KR20030042882A - Tread rubber composition for pneumatic tire - Google Patents

Tread rubber composition for pneumatic tire Download PDF

Info

Publication number
KR20030042882A
KR20030042882A KR1020010073695A KR20010073695A KR20030042882A KR 20030042882 A KR20030042882 A KR 20030042882A KR 1020010073695 A KR1020010073695 A KR 1020010073695A KR 20010073695 A KR20010073695 A KR 20010073695A KR 20030042882 A KR20030042882 A KR 20030042882A
Authority
KR
South Korea
Prior art keywords
weight
parts
resistance
rubber
rubber composition
Prior art date
Application number
KR1020010073695A
Other languages
Korean (ko)
Inventor
김재영
Original Assignee
한국타이어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국타이어 주식회사 filed Critical 한국타이어 주식회사
Priority to KR1020010073695A priority Critical patent/KR20030042882A/en
Publication of KR20030042882A publication Critical patent/KR20030042882A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: A rubber composition of pneumatic tire treads for heavy load, in particular, vehicles used in construction which has improved wear resistance, chipping/cutting resistance and heat generating resistance is provided. CONSTITUTION: The rubber composition for heavy load pneumatic tire treads comprises 100 parts by weight of a base rubber, 40 to 60 parts by weight of carbon black having a nitrogen adsorption specific surface of 125 to 135 m2/g and a tint coloring value of 120 to 130%, 5 to 10 parts by weight of silica, total 3.0-4.0 parts by weight of a vulcanization accelerator and sulfur wherein the weight ratio of the vulcanization accelerator to sulfur is between 0.4 and 0.7, and other conventional additives.

Description

중하중용 공기입 타이어의 트레드 고무 조성물{Tread rubber composition for pneumatic tire}Tread rubber composition for pneumatic tires for heavy loads

본 발명은 중하중용 공기입 타이어의 트레드 고무 조성물에 관한 것으로서, 더욱 상세하게는 내마모성과 치핑/커팅 저항성을 향상시키고 내발열성을 개선하여 건설 차량에 매우 적합한 중하중용 공기입 타이의 트레드 고무 조성물에 관한 것이다.The present invention relates to a tread rubber composition of a heavy load pneumatic tire, and more particularly, to a tread rubber composition of a heavy load pneumatic tie which is very suitable for a construction vehicle by improving wear resistance and chipping / cutting resistance and improving heat resistance. will be.

덤프 트럭, 로더, 그레이더와 같은 건설 차량에 사용되는 중하중용 공기입 타이어는 고하중 및 비포장로를 주로 주행함으로써 사용조건이 가혹하기 때문에 내마모성, 치핑(chipping) 및 커팅(cutting) 저항성과 함께 내발열성이 높은 수준에서 균형을 이루는 것이 매우 중요하다.Heavy-duty pneumatic tires used in construction vehicles such as dump trucks, loaders, and graders are heat-resistant with abrasion resistance, chipping and cutting resistance due to the severe use conditions by driving mainly heavy loads and unpaved roads. It is very important to be balanced at this high level.

이러한 용도에 사용되는 타이어의 트레드 고무의 내마모성 및 치핑/커팅 저항성을 개량하기 위한 방법으로서 보강제인 카본블랙을 입자경이 작은 것을 사용하거나 카본 응집체의 구조 특성 차이에 착안해 구조가 큰 것을 사용하는 것이 일반적인 방법이며, 이를 통해 카본블랙과 폴리머 사이의 상호작용을 강화하고 한편 고무 보강성을 향상시키기 위해 카본블랙의 배합량을 증량하는 방법들이해지고 있다.As a method for improving the abrasion resistance and chipping / cutting resistance of tread rubber of tires used in these applications, it is common to use a carbon black as a reinforcing agent having a small particle size or a large structure with attention to the structural characteristics of the carbon aggregates. a method, a method which increased the amount of the carbon black to become weight for this enhanced interaction between the carbon black and the polymer and by the other hand to enhance the rubber reinforcement.

