KR20030048387A - Contact electrode for fabrication of periodically poled lithium niobate wafer - Google Patents

Contact electrode for fabrication of periodically poled lithium niobate wafer Download PDF

Info

Publication number
KR20030048387A
KR20030048387A KR1020030018385A KR20030018385A KR20030048387A KR 20030048387 A KR20030048387 A KR 20030048387A KR 1020030018385 A KR1020030018385 A KR 1020030018385A KR 20030018385 A KR20030018385 A KR 20030018385A KR 20030048387 A KR20030048387 A KR 20030048387A
Authority
KR
South Korea
Prior art keywords
wafer
linbo
contact electrode
lithium
fabrication
Prior art date
Application number
KR1020030018385A
Other languages
Korean (ko)
Inventor
권재영
송재원
장석우
Original Assignee
권재영
송재원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권재영, 송재원 filed Critical 권재영
Priority to KR1020030018385A priority Critical patent/KR20030048387A/en
Publication of KR20030048387A publication Critical patent/KR20030048387A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PURPOSE: A contact electrode for manufacturing a periodically poled LiNbO3 wafer is provided to be capable of conserving a flat metal electrode formed on one surface of the wafer without removing the flat metal electrode by forming an optical waveguide on the other surface of the wafer. CONSTITUTION: When manufacturing a periodically poled LiNbO3 wafer, a contact electrode is used for supplying high-tension electric field. The contact electrode is manufactured as following processes. Polymer material(2) is formed on a silicon substrate(1). A plurality of metal electrodes(3) are formed on the polymer material(2). At this time, the metal electrodes(3) are spaced apart from each other on the polymer material(2).

Description

주기적으로 분극반전된 리튬나오베이트(LiNbO3) 웨이퍼(wafer) 제작용 접촉전극 { Contact electrode for fabrication of periodically poled lithium niobate wafer }Contact electrode for fabrication of periodically poled lithium niobate wafer}

리튬나오베이트(LiNbO3) 결정은 높은 비선형 계수를 가짐으로 인해서 비선형 효과를 이용한 많은 광 소자의 제작에 사용되어지고 있다. 특히 최근 들어 정보의 고밀도 저장을 위한 광디스크의 픽업용 광원으로의 사용이 기대되는 초소형 청색 레이져의 제작과 기하급수적으로 늘어가는 인터넷 정보의 효율적인 처리가 가능한 광네트워크 구성을 위한 필수적인 소자인 광파장변환기(Optical Wavelength Converter)의 제작에 높은 비선형 효과를 가진 리튬나오베이트(LiNbO3) 결정이 사용되어지고 있다.Lithium naobate (LiNbO 3 ) crystals have high nonlinear coefficients and are used in the fabrication of many optical devices using nonlinear effects. In particular, the optical wavelength converter, an essential element for the fabrication of an ultra-small blue laser, which is expected to be used as a light source for picking up an optical disk for high-density storage of information, and for the construction of an optical network capable of efficiently processing an exponentially increasing number of Internet information. LiNbO 3 (LiNbO 3 ) crystals, which have a high nonlinear effect, are used in the fabrication of a wavelength converter.

초소형 청색 레이져나 광파장변환기의 효율적인 동작을 위해서는 상기 소자에 입력되는 빛의 파장과 출력되는 빛의 파장의 위상을 일치시켜야 하는데 이를 위상정합(Phase Matching)이라한다. 이러한 위상정합 방법으로 최근들어 준위상정합(Quasi Phase Matching) 방법이 높은 효율성으로 인하여 사용되어지고 있다.In order to efficiently operate an ultra-small blue laser or an optical wavelength converter, it is necessary to match the phase of the wavelength of the light inputted to the device with the wavelength of the outputted light. This is called phase matching. Recently, a quasi phase matching method has been used as the phase matching method due to its high efficiency.

