어렵다.In order to improve the wettability in the manufacture of ceramic-metal composites, a material layer having excellent wettability at the interface needs to exist. It is known that the coating of titanium-based compounds such as titanium boride, titanium carbide (TiC) and titanium nitride (TiN) through chemical vapor deposition is effective when the metal is aluminum, but it is difficult to uniformly coat the material when the ceramic is in powder form. Very difficult.

본 발명에서는 탄화붕소-알루미늄 복합재료의 제조시, 먼저 탄화붕소 분말을 산화티탄으로 코팅시킨 후, 산화티탄이 코팅된 탄화붕소 분말을 가열처리하여 붕화티탄 코팅층을 형성시켰다.In the present invention, in the preparation of the boron carbide-aluminum composite material, the boron carbide powder was first coated with titanium oxide, and then the boron carbide powder coated with titanium oxide was heated to form a titanium boride coating layer.

산화티탄은 전통적으로 백색 안료 등으로 사용되었고 최근 광촉매 효과로의응용가능성이 알려지면서 크게 각광받고 있는 재료이다. 산화티탄을 다른 물질 표면에 코팅하는 기술이 연구되고 있으나, 분말 표면에 균일하게 코팅하는 기술은 아직 많이 진보되지 못하고 있다.Titanium oxide has traditionally been used as a white pigment and is a material that has been greatly attracting attention as the applicability to photocatalytic effects is known recently. The technique of coating titanium oxide on the surface of other materials has been studied, but the technique of uniformly coating the surface of the powder has not been advanced yet.

본 발명에서는 졸-겔 법을 이용하여 산화티탄을 미세한 세라믹 분말에 균일하게 코팅시킨다. 본 발명에 있어서 미세한 세라믹 분말의 입경은 10㎚ 내지는 200㎛ 의 범위이다. 구체적으로, 졸-겔 법으로 수산화티탄을 도포하고 가열함으로써 축중합에 의한 산화티탄층을 코팅한다. 이 때 수산화티탄은 핵생성과 입자성장을 일으킨다. 즉, 상기 수산화티탄이 분말 표면에서만 불균일 핵생성을 통해 발생 성장함으로써 코팅의 효과를 얻을 수 있다.In the present invention, the titanium oxide is uniformly coated on the fine ceramic powder using the sol-gel method. In the present invention, the particle diameter of the fine ceramic powder is in the range of 10 nm to 200 μm. Specifically, the titanium oxide layer by condensation polymerization is coated by applying and heating titanium hydroxide by the sol-gel method. At this time, titanium hydroxide causes nucleation and particle growth. In other words, the titanium hydroxide can be produced by growing through heterogeneous nucleation only on the surface of the powder to obtain the effect of coating.

졸-겔 법은 금속의 유기 또는 무기화합물을 용액으로 하여 용액 중에서의 화합물의 가수분해와 중축합 반응을 진행시켜 졸을 겔로 고화하고, 또 이 겔을 가열하여 산화물 고체를 제조하는 방법이다. 이 때 물과 알콕사이드는 혼합할 수 없기 때문에, 알코올과 같이 두 물질이 동시에 녹을 수 있는 용매가 활용된다. 따라서, 알코올과 같은 균질화제가 존재할 때, 물과 알콕사이드의 혼화성에 기인하여 가수분해 반응은 용이하게 된다. 축중합 결합이 증가함에 따라 각각의 분자들은 가교되고, 졸로 응집되고, 졸 입자가 응집 또는 망목구조로 서로 연결될 때, 겔이 형성된다. 건조시 겔 내에 있는 휘발성 물질(물, 알콜 등)등은 제거되며 겔은 수축한다.The sol-gel method is a method of solidifying a sol into a gel by carrying out a hydrolysis and polycondensation reaction of a compound in a solution by using an organic or inorganic compound of a metal as a solution, and heating the gel to prepare an oxide solid. At this time, since water and alkoxide cannot be mixed, a solvent in which two substances can be dissolved simultaneously, such as alcohol, is utilized. Thus, when a homogenizing agent such as alcohol is present, the hydrolysis reaction is facilitated due to the miscibility of water and alkoxides. As the polycondensation bonds increase, each molecule crosslinks, aggregates into a sol, and a gel forms when the sol particles are linked to each other in an aggregate or network. During drying, volatiles (water, alcohol, etc.) in the gel are removed and the gel shrinks.