그러나, 통상 입자경이 작은 카본블랙을 사용함에 있어 고무와의 보강성은 증가하여 내마모성 향상을 이룰 수 있지만 입자경이 작을수록 내발열성을 저하시키는 경향이 있음은 일반적으로 알려져 있기 때문에 가혹한 조건에서 사용되는 건설차량의 중하중용 타이어의 경우 발열에 의한 세퍼레이션(separation) 사고는 제품의 사용중 성능에 중요한 문제를 유발하게 된다. 또한, 카본블랙의 배합량을 증가시키는 경우에도 내발열성 저하는 피할 수 없으며 카본블랙과 폴리머의 결합상의 증가로 인한 미가황 점도 또한 상승하기 때문에 가공성 저하를 수반하게 된다.However, in general, the use of carbon black having a small particle diameter increases the reinforcement with rubber to improve wear resistance. However, it is generally known that the smaller the particle diameter, the lower the heat resistance. In the case of heavy duty tires, separation accidents caused by heat generation cause significant problems in performance of the product. In addition, even when the blending amount of carbon black is increased, the heat resistance resistance is unavoidable, and the unvulcanized viscosity due to the increase in the bonding phase of the carbon black and the polymer also increases, which leads to a decrease in processability.

한편, 미립상 실리카를 적당히 배합한 고무 조성물을 상기의 타이어용 트레드 고무에 이용한 경우, 치핑/커팅 저항성을 향상시킴과 동시에 어느 정도의 내발열성을 개선하는 것으로 알려져 있는 바, 일로 일본특개평 11-209515호에는 고무 100중량부에 대해 질소흡착 비표면적이 200∼220㎡/g인 실리카를 3∼20중량부 배합한 고무 조성물을 트레드 고무에 사용한 타이어를 개시하고 있다. 그러나, 이같은 실리카를 사용하는 기술도 내발열성의 개선이 충분하다고 할 수 없다.On the other hand, particulate, chipping / cutting improve resistance Sikkim and at the same time a degree of Japanese Patent Laid-Open with a bar, one example which is known to improve the naebal recessive if the rubber composition suitably blended with silica using a tread rubber for a tire 11-209515 discloses a tire in which a rubber composition comprising 3 to 20 parts by weight of silica having a nitrogen adsorption specific surface area of 200 to 220 m 2 / g is used for tread rubber. However, even the technique using such a silica cannot be said to have sufficient heat resistance improvement.

한편, 상기의 목적으로 카본블랙에 대한 실리카의 배합비를 늘리는 것이 통상 생각되지만, 실리카의 배합량이 증가할수록 실리카의 분산성 저하로 인해 내마모성과 내발열성이 저하되는 것으로 알려져 있고 타이어 제조시 가공성도 저하된다.On the other hand, it is generally thought to increase the blending ratio of silica to carbon black for the above purpose, but as the blending amount of silica increases, it is known that the wear resistance and the heat resistance are lowered due to the dispersibility of the silica, and the workability during tire production is also reduced. .

일본특개평 8-239515호에서는 마모와 내발열성의 저하없이 치핑/커팅 저항성을 개선하기 위해 열변형 온도가 70∼180℃인 ABS(아크릴로니트릴 부타디엔 스티렌)수지를 일정량 혼합한 고무 조성이 개시되어 있는데, 이는 일정기간 사용후에 취성이 약한 ABS 수지가 경화되기 때문에 커팅 저항성이 급격히 떨어지는 단점이 발생하게 된다.Japanese Patent Application Laid-Open No. 8-239515 discloses a rubber composition in which a certain amount of ABS (acrylonitrile butadiene styrene) resin having a heat deformation temperature of 70 to 180 ° C. is mixed to improve chipping / cutting resistance without deterioration of wear and heat resistance. This is because, after a certain period of use, the weak brittle ABS resin is cured, resulting in a sharp drop in cutting resistance.