상기의 준위상정합(Quasi Phase Matching) 방법을 이용하기 위해서는 리튬나오베이트(LiNbO3) 결정이 가지고 있는 자연분극방향 즉 광축의 방향을 주기적으로 반대로 만들어주는 과정이 필요한데 이를 주기적 분극반전 이라하며 이렇게 주기적으로 분극방향이 반대로 형성된 리튬나오베이트(LiNbO3) 웨이퍼(wafer)를 주기적으로 분극반전된 리튬나오베이트(LiNbO3)[PPLN:Periodically Poled LiNbO3)라 한다.In order to use the Quasi Phase Matching method, it is necessary to periodically reverse the natural polarization direction of the LiNbO 3 crystal, that is, the optical axis, which is called periodic polarization inversion. As a result, a lithium nanobate (LiNbO 3 ) wafer having a reverse polarization direction is referred to as a periodically polarized and reversed lithium nanobate (LiNbO 3 ) [PPLN: Periodically Poled LiNbO 3 ).

주기적으로 분극반전된 리튬나오베이트(LiNbO3) 결정을 제작하는 방법에는 티타늄(Ti) 박막을 리튬나오베이트(LiNbO3) 결정 내부로 확산시키는 방법, 리튬나오베이트(LiNbO3) 결정에서 Li2O를 외부로 확산시키는 방법 그리고 외부에서 고압의 전계(21kv/mm)를 리튬나오베이트(LiNbO3) 결정에 인가하는 방법등이 있으며 현재는 분극반전 특성이 가장 우수한 외부에서 고압의 전계를 인가하는 방법을 주로 사용한다.Periodic exit the polarization reversed lithium niobate (LiNbO 3) out how to make a decision, the lithium to titanium (Ti) thin film bait (LiNbO 3) out determination method for diffusing into the, lithium niobate (LiNbO 3) Li 2 O in the crystal And a method of applying a high voltage electric field (21kv / mm) to the crystal of lithium naobate (LiNbO 3 ) from the outside, and applying a high voltage electric field from the outside with the best polarization inversion property. Mainly used.

현재 사용되고 있는 리튬나오베이트(LiNbO3) 결정에 고압의 전계를 인가하여 주기적인 분극반전을 형성시키는 방법은 다음과 같다.A method of forming a periodic polarization inversion by applying a high-pressure electric field to a lithium naobate (LiNbO 3 ) crystal currently used is as follows.

도 4 에서와 같이 리튬나오베이트(LiNbO3) 웨이퍼(wafer)(7)의 한쪽 면 상에 도 5 와 같은 주기적인 모양을 가진 금속전극(6)을 형성시키고 반대쪽 면 상에 평면 금속전극(8)을 형성시킨 후 양단의 금속전극에 고압의 전계를 인가하게 되면고압의 전계가 인가되는 부분 즉 주기적인 모양을 가진 금속전극(6)과 리튬나오베이트(LiNbO3) 웨이퍼(wafer)(7)가 접촉하고 있는 부분은 분극반전이 형성되고 접촉하지 않는 부분은 분극반전이 형성되지 않아서 주기적으로 분극반전이 된 리튬나오베이트(LiNbO3) 웨이퍼(wafer)(7)를 제작할 수 있다.As shown in FIG. 4, a metal electrode 6 having a periodic shape as shown in FIG. 5 is formed on one side of a LiNbO 3 wafer 7, and the planar metal electrode 8 is formed on the other side. When a high pressure electric field is applied to the metal electrodes at both ends, the metal electrode 6 and the LiNbO 3 wafer having a periodic shape are applied to the high voltage electric field. The polarized reversal is not formed at the portion to which the is in contact, and the polarization reversal is not formed at the portion which is not in contact, so that a lithium nanobait (LiNbO 3 ) wafer 7 which is periodically polarized reversed can be manufactured.