이하, 실시예를 들어 본 발명의 구성 및 발명효과를 보다 상세하게 설명한다. 아래의 실시예는 본 발명의 내용을 설명하나, 본 발명의 내용이 여기에 한정되지는 않는다.Hereinafter, the configuration and the effects of the present invention will be described in more detail with reference to Examples. The following examples illustrate the content of the invention, but the content of the invention is not limited thereto.

<실시예 1: 탄화붕소 분말에 붕화티탄 코팅층 형성><Example 1: Titanium boride coating layer formed on the boron carbide powder>

산화티탄 코팅을 위한 전구물질(precursor)로 티타늄 테트라이소프로포사이드(titanium tetraisopropoxide, TTIP)를 무수 에탄올에 용해시켜 사용하였다. 탄화붕소는 평균입경이 30㎛ 인 분말을 사용하였다. 도 1은 본 실시예에서 사용된 입경 30㎛ 인 탄화붕소 분말의 전자현미경 사진이다. 탄화붕소분말을 무수 에탄올에 분산하여 충분히 교반한 후 TTIP를 가하고, 역시 에탄올과 섞은 증류수를 가하여 가수분해가 일어나도록 하였다.Titanium tetraisopropoxide (TTIP) was used in anhydrous ethanol as a precursor for titanium oxide coating. As the boron carbide, a powder having an average particle diameter of 30 μm was used. 1 is an electron micrograph of a boron carbide powder having a particle diameter of 30 μm used in the present embodiment. The boron carbide powder was dispersed in anhydrous ethanol, sufficiently stirred and TTIP was added, and distilled water mixed with ethanol was also added to cause hydrolysis.

티탄 수산화물이 불균일 핵생성을 일으키되, 균일 핵생성으로 별개의 입자를 생성하지 않으며 또한 지나치게 작은 양이 도입되지도 않는 적당한 조건을 탐색한 결과, 전체 용액에서 TTIP는 0.001M 내지 0.1M, 바람직하게는 0.033M, 증류수는 그 3~6배의 농도가 되게 하고, 탄화붕소 1g당 TTIP가 0.0010몰 내지 0.015몰 들어가도록 비율을 조절하며, 서서히 저으면서 약 20시간 유지할 때 불균일 핵생성에 의하여 적당한 두께로 탄화붕소 분말에 수산화티탄이 도포되는 것을 관찰하였다. 이 반응은 하기 화학식 1과 같이 정리된다.As a result of exploring suitable conditions in which the titanium hydroxide causes heterogeneous nucleation but does not produce discrete particles with homogeneous nucleation and does not introduce too small an amount, the TTIP in the total solution is 0.001M to 0.1M, preferably Is 0.033M, distilled water is 3 to 6 times the concentration, and the ratio is adjusted so that the TTIP per 0.00g of boron carbide into 0.0010 mol to 0.015 mol, and while stirring slowly for about 20 hours to maintain a suitable thickness by heterogeneous nucleation It was observed that titanium hydroxide was applied to the boron carbide powder. This reaction is summarized as in the following formula (1).

Ti[OCH(CHTi [OCH (CH 33 )) 22 ]] 44 +4H+ 4H 22 O = Ti(OH)O = Ti (OH) 44 +4C+ 4C 33 HH 77 OHOH

도 2는 상기의 방법으로 수산화티탄이 도포된 탄화붕소 분말의 전자현미경사진이다. 이 수산화티탄이 도포된 탄화붕소 분말을 가열하게 되면 산화티탄의 코팅이 얻어지며, 이 반응은 하기 화학식 2와 같다.2 is an electron micrograph of the boron carbide powder coated with titanium hydroxide by the above method. When the boron carbide powder coated with titanium hydroxide is heated, a coating of titanium oxide is obtained, and the reaction is represented by the following Chemical Formula 2.