또한, 일본특개평 13-253974호에서는 분자량분포(중량평균분자량과 수평균분자량과의 비)가 2.0 이상인 특정한 부타디엔 고무를 천연고무와 일정 비율로 사용한 고무 기재에 입자경이 작은 특정한 카본블랙을 혼합하고, 이와 아울러 가황촉진제와 유황의 중량비를 0.35∼1.3, 그리고 가황촉진제와 유황의 합계 함량을 2.5∼3.0중량부로 한 고무 조성물을 개시하고 있는데, 이는 부타디엔 고무의 사용으로 인해 내마모성은 향상될지라도, 커팅 저항성이 저하되는 문제가 발생한다. 한편, 가황촉진제와 유황의 중량비가 0.8∼1.3 부근일 경우에는 보통 세미-EV 시스템으로 구분하는데, 이 가류 시스템의 경우는 가교 구조적 차이에 의해 열적으로 안정된 모노설파이드 혹은 다이설파이드 가교구조를 많이 가지게 됨으로써 열노화에는 유리하게 되나, 모듈러스 증가 및 신장율이 감소되므로 치핑 저항성에는 불리하다. 또한, 가황촉진제와 유황의 총함량이 적어 가교밀도가 낮을 수 있는데, 일반적으로 가교밀도가 높을수록 히스테리시스가 감소하여 고무의 발열온도가 감소하는 경향을 나타내는 것으로 알려져 있으므로 상기 특허는 가류제 함량이 적으므로 인해 가교밀도가 적어 내발열성이 불리할 것으로 추정된다.In Japanese Patent Laid-Open No. 13-253974, a specific carbon black having a small particle size is mixed with a rubber base material using a specific butadiene rubber having a molecular weight distribution (ratio between the weight average molecular weight and the number average molecular weight) of 2.0 or more in natural rubber and a predetermined ratio. In addition, the present invention discloses a rubber composition in which the weight ratio of the vulcanization accelerator and sulfur is 0.35 to 1.3, and the total content of the vulcanization accelerator and sulfur is 2.5 to 3.0 parts by weight, although the wear resistance is improved due to the use of butadiene rubber. The problem that resistance falls is caused. On the other hand, when the weight ratio of the vulcanization accelerator and sulfur is around 0.8 to 1.3, it is usually classified as a semi-EV system. In the case of this vulcanization system, since the crosslinking structure has a large amount of thermally stable monosulfide or disulfide crosslinking structure, It is advantageous for thermal aging, but is disadvantageous for chipping resistance as modulus increase and elongation are reduced. In addition, since the total content of the vulcanization accelerator and sulfur may be low, the crosslinking density may be low. Generally, the higher the crosslinking density, the lower the hysteresis and the lower the exothermic temperature of the rubber. Therefore, due to the low crosslinking density, it is estimated that heat generation resistance is disadvantageous.

최근 건설 차량용 타이어는 더욱 더 대형화 추세에 있고 따라서 발열성능이 특히 중요해지고 있다.In recent years, tires for construction vehicles are becoming larger and larger, and thus heat generation performance is particularly important.

이에, 본 발명자는 상기와 같은 상황하에서 내마모성과 치핑/커팅 저항성을 향상시키기 위해 입자경이 작은 특정 카본블랙을 일정량 배합하고, 이로인해 야기되는 내발열성 저하를 보완하기 위해 가류제를 조정하는데 여기서 가교밀도의 증가를 통한 내발열성 향상을 목적으로 가류제 함량을 증량하고 아울러 신장율이 저하되어 치핑 저항성이 불리해지지 않도록 가황촉진제와 유황의 중량비를 일정비율로 사용하며, 실리카의 함량을 감소시켜 기존의 트레드 조성과 대비하여 동등 이상의 내발열성을 개선하도록 한 결과, 건설 차량에 매우 적합한 중하중용 공기입 타이어 트레드 고무로 적합함을 알게되어 본 발명을 완성하게 되었다.Accordingly, the present inventors blend a certain amount of specific carbon black with a small particle diameter in order to improve wear resistance and chipping / cutting resistance under the above circumstances, and adjust the vulcanizing agent to compensate for the deterioration of heat generation caused by the crosslinking density. To increase the heat resistance by increasing the vulcanizing agent content and increase the vulcanizing agent to reduce the elongation rate, so that the chipping resistance is not disadvantageous, the weight ratio of the vulcanization accelerator and sulfur is used at a constant ratio, and the content of silica is reduced to reduce the existing tread composition. As a result of improving heat resistance equal to or higher than in comparison, it has been found that the present invention is suitable as a heavy-load pneumatic tire tread rubber which is very suitable for construction vehicles.