상기의 방법으로 주기적으로 분극반전된 리튬나오베이트(LiNbO3) 웨이퍼 (wafer)를 제작하기 위해서는 주기적인 분극반전을 형성시키고자 하는 개별 리튬나오베이트(LiNbO3) 웨이퍼(wafer)(7)마다에 도 4 에서와 같은 주기적인 모양을 가진 금속전극(6)과 평면금속전극(8)을 형성시켜야 하며 상기와 같이 형성된 금속전극(6,8)에 고압의 전계를 인가하여 주기적으로 분극반전된 리튬나오베이트(LiNbO3) 웨이퍼 (wafer)를 제작한 후 이를 초소형 청색 레이져나 광파장변환기 등의 소자제작에 이용하기 위해서는 리튬나오베이트(LiNbO3) 웨이퍼 (wafer)(7)상에 형성된 주기적인 모양을 가진 금속전극(6)을 제거하는 공정이 추가적으로 포함되어야 한다. 상기와 같은 광소자 제작시 리튬나오베이트(LiNbO3) 웨이퍼(wafer)의 위쪽면에 광도파로를 제작하기 때문에 아랫쪽 면에 있는 평면금속전극(8)은 제거할 필요가 없다.In each exit the periodic polarization reversal in the above method, the lithium niobate (LiNbO 3) wafer individual lithium out who want to form a periodic polarization reversal to produce a (wafer) niobate (LiNbO 3) a wafer (wafer) (7) The metal electrode 6 and the planar metal electrode 8 having a periodic shape as shown in FIG. 4 should be formed, and the lithium is periodically polarized and inverted by applying a high voltage electric field to the metal electrodes 6 and 8 formed as described above. After fabricating a NaObate (LiNbO 3 ) wafer and using it for the fabrication of devices such as ultra-small blue lasers or optical wavelength converters, a periodic shape formed on a LiNbO 3 wafer (7) is used. The process of removing the excitation metal electrode 6 should additionally be included. When manufacturing the optical device as described above, since the optical waveguide is fabricated on the upper surface of the LiNbO 3 wafer, the planar metal electrode 8 on the lower surface does not need to be removed.

본 발명은 상기와 같은 공정과정을 단순화하기 위하여 리튬나오베이트 (LiNbO3) 웨이퍼(wafer)상에 직접 형성된 금속전극(6)대신 고압의 전계를 인가시킬때 마다 리튬나오베이트(LiNbO3) 웨이퍼(wafer)상에 접촉시켜 반복적으로 사용할 수 있는 접촉전극(도1)에 관한 것이다.In order to simplify the process described above, the present invention provides a lithium nanobait (LiNbO 3 ) wafer each time a high-voltage electric field is applied instead of the metal electrode 6 directly formed on the lithium nanobait (LiNbO 3 ) wafer. It relates to a contact electrode (Fig. 1) that can be repeatedly used in contact with the wafer).

도 1 은 본 발명의 접촉전극의 단면도.1 is a cross-sectional view of a contact electrode of the present invention.

도 2 는 도 1 의 하측에서 바라본 접촉전극의 금속전극(3)의 모양을 나타내는 평면도.FIG. 2 is a plan view showing the shape of the metal electrode 3 of the contact electrode seen from the lower side of FIG.

도 3 은 리튬나오베이트(LiNbO3) 웨이퍼(wafer)(4)에 접촉전극을 접촉한FIG. 3 shows a contact electrode contacting a LiNbO 3 wafer 4.

단면도.Cross-section.

도 4 는 종래의 리튬나오베이트(LiNbO3) 웨이퍼(wafer)(7)의 양면에 직접 금속전극(6,8)을 형성한 구조의 단면도.4 is a cross-sectional view of a structure in which metal electrodes 6 and 8 are formed directly on both sides of a conventional lithium nanobait (LiNbO 3 ) wafer 7.

도 5 는 도 4 의 상측에서 바라본 주기적인 모양을 가진 금속전극(6)의 모양을 나타내는 평면도.FIG. 5 is a plan view showing the shape of the metal electrode 6 having a periodic shape as seen from the upper side of FIG. 4.

도 6 은 도 4 의 하측에서 바라본 평면전극(8)의 모양을 나타내는 평면도.FIG. 6 is a plan view showing the shape of the planar electrode 8 seen from the lower side of FIG.