Ti(OH)Ti (OH) 44 = TiO= TiO 22 +2H+ 2H 22 OO

수산화티탄이 코팅된 분말을 더욱 높은 온도까지 가열하면 발생된 산화티탄이 탄화붕소와 반응하여 붕화티탄으로 변하게 된다. 즉 하기 화학식 3과 같은 반응들이 일어나게 된다.When the titanium hydroxide-coated powder is heated to a higher temperature, the produced titanium oxide reacts with boron carbide to turn into titanium boride. That is, reactions such as the following Chemical Formula 3 occur.

BB 44 C+2TiOC + 2TiO 22 +3C = 2TiB+ 3C = 2TiB 22 +4CO+ 4CO

본 실시예에서는 산화티탄이 코팅된 분말을 건조시킨 후 흑연 도가니에서 진공 (여기서는 10-4torr)을 유지한 채 900~1200℃에서 열처리하여 붕화티탄 코팅층이 형성된 탄화붕소 분말을 얻었다.In the present embodiment, the titanium oxide coated powder was dried and then heat treated at 900 to 1200 ° C. while maintaining a vacuum (herein, 10 −4 torr) in a graphite crucible to obtain a boron carbide powder having a titanium boride coating layer.

도 3은 본 실시예에 의하여 붕화티탄 코팅층이 형성된 탄화붕소 분말의 고배율 전자현미경 사진이며, 도 4는 상기 코팅층 물질이 붕화티탄임을 확인할 수 있는X 선회절분석 결과이다.3 is a high magnification electron micrograph of the boron carbide powder in which the titanium boride coating layer is formed according to the present embodiment, and FIG. 4 is an X-ray diffraction analysis to confirm that the coating layer material is titanium boride.

위와 같이 본 발명은 졸-겔 법을 사용하여 탄화붕소 분말 표면에 산화티탄을 상당히 균일하게 코팅하고, 이어 이를 가열 처리함으로써 붕화티탄으로 화학 변화시켰다. 두꺼운 코팅층이 건조 과정에서 갈라질 수도 있으나, 붕화티탄 코팅층이 탄화붕소 분말 표면의 대부분을 덮어주므로 표면 성질을 상당히 크게 바꿀 수 있다.As described above, the present invention uses a sol-gel method to uniformly coat titanium oxide on the surface of the boron carbide powder, and then heat-treat it to chemically change it to titanium boride. Although the thick coating layer may crack during the drying process, the titanium boride coating layer covers most of the surface of the boron carbide powder, which can significantly change the surface properties.

<실시예 2><Example 2>

탄화붕소의 평균입경이 1㎛인 분말을 사용하여 실시예 1과 같은 방법으로 붕화티탄 코팅층이 형성된 탄화붕소 분말을 제조하였다.Boron carbide powder having a titanium boride coating layer was prepared in the same manner as in Example 1 using a powder having an average particle diameter of boron carbide.

입경이 작은 분말에 대해서도 역시 균일 핵생성으로 발생되는 구형 산화티탄 입자가 발견되지 않고, X 선회절분석에서 붕화티탄이 확인되어 산화티탄이 코팅되었음을 알 수 있었다.The spherical titanium oxide particles generated by uniform nucleation were not found even for the powder having a small particle diameter, and the titanium boride was confirmed by X-ray diffraction analysis, indicating that the titanium oxide was coated.

<실시예 3: 알루미늄 용침>Example 3: Aluminum Infiltration

세라믹-금속 복합재료의 치밀화를 위해 용침법을 사용하였다. 세라믹 분말 0.33g을 일축 가압하여 성형체를 만들었으며, 그 기공률은 약 38%였다. 이 위에 그 기공을 채울 수 있는 알루미늄을 올려 놓고 진공에서 가열하여 용침되게 하였다. 이 때 붕화티탄 코팅층이 형성된 경우에 있어서는 분말 입경에 상관없이 일반적 용침온도보다 낮은 1000℃에서도 용침이 빨리 진행되었다.Infiltration method was used for densification of ceramic-metal composites. 0.33 g of ceramic powder was uniaxially pressurized to form a molded product, and the porosity thereof was about 38%. On top of this was placed aluminum to fill the pores and heated in vacuum to infiltrate. At this time, in the case where the titanium boride coating layer was formed, the infiltration proceeded quickly even at 1000 ° C. lower than the general infiltration temperature irrespective of the powder particle size.