따라서, 본 발명의 목적은 내마모성과 치핑/커팅 저항성이 향상되며 내발열성이 개선된 중하중용 공기입 타이어의 트레드 고무 조성물을 제공하는 데 있다.Accordingly, it is an object of the present invention to provide a tread rubber composition of a pneumatic tire for heavy loads having improved wear resistance and chipping / cutting resistance and improved heat resistance.

상기와 같은 목적을 달성하기 위한 본 발명의 공기입 타이어의 트레드 고무 조성물은 원료고무 100중량부에 대해 질소흡착 비표면적이 125∼135㎡/g이고, 틴트 착색값이 120∼130%인 카본블랙 40∼60중량부, 실리카 5∼10중량부, 가황촉진제와 유황을 합계로 3.0 내지 4.0중량부(단, 가황촉진제와 유황의 중량비는 0.4∼0.7) 및 통상의 첨가제를 포함하는 것임을 그 특징으로 한다.The tread rubber composition of the pneumatic tire of the present invention for achieving the above object is carbon black having a nitrogen adsorption specific surface area of 125 to 135 m 2 / g and tint color value of 120 to 130% based on 100 parts by weight of the raw rubber. 40 to 60 parts by weight, 5 to 10 parts by weight of silica, 3.0 to 4.0 parts by weight of the vulcanization accelerator and sulfur (wherein the weight ratio of vulcanization accelerator and sulfur is 0.4 to 0.7) and the usual additives do.

이와같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명의 타이어 트레드 고무 조성물에서는 내마모성과 치핑/커팅 저항성향상을 목적으로 입자경이 작은 카본블랙을 적정한 함량으로 혼합하는 데, 이때 사용되는 카본블랙으로는 질소흡착 비표면적이 125∼135㎡/g이고 틴트 착색값이 120∼130%인 것이 바람직한 바, 이는 ASTM D4820, 3285에 의거 측정한 값들이다.In the tire tread rubber composition of the present invention, carbon black having a small particle size is mixed in an appropriate amount for the purpose of improving abrasion resistance and chipping / cutting resistance. The carbon black used herein has a nitrogen adsorption specific surface area of 125 to 135 m 2 / g. It is preferable that the tint coloring value is 120 to 130%, which is measured according to ASTM D4820, 3285.

이같은 입자경이 작은 카본블랙을 원료고무 100중량부에 대하여 40∼60중량부로 함유하는 바, 만일 그 함량이 40중량부 미만일 경우 내마모성 및 치핑/커팅 저항성 향상 효과를 기대하기 힘들고, 60중량부 초과면 내발열성 저하가 크기 때문에 가류제 조정에 의한 보완 효과를 기대하기 어렵고 가공성 저하도 수반하게 된다.The carbon black having such a small particle diameter is contained in an amount of 40 to 60 parts by weight based on 100 parts by weight of the raw material rubber. If the content is less than 40 parts by weight, it is difficult to expect an improvement in wear resistance and chipping / cutting resistance, and more than 60 parts by weight. Since the heat resistance fall is large, it is difficult to expect a complementary effect by adjusting the vulcanizing agent, and the workability is accompanied by a fall.

그런데, 이와같이 입자경이 작은 카본블랙을 사용할 경우 내발열성이 저하될 수 있는데, 이를 보완하기 위해 가류제를 조정한다.However, in the case of using carbon black having a small particle size as described above, heat resistance may be lowered, and a vulcanizing agent is adjusted to compensate for this.