-- 도면의 주요부분에 대한 부호의 설명 ---Explanation of symbols for the main parts of the drawing-

1: 실리콘(Si) 기판1: Silicon (Si) Substrate

2: 폴리머(Polymer) 물질2: polymer material

3: 주기적인 모양을 가진 금속전극3: metal electrode with periodic shape

4: 리튬나오베이트(LiNbO3) 웨이퍼(wafer)4: Lithium Naobate (LiNbO 3 ) Wafer

5: 평면 금속전극5: planar metal electrode

6: 주기적인 모양을 가진 금속전극6: metal electrode with periodic shape

7: 리튬나오베이트(LiNbO3) 웨이퍼(wafer)7: Lithium Naobate (LiNbO 3 ) Wafer

8: 평면 금속전극8: planar metal electrode

본 발명의 접촉전극의 구조는 도 1 과 같으며 실리콘(Si) 기판(1)상에 폴리머(Polymer)물질(2)을 형성하고 폴리머(Polymer)물질(2) 상에 도 2 와 같은 주기적 모양을 갖는 금속전극(3)을 형성함으로써 구성된다. 상기의 접촉전극을 이용하여 주기적으로 분극반전된 리튬나오베이트(LiNbO3) 웨이퍼(wafer)를 제작하기 위하여 도 3 에서와 같이 주기적인 모양을 가진 금속전극(3)과 리튬나오베이트(LiNbO3) 웨이퍼(wafer)(4)를 접촉시켜야 하는데 이때 접촉을 용이하게 하기 위하여 탄성을 가진 폴리머(Polymer)물질(2) 상에 주기적인 모양을 가진 금속전극(3)을 형성시켰고 상기 폴리머(Polymer)물질(2)을 지지하기 위하여 실리콘(Si)기판(1)을 사용하였다.The structure of the contact electrode of the present invention is shown in FIG. 1 and forms a polymer material 2 on a silicon (Si) substrate 1 and a periodic shape as shown in FIG. 2 on the polymer material 2. It is comprised by forming the metal electrode 3 which has a. In order to fabricate a polarized and inverted lithium nanobait (LiNbO 3 ) wafer using the contact electrode, the metal electrode 3 and the lithium nanobait (LiNbO 3 ) having a periodic shape as shown in FIG. 3 . The wafer 4 should be brought into contact with a metal electrode 3 having a periodic shape on the elastic polymer material 2 to facilitate contact. In order to support (2), a silicon (Si) substrate 1 was used.

기존의 주기적으로 분극반전된 리튬나오베이트(LiNbO3) 웨이퍼(wafer)의 제작시 고압의 전계를 인가하기 위하여 사용되는 리튬나오베이트(LiNbO3) 웨이퍼(wafer)(7)상에 직접 형성된 주기적인 모양을 가진 금속전극(6) 대신 본 발명의 접촉전극(도1)을 도 3 과 같이 리튬나오베이트(LiNbO3) 웨이퍼(wafer)(4)상에 접촉시켜 고압의 전계를 인가함으로써 주기적으로 분극반전된 리튬나오베이트(LiNbO3) 웨이퍼(wafer)를 제작할 수 있다. 본 발명의 접촉전극(도1)을 이용하여 주기적으로 분극반전된 리튬나오베이트(LiNbO3) 웨이퍼(wafer)를 제작하면 기존의 방법에서 리튬나오베이트(LiNbO3) 웨이퍼(wafer)(7)상에 주기적인 모양을 가진 금속전극(6)을 형성하는 과정과 제작 후 금속전극(6)을 제거하는 과정이 없어짐으로 인해서 제작공정을 단순화 시킬 수 있으며 접촉전극을 반복적으로 사용할 수 있음으로 인해서 제작비용을 줄일 수 있는 장점이 있다.Out the polarization reversal in conventional cyclic lithium niobate (LiNbO 3), lithium-out which is used to apply an electric field of the produced when the high pressure of the wafer (wafer), the bait (LiNbO 3), the wafer (wafer) periodic directly formed on the 7 Instead of the metal electrode 6 having a shape, the contact electrode of the present invention (Fig. 1) is contacted on a LiNbO 3 wafer (4) as shown in Fig. 3, and the polarization is periodically performed by applying a high-voltage electric field. An inverted lithium naobate (LiNbO 3 ) wafer may be fabricated. When out a lithium periodic polarization reversal by using a contact electrode (Fig. 1) of the present invention produce a bait (LiNbO 3), the wafer (wafer) out of lithium in the conventional method the bait (LiNbO 3), the wafer (wafer) (7) the The manufacturing process can be simplified by eliminating the process of forming the metal electrode 6 having a periodic shape in and removing the metal electrode 6 after fabrication, and the manufacturing cost due to the repeated use of the contact electrode. There is an advantage to reduce.