도 5는 입경이 작은 분말에 대한 1000℃에서의 용침 거동을 촬영한 것이다. 도 5에서 보는 바와 같이, 붕화티탄 코팅층이 형성된 경우 빠르게 적심각이 감소하여 용침이 원활하게 진행되었으나, 코팅처리하지 않은 경우 오랜 시간에 걸쳐 서서히 적심각이 감소하고 있어서, 붕화티탄 코팅층이 형성된 경우의 용침이 끝날 때까지도 액상의 침투가 시작되지 못하고 있었다. 결과적으로 작은 분말에 대해서는 필요시간이 약 120분에서 35분 내외로, 큰 분말에 대해서는 약 25분에서 10분 이하로 감소하였다. 이와 같이 용침 속도가 향상되면, 원하지 않는 화학 반응의 진행을 크게 억제할 수 있다.5 is a photograph of the infiltration behavior at 1000 ℃ for the powder having a small particle diameter. As shown in FIG. 5, when the titanium boride coating layer was formed, the wetness was rapidly decreased and infiltration proceeded smoothly, but when the coating was not performed, the wetness was gradually decreased over a long time, and thus, the titanium boride coating layer was formed. The infiltration of the liquid phase did not start until the end of the infiltration. As a result, the time required for small powders decreased from about 120 to 35 minutes, and for large powders from about 25 to less than 10 minutes. When the infiltration rate is improved in this manner, it is possible to greatly suppress the progress of unwanted chemical reactions.

도 6은 분말을 코팅처리하지 않고, 일반적인 1200℃에서 용침시킨 경우의 X선 회절분석 결과이며, 도 7은 분말에 붕화티탄을 코팅층을 형성시켜 1000℃의 낮은 온도에서 단시간 공정을 진행한 경우의 X선 회절분석 결과이다. 도 7에서 보는 바와 같이, 전체적인 반응 생성물의 양이 줄어들었고, 많은 양의 알루미늄 금속이 남아 있었으며, 특히 물성에 치명적인 영향을 주는 Al4C3의 생성이 발견되지 않았다.FIG. 6 is an X-ray diffraction analysis result when the powder is infiltrated at 1200 ° C. without coating, and FIG. 7 shows a case where a titanium boride is formed on the powder and a short time process is performed at a low temperature of 1000 ° C. FIG. X-ray diffraction analysis results. As shown in FIG. 7, the amount of the overall reaction product was reduced, and a large amount of aluminum metal remained, and in particular, no production of Al 4 C 3 , which had a fatal effect on physical properties, was found.

도 8은 압흔법(indentation)으로 측정한 세라믹 분말 중의 붕화티탄 함량에 따른 인성과 경도를 나타낸 그래프이다. 도 8에서 보는 바와 같이, 붕화티탄을 코팅하지 않고 일반적인 1200℃의 온도에서 용침시킨 경우(함량=0)와, 붕화티탄 코팅층을 형성시켜 1000℃에서 용침시킨 경우의 물성이 크게 대비된다. 즉, 붕화티탄 코팅층이 형성된 경우, 반응 생성물의 감소에 따라 경도가 감소하는 대신 인성이 크게 높아진 것을 확인할 수 있다.8 is a graph showing the toughness and hardness according to the titanium boride content in the ceramic powder measured by the indentation (indentation). As shown in FIG. 8, the physical properties of the case where the titanium boride is infiltrated at a temperature of 1200 ° C. without a coating (content = 0) and the titanium boride coating layer is formed and infiltrated at 1000 ° C. significantly contrast. That is, when the titanium boride coating layer is formed, it can be seen that toughness is greatly increased instead of decreasing hardness as the reaction product decreases.

상기와 같이 본 발명은 탄화붕소-알루미늄 복합재료의 적심성 향상을 위하여적심성이 우수한 붕화티탄 코팅층을 세라믹 분말의 표면에 형성시켰다. 또한 본 발명은 붕화티탄 코팅층을 형성시키기 위하여, 먼저 졸-겔 법을 이용하여 수산화티탄을 탄화붕소 분말의 표면에 도포한 후 소결하여 산화티탄층을 코팅하였다. 이 때 산화티탄의 코팅은 졸-겔 공정 가운데에 발생하는 가수분해 생성물이 분말 표면에서 불균일 핵생성을 일으키는 성질을 이용한 것이다.As described above, the present invention forms a titanium boride coating layer having excellent wettability on the surface of the ceramic powder in order to improve the wettability of the boron carbide-aluminum composite material. In addition, in the present invention, in order to form a titanium boride coating layer, the titanium hydroxide was first applied to the surface of the boron carbide powder by sol-gel method and then sintered to coat the titanium oxide layer. At this time, the coating of titanium oxide utilizes the property that the hydrolysis product generated during the sol-gel process causes non-uniform nucleation on the surface of the powder.