구체적으로는, 가교밀도의 증가를 통한 내발열성 향상을 목적으로 가류제 함량을 증량하고 아울러 신장율이 저하되어 치핑 저항성이 불리하지 않도록 가황촉진제와 유황의중량비를 일정 비율로 사용토록 한다.Specifically, the weight ratio of the vulcanization accelerator and the sulfur is used in a certain ratio so as to increase the content of the vulcanizing agent for the purpose of improving the heat generation resistance through the increase of the crosslinking density, and the elongation rate is lowered so that the chipping resistance is not disadvantageous.

보다 구체적으로, 가황촉진제와 유황을 총량으로 원료고무 100중량부에 대하여 3.0∼4.0중량부 되도록 사용하고, 가황촉진제와 유황의 중량비를 0.4∼0.7 범위내에서 사용한다.More specifically, the vulcanization accelerator and sulfur are used in total amounts of 3.0 to 4.0 parts by weight based on 100 parts by weight of the raw material rubber, and the weight ratio of the vulcanization accelerator and sulfur is used within the range of 0.4 to 0.7.

만일, 가황촉진제와 유황의 총량이 원료고무 100중량부에 대하여 3.0중량부 미만에서는 가교밀도 증가로 인한 내발열성 향상효과를 기대하기 힘들고, 4.0중량부 초과면 스코치 시간이 짧아져 가공성 저하를 수반하게 되므로 바람직하지 않다.If the total amount of the vulcanization accelerator and sulfur is less than 3.0 parts by weight based on 100 parts by weight of raw material rubber, it is difficult to expect the effect of improving heat resistance due to the increase in the crosslinking density, and when it exceeds 4.0 parts by weight, the scorch time is shortened, resulting in deterioration of processability. This is undesirable.

또한, 가황 촉진제와 유황의 중량비가 0.4 미만일 경우 가류효율이 떨어져서가류밀도가 감소하게 되므로 바람직하지 않고, 0.7을 초과할 경우 모듈러스 증가와 신장율의 저하로 인해 치핑 저항성이 감소하게 된다.In addition, when the weight ratio of the vulcanization accelerator and sulfur is less than 0.4, since the vulcanization density decreases because the vulcanization efficiency decreases, the chipping resistance decreases due to the increase in modulus and the elongation rate.

가황 촉진제로는 설펜아미드계 가황촉진제인 N-사이클로헥실 벤조티아졸-2-설펜아미드나 N-t-부틸 벤조티아졸 설펜아미드를 사용할 수 있으나, 이에 한정되는 것은 아니다.The vulcanization accelerator may be N-cyclohexyl benzothiazole-2-sulfenamide or N-t-butyl benzothiazole sulfenamide, which is a sulfenamide-based vulcanization accelerator, but is not limited thereto.

한편, 입자경이 작은 카본블랙을 사용함으로 인해 보강성이 증가되므로 실리카의 함량을 일반적인 고무 조성에 비하여 감량하여도 되며, 이로 인해 내발열성의 저하를 얻을 수 있게 된다. 바람직한 실리카의 함량은 원료고무 100중량부에 대하여 5∼10중량부이다. 이때, 실리카는 질소흡착 비표면적이 160∼180㎡/g인 것이 바람직하다.On the other hand, since the reinforcement is increased by using carbon black having a small particle size, the content of silica may be reduced as compared with a general rubber composition, thereby reducing the heat resistance. Preferable content of silica is 5-10 weight part with respect to 100 weight part of raw material rubbers. At this time, the silica is preferably a nitrogen adsorption specific surface area of 160 to 180 m 2 / g.

본 발명의 타이어 트레드 고무 조성물에 있어서 원료고무로는 통상의 타이어 트레드 고무 조성에서와 같이 천연고무를 단독으로 사용할 수도 있으며, 커팅 저항성이 유리한 스티렌-부타디엔 고무를 천연고무와 함께 혼합 사용할 수도 있다. 혼합시에 스티렌-부타디엔 고무를 최대 30중량부까지 혼합할 수 있다. 만일, 스티렌-부타디엔 고무의 혼합량이 상기 범위보다 많을 경우에는 합성고무 증가로 인한 가류시간이 길어지게 되므로 제품의 가류시간을 연장해야하고 또한 크랙 성장 억제에 불리한 문제점이 있을 수 있다.In the tire tread rubber composition of the present invention, as the raw material rubber, natural rubber may be used alone as in a conventional tire tread rubber composition, and styrene-butadiene rubber having favorable cutting resistance may be mixed with natural rubber. At the time of mixing, the styrene-butadiene rubber may be mixed up to 30 parts by weight. If the mixed amount of styrene-butadiene rubber is greater than the above range, the vulcanization time due to the increase of the synthetic rubber becomes longer, so the vulcanization time of the product must be extended and there may be a disadvantage in inhibiting crack growth.