Claims (1)

주기적으로 분극반전된 리튬나오베이트(LiNbO3) 웨이퍼(wafer)의 제작시 고압의 전계를 인가하기 위하여 사용하는 실리콘(Si)기판(1)상에 폴리머(Polymer)물질(2)이 형성되고 폴리머(Polymer)물질(2) 상에 도 2 와 같은 주기적 모양을 갖는 금속전극(3)으로 구성된 접촉전극.A polymer material (2) is formed on a silicon (Si) substrate (1), which is used to apply a high-voltage electric field during the fabrication of a periodically polarized and inverted LiNbO 3 wafer. (Polymer) A contact electrode composed of a metal electrode 3 having a periodic shape as shown in FIG. 2 on a material 2.
KR1020030018385A 2003-03-25 2003-03-25 Contact electrode for fabrication of periodically poled lithium niobate wafer KR20030048387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030018385A KR20030048387A (en) 2003-03-25 2003-03-25 Contact electrode for fabrication of periodically poled lithium niobate wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030018385A KR20030048387A (en) 2003-03-25 2003-03-25 Contact electrode for fabrication of periodically poled lithium niobate wafer

Publications (1)

Publication Number Publication Date
KR20030048387A true KR20030048387A (en) 2003-06-19

Family

ID=29578982

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030018385A KR20030048387A (en) 2003-03-25 2003-03-25 Contact electrode for fabrication of periodically poled lithium niobate wafer

Country Status (1)

Country Link
KR (1) KR20030048387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145714B2 (en) 2004-07-26 2006-12-05 Advr, Inc. Segmented electrodes for poling of ferroelectric crystal materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145714B2 (en) 2004-07-26 2006-12-05 Advr, Inc. Segmented electrodes for poling of ferroelectric crystal materials

Similar Documents

Publication Publication Date Title
EP0532969B1 (en) Process for fabricating an optical device for generating a second harmonic optical beam
US8064129B2 (en) Process for poling a ferroelectric material doped with a metal
JP5300664B2 (en) Method for manufacturing polarization reversal part
US20040207903A1 (en) Electric field poling of ferroelectric materials
JP2010156787A (en) Method for manufacturing optical functional element
KR20030048387A (en) Contact electrode for fabrication of periodically poled lithium niobate wafer
JP4639963B2 (en) Manufacturing method of optical wavelength conversion element
JP3838910B2 (en) Ferroelectric polarization inversion method and optical wavelength conversion device fabrication method
JPH10246900A (en) Production of microstructure of ferroelectric single crystal substrate
KR20030048386A (en) Fabrication method of periodically poled lithium niobate wafer using contact electrode and liquid electrode
CN113820901A (en) On-chip integrated frequency doubling device and preparation method thereof
JP3318770B2 (en) Manufacturing method of optical waveguide type wavelength converter
JP4646150B2 (en) Method for manufacturing periodically poled structure
US6631024B2 (en) Method for the fabrication of patterned poled dielectric structures and devices
JP2002372731A (en) Element for waveguide conversion and element for optical operation
JP4514146B2 (en) Method for manufacturing periodically poled optical waveguide device
JP4854187B2 (en) Method for manufacturing polarization reversal part
US7394588B2 (en) Wavelength converter structure and method for preparing the same
JP2001330866A (en) Method for manufacturing optical wavelength conversion element
KR100401126B1 (en) All-Optical Wavelength Converter and Converting Method
WO2004027512A1 (en) Wavelength conversion element
JP2660217B2 (en) Manufacturing method of wavelength conversion element
GB2368402A (en) Stabilising polar and ferroelectric devices
JP2002214655A (en) Polarization inverting method for ferroelectric and manufacturing method for light-wavelength converting element
JP6019618B2 (en) Method for forming periodic domain-inverted structure and method for forming wavelength conversion element

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application