정리하면, 본 발명은 산화티탄을 졸-겔 법으로 코팅하고 열처리하여 붕화티탄 코팅층을 탄화붕소 분말 표면에 형성시킴으로써, 기존의 방법보다 저온에서 빠른 시간 안에 공정을 마칠 수 있어 불필요한 화학 반응을 억제하고, 그 결과 초기의 상이 많이 유지되면서, 높은 인성을 가져, 중성자 흡수재 등에서 필요로 하는 조건을 충족하는 복합재료를 제조할 수 있었다.In summary, the present invention forms a titanium boride coating layer on the surface of the boron carbide powder by coating and thermally treating the titanium oxide by the sol-gel method, thereby suppressing unnecessary chemical reactions by completing the process at a lower temperature than the conventional method. As a result, while maintaining a large number of initial phases, it was possible to produce a composite material having high toughness and satisfying the conditions required by a neutron absorber.

이상에서 설명한 바와 같이, 본 발명의 졸-겔 법을 이용한 세라믹 분말 표면에의 산화티탄 코팅방법은, 산화티탄의 전구물질이 분말 표면에서 불균일 핵생성을 일으키는 원리를 이용하여 미세한 세라믹 분말 표면에 균일한 산화티탄 코팅을 가능하게 하였다. 본 발명에 의하여 제조된 산화티탄이 코팅된 세라믹 분말은 산화티탄의 광촉매 효과 등을 필요로 하는 많은 용도에서 긴요하게 사용될 수 있다.As described above, the titanium oxide coating method on the surface of the ceramic powder using the sol-gel method of the present invention is uniform on the surface of the fine ceramic powder using the principle that the precursor of titanium oxide causes uneven nucleation on the surface of the powder. One titanium oxide coating was made possible. Titanium oxide-coated ceramic powder prepared by the present invention can be used critically in many applications requiring the photocatalytic effect of titanium oxide.

본 발명에 의한 탄화붕소-금속(알루미늄 등) 복합재료의 적심성 향상방법은, 세라믹 분말에 적심성이 우수한 붕화티탄 코팅층을 형성시킴으로써 공정온도와 시간을 감소시켜 경제적이다.The method for improving the wettability of the boron carbide-metal (aluminum, etc.) composite material according to the present invention is economical by reducing the process temperature and time by forming a titanium boride coating layer having excellent wettability on ceramic powder.

본 발명에 의한 적심성 향상방법은 반응성이 있는 계에서 각종 화학 반응을억제하므로, 최종 제조된 탄화붕소-알루미늄 복합재료는, 초기의 상이 많이 유지되면서, 인성은 높아져 중성자 흡수재로서 필요한 특성을 충족시킬 수 있다.Since the method for improving the wettability according to the present invention suppresses various chemical reactions in a reactive system, the final manufactured boron carbide-aluminum composite material retains much of its initial phase while increasing toughness to satisfy the necessary properties as a neutron absorber. Can be.

Claims (4)