그밖에 본 발명에서는 통상의 타이어 트레드 고무 조성에서 첨가되어온 가류활성제, 노화방지제 등의 첨가제를 포함함은 물론이다.In addition, the present invention, of course, includes additives such as vulcanizing agents and anti-aging agents that have been added in the general tire tread rubber composition.

이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본 발명이실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the Examples.

실시예 1∼3 및 비교예 1Examples 1-3 and Comparative Example 1

다음 표 1에 나타낸 바와 같은 첨가제를 사용하여 표 1의 조성비로 통상적인 과정에 의하여 고무 시편을 준비하였다.Next, rubber specimens were prepared by conventional procedures using the additives shown in Table 1 at the composition ratios of Table 1.

고무 시편을 가지고, 내마모성, 치핑/커팅 저항성을 측정하여 그 결과를 다음 표 1에 나타내었다.With rubber specimens, wear resistance and chipping / cutting resistance were measured and the results are shown in Table 1 below.

여기서, 내마모성의 측정은 람본 마모시험기를 이용하여 평가하였는데, 이는 시편을 일정한 하중과 속도로 연마석에서 회전시킨 다음 시험전후의 중량차이를 측정하여 내마모성을 상대적으로 평가하는 방법이다. 각 시편의 손실 중량을 비중으로 나누어 얻은 부피변화를 지수로 표기하는데, 이 지수값이 높을수록 고무의 내마모성이 좋음을 의미한다.Here, the measurement of wear resistance was evaluated by using a rambon abrasion tester, which is a method of relatively evaluating the wear resistance by measuring the weight difference before and after the test by rotating the specimen in the abrasive stone at a constant load and speed. The volume change obtained by dividing the loss weight of each specimen by the specific gravity is expressed as an index, and the higher this index value, the better the rubber wear resistance.

한편, 치핑/커팅 저항성을 측정하는 방법으로서 길로틴 커팅(Guillotine cut) 시험을 실시하였는데, 이는 일정한 하중을 가지는 침을 특정 높이에서 자유 낙하시켜 고무에 침투되는 깊이를 측정하는 방법인데, 침투 깊이가 얕을수록 고무가 외부의 날카로운 돌이나 물체에 의한 커팅이나 치핑에 대한 저항성이 좋음을 의미하고, 지수값이 높을수록 침투깊이가 얕은, 즉 치핑/커팅 저항성이 우수함을 의미한다. 또한, 고무의 경도가 높을수록 이러한 저항성이 좋아지며, KS M6518에 의거 경도를 측정한다.On the other hand, as a method of measuring chipping / cutting resistance, a guillotine cut test was carried out. This method is a method of measuring the depth of penetration into rubber by freely dropping a needle having a constant load at a specific height. The higher the value, the better the rubber's resistance to cutting or chipping by external sharp stones or objects, and the higher the index value, the shallower the depth of penetration, that is, the better the chipping / cutting resistance. In addition, the higher the hardness of the rubber, the better the resistance, and the hardness is measured according to KS M6518.

그리고, 고무의 내발열성 평가방법은 다음과 같다.The heat resistance evaluation method of rubber is as follows.

통상은 고무를 일정 하중과 변형으로 운동시킨 후에 온도변화를 측정하여 내발열성을 비교하나, 온도를 직접 측정하는 경우 시험오차가 발생할 경우가 크고 고무 내부의 온도를 측정하기 보다는 표면의 온도만을 측정하는 시험기가 대부분이기 때문에 정확한 내발열성을 표기할 수 없다. 발열 현상은 고무의 점탄성 특성에 기인한 히스테리시스(hysteresis)와 상관성이 매우 높기 때문에 본 발명에서는 실제 타이어의 주행중에서 발생되는 온도에서 tanδ값을 측정하여 내발열성을 상대 비교하였다. tanδ값이 낮을수록 고무의 히스테리시스가 작기 때문에 내발열성이 우수함을 의미하고, 지수값이 높게 나타난다. tanδ 측정조건은 80℃에서 0.5 strain, 10Hz이다.Normally, the rubber is subjected to a certain load and deformation, and then the temperature change is measured to compare the heat resistance.However, when the temperature is directly measured, a test error often occurs, and only the surface temperature is measured, rather than the temperature inside the rubber. Since most testers are not able to express accurate heat resistance. Since the exothermic phenomenon is highly correlated with hysteresis due to the viscoelastic properties of rubber, in the present invention, the tan δ value is measured and compared with the heat generation resistance at the temperature generated during the actual tire running. The lower the tan δ value, the lower the hysteresis of the rubber, which means that the heat generation resistance is excellent, and the higher the index value is. The measurement condition of tan δ is 0.5 strain at 80 ° C. and 10 Hz.

비교예 1Comparative Example 1 실 시 예Example 1One 22 33 천연고무Natural rubber 8080 8080 8080 100100 합성고무Synthetic rubber 2020 2020 2020 -- 카본블랙 ACarbon black A 4848 -- -- -- 카본블랙 BCarbon black B -- 4848 5050 4848 실리카Silica 1515 1010 55 55 공정유Process oil 44 44 44 44 산화아연Zinc oxide 33 44 44 44 스테아린산Stearic acid 33 33 33 33 노화방지제 AAntioxidant A 22 22 22 22 노화방지제 BAntioxidant B 1One 1One 1One 1One 유황brimstone 1.81.8 2.22.2 2.42.4 2.22.2 NSNS 0.60.6 1.01.0 1.41.4 1.01.0 NS/유황 중량비NS / sulfur weight ratio 0.330.33 0.450.45 0.580.58 0.450.45 NS+유황 총 함량NS + Sulfur Total Content 2.42.4 3.23.2 3.83.8 3.23.2 스코치 시간Scotch time 2828 2525 2222 2323 경도(쇼어 A)Hardness (Shore A) 6363 6767 6969 6666 신장율(%)Elongation (%) 530530 550550 500500 530530 람본 마모지수Rambon Wear Index 100100 107107 110110 108108 내커팅 성능 지수Cutting performance index 100100 112112 115115 110110 내발열성 지수Fever Resistance Index 100100 103103 105105 102102 (주)합성고무: 스티렌-부타디엔 공중합체카본블랙 A: 질소흡착 비표면적이 110∼120㎡/g, 틴트 착색값이 110∼120%카본블랙 B: 질소흡착 비표면적이 125∼135㎡/g, 틴트 착색값이 120∼130%실리카: 질소흡착 비표면적이 160∼180㎡/g인 실리카노화방지제 A: N-페닐-N'-(1,3-디메틸부틸)-p-페닐렌디아민노화방지제 B: 폴리-(2,2,4-트리메틸-1,2-디하이드로퀴놀린)NS:N-t-부틸벤조티아졸-2-설펜아미드Synthetic rubber: Styrene-butadiene copolymer carbon black A: Nitrogen adsorption specific surface area of 110 to 120 m 2 / g, tint coloring value of 110 to 120% carbon black B: Nitrogen adsorption specific surface area of 125 to 135 m 2 / g , Tint coloring value 120-130% Silica: Silica anti-aging agent A with nitrogen adsorption specific surface area of 160-180 m 2 / g A: N-phenyl-N '-(1,3-dimethylbutyl) -p-phenylenediamine aging Inhibitor B: Poly- (2,2,4-trimethyl-1,2-dihydroquinoline) NS: Nt-butylbenzothiazole-2-sulfenamide