세라믹 분말을 알코올에 분산하여 교반한 후, 티타늄 테트라이소프로포사이드를 전체 용액의 0.001M 내지 0.1M 농도로 가하고, 상기 티타늄 테트라이소프로포사이드 농도의 3배 내지 6배의 농도로 알코올과 섞인 증류수를 가하여 가수분해시킴으로써 수산화티탄을 세라믹 분말에 도포하는 단계(a); 및After dispersing and stirring the ceramic powder in alcohol, titanium tetraisopropoxide was added at a concentration of 0.001 M to 0.1 M of the total solution, and distilled water mixed with alcohol at a concentration of 3 to 6 times the concentration of the titanium tetraisopropoxide was added. (A) applying titanium hydroxide to the ceramic powder by hydrolysis by addition; And 상기 단계(a)의 수산화티탄이 도포된 세라믹 분말을 소결하여 산화티탄 코팅층을 얻는 단계(b)로 구성되는 것을 특징으로 하는 졸-겔 법을 이용한 세라믹 분말에의 산화티탄 코팅방법.And (b) obtaining a titanium oxide coating layer by sintering the ceramic powder coated with titanium hydroxide in the step (a). 제1항에서 있어서,The method of claim 1, 상기 단계(a)는 티타늄 테트라이소프로포사이드를 세라믹 분말 1g 당 0.0010몰 내지 0.015몰 비율로 가하는 것을 특징으로 하는 졸-겔 법을 이용한 세라믹 분말에의 산화티탄 코팅방법.The step (a) is a titanium oxide coating method on the ceramic powder using the sol-gel method, characterized in that the addition of titanium tetraisopropoxide in a ratio of 0.0010 mol to 0.015 mol per 1g of ceramic powder. 제1항의 산화티탄 코팅방법에 의하여 제조된 산화티탄이 코팅된 탄화붕소 분말을 진공 조건에서 900℃ 내지 1200℃의 온도로 열처리하여 적심성이 우수한 붕화티탄 코팅층을 탄화붕소 분말의 표면에 형성시키는 것을 특징으로 하는 탄화붕소-금속 복합재료의 적심성 향상방법.The method of claim 1, wherein the titanium oxide coated boron carbide powder prepared by the titanium oxide coating method is heat-treated under vacuum conditions at a temperature of 900 ° C to 1200 ° C to form a titanium boride coating layer having excellent wettability on the surface of the boron carbide powder. A method of improving the wettability of a boron carbide-metal composite material. 제3항에 있어서,The method of claim 3, 상기 금속은 알루미늄 또는 그 합금인 것을 특징으로 하는 탄화붕소-금속 복합재료의 적심성 향상방법.The metal is a method of improving the wettability of the boron carbide-metal composite, characterized in that the aluminum or an alloy thereof.
KR1020010084178A 2001-12-24 2001-12-24 Method to coat ceramic powder with TiO2 and Method to improve wettability of B4C-Al composite material KR20030054077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010084178A KR20030054077A (en) 2001-12-24 2001-12-24 Method to coat ceramic powder with TiO2 and Method to improve wettability of B4C-Al composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010084178A KR20030054077A (en) 2001-12-24 2001-12-24 Method to coat ceramic powder with TiO2 and Method to improve wettability of B4C-Al composite material

Publications (1)

Publication Number Publication Date
KR20030054077A true KR20030054077A (en) 2003-07-02

Family

ID=32212744

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010084178A KR20030054077A (en) 2001-12-24 2001-12-24 Method to coat ceramic powder with TiO2 and Method to improve wettability of B4C-Al composite material

Country Status (1)

Country Link
KR (1) KR20030054077A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103419268A (en) * 2013-06-28 2013-12-04 无锡特科精细陶瓷有限公司 Water-based gel casting method for structural ceramics
EP2658827A4 (en) * 2010-12-28 2015-09-09 Verco Materials Llc Boron carbide based materials and process for the fabrication thereof
US9321187B2 (en) 2012-07-31 2016-04-26 Verco Materials, Llc Process for fabrication of high-hardness, fine-grained, complex-shaped silicon carbide articles
CN108754399A (en) * 2018-06-21 2018-11-06 江西科技师范大学 A kind of titanium diboride coating and preparation method thereof of high temperature resistant fluorination fused salt corrosion
CN112024872A (en) * 2020-09-10 2020-12-04 昆明理工大学 Method for preparing composite powder for laser 3D printing by sol coating method
CN116377274A (en) * 2023-03-14 2023-07-04 哈尔滨工业大学 B (B) 4 Photocathode protection controllable modification method of C ceramic reinforcement particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000225339A (en) * 1999-02-04 2000-08-15 Kawasaki Heavy Ind Ltd Production of titanium oxide-coated material
KR20010003819A (en) * 1999-06-25 2001-01-15 박호군 Ceramics-aluminum composite and its preparation method
KR20020039819A (en) * 2000-11-22 2002-05-30 이병철 The method for preparation of sun protecting complex powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000225339A (en) * 1999-02-04 2000-08-15 Kawasaki Heavy Ind Ltd Production of titanium oxide-coated material
KR20010003819A (en) * 1999-06-25 2001-01-15 박호군 Ceramics-aluminum composite and its preparation method
KR20020039819A (en) * 2000-11-22 2002-05-30 이병철 The method for preparation of sun protecting complex powder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
이봉섭, 서울대학교 대학원, 2000년, p.28 - 59 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2658827A4 (en) * 2010-12-28 2015-09-09 Verco Materials Llc Boron carbide based materials and process for the fabrication thereof
US9890087B2 (en) 2010-12-28 2018-02-13 Verco Materials, Llc Boron carbide based materials and process for the fabrication thereof
US10927044B2 (en) 2010-12-28 2021-02-23 Vecro Materials Llc Boron carbide based materials and process for the fabrication thereof
US9321187B2 (en) 2012-07-31 2016-04-26 Verco Materials, Llc Process for fabrication of high-hardness, fine-grained, complex-shaped silicon carbide articles
CN103419268A (en) * 2013-06-28 2013-12-04 无锡特科精细陶瓷有限公司 Water-based gel casting method for structural ceramics
CN103419268B (en) * 2013-06-28 2016-03-23 无锡特科精细陶瓷有限公司 A kind of structural ceramics water-base gel casting method
CN108754399A (en) * 2018-06-21 2018-11-06 江西科技师范大学 A kind of titanium diboride coating and preparation method thereof of high temperature resistant fluorination fused salt corrosion
CN112024872A (en) * 2020-09-10 2020-12-04 昆明理工大学 Method for preparing composite powder for laser 3D printing by sol coating method
CN112024872B (en) * 2020-09-10 2021-06-08 昆明理工大学 Method for preparing composite powder for laser 3D printing by sol coating method
CN116377274A (en) * 2023-03-14 2023-07-04 哈尔滨工业大学 B (B) 4 Photocathode protection controllable modification method of C ceramic reinforcement particles

Similar Documents

Publication Publication Date Title
Lee et al. Low-temperature processing of B4C–Al composites via infiltration technique
CN101157770B (en) Enhanced boron nitride composition and compositions made therewith
KR20080108577A (en) Polycrystalline abrasive compacts
He et al. Inorganic microencapsulated core/shell structure of Al–Si alloy micro-particles with silane coupling agent
JPS59213660A (en) Porous ceramic thin film and manufacture
US20080003357A1 (en) Silicon carbide ceramic containing materials, their methods of manufacture and articles comprising the same
WO2004031445A1 (en) Protective ceramic coating
Kocjan The hydrolysis of AlN powder–a powerful tool in advanced materials engineering
US20070154639A1 (en) Coated articles and methods of manufacture thereof
Chen et al. Control of aluminum phosphate coating on mullite fibers by surface modification with polyethylenimine
RU2333888C1 (en) Method for obtaining highly-dispersible refractory carbides for coating and composites based thereon
CN110304932B (en) Preparation method of Cf/SiC composite material with HfB2 interface
KR20030054077A (en) Method to coat ceramic powder with TiO2 and Method to improve wettability of B4C-Al composite material
US20080260952A1 (en) Ceramic Coating
Borek et al. Boron nitride coatings on oxide substrates: role of surface modifications
CN1392219A (en) High heat conductivity composite material and its preparing method
JP5339321B2 (en) Oxidation-resistant graphite material and method for producing the same
EP1745161A1 (en) Ceramic coating
KR100321295B1 (en) Ceramics-aluminum composite and its preparation method
KR101331403B1 (en) Process for silicon carbide coating on graphite
Jing et al. Preparation of compact Al 2 O 3 film on metal for oxidation resistance by polyvinylpyrrolidone
Lin et al. Fabrication of mullite/SiC and mullite/zirconia/SiC composites by ‘dual’in-situ reaction syntheses
JP2002531590A (en) Coated, electrically polarizable, non-magnetic particles, methods for their manufacture and their use
Galembeck et al. Chemical polymerization of pyrrole on CeO2 films
JP2000185981A (en) Porous molded article of silicon carbide and its production

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application