상기 표 1의 결과로부터, 실시예 1의 경우 비교예 1에서 사용한 카본블랙 A에 비하여 상대적으로 입자경이 작은 카본블랙 B로 동량 대체하고 실리카를 감량하였으며 그 외 배합제는 비교예와 동일하게 하였고, 유황과 가황촉진제를 증량하였는 바, 비교예에 비하여 내마모성 및 내커팅 저항성이 증가하였음을 알 수 있고 또한 가류제 증량으로 인해 가교밀도 증가의 영향으로 입자경이 작은 카본블랙 변경으로 인한 내발열성 저하는 나타나지 않음을 알 수 있다.From the results of Table 1, in the case of Example 1 compared to the carbon black A used in Comparative Example 1 by the same amount of carbon black B having a smaller particle size and reduced the silica and other compounding agents were the same as the comparative example, The sulfur and vulcanization accelerators were increased, indicating that the abrasion resistance and the cutting resistance were increased compared to the comparative example. Also, the increase in the vulcanizing agent resulted in the decrease in the heat generation resistance due to the change of the carbon black having a small particle size due to the increase of the crosslinking density. It can be seen that.

실시예 2의 경우는 실시예 1에서 카본블랙 B를 증량함과 동시에 실리카의 함량을 감소시켰으며 가류제도 증량한 것으로서, 비교예에 비해 내마모성과 내커팅 저항성이 증가하고 내발열성은 다소 향상된 결과를 보였다.In the case of Example 2, the carbon black B was increased in Example 1 and the silica content was decreased, and the vulcanization agent was also increased. The abrasion resistance and the cutting resistance were increased and the heat generation resistance was slightly improved as compared with the comparative example. Seemed.

실시예 3의 경우는 실시예 1에서 합성고무 20중량부를 혼용하는 대신에 천연고무만을 사용한 경우인데 마찬가지로 내발열성의 저하없이 내마모성 및 내커팅 저항성이 향상된 결과를 보였다.In the case of Example 3, only natural rubber was used instead of 20 parts by weight of synthetic rubber in Example 1, but similarly, the wear resistance and the cut resistance were improved without degrading heat resistance.

이상에서 상세히 설명한 바와 같이, 본 발명에 따라 입자경이 작은 카본블랙을 일정량 배합하고 가류제 함량을 증량하고 가황촉진제와 유황의 중량비를 일정 비율로 사용하고, 실리카의 함량을 감소시킨 고무 조성물은 내마모성과 치핑/커팅 저항성이 향상되면서 내발열성이 개선되어 건설 차량에 매우 적합한 중하중용 공기입 타이어의 트레드 고무 조성물로서 유용하다.As described in detail above, according to the present invention, a rubber composition having a certain amount of carbon black having a small particle diameter is added, the vulcanizing agent is increased, the weight ratio of the vulcanization accelerator and the sulfur is used at a constant ratio, and the silica content is reduced. It is useful as a tread rubber composition of heavy duty pneumatic tires, which is well suited for construction vehicles due to improved chipping / cutting resistance and improved heat resistance.

Claims (4)

원료고무 100중량부에 대해 질소흡착 비표면적이 125∼135㎡/g이고, 틴트 착색값이 120∼130%인 카본블랙 40∼60중량부, 실리카 5∼10중량부, 가황촉진제와 유황을 합계로 3.0 내지 4.0중량부(단, 가황촉진제와 유황의 중량비는 0.4∼0.7) 및 통상의 첨가제를 포함하는 중하중용 공기입 타이어의 트레드 고무 조성물.Nitrogen adsorption specific surface area is 125-135 m2 / g with respect to 100 parts by weight of raw material rubber, 40-60 parts by weight of carbon black having a tint coloring value of 120-130%, silica 5-10 parts by weight, vulcanization accelerator and sulfur in total Tread rubber composition of a heavy-duty pneumatic tire containing 3.0 to 4.0 parts by weight (wherein the weight ratio of the vulcanization accelerator and sulfur is 0.4 to 0.7) and the usual additives. 제 1 항에 있어서, 실리카는 질소흡착 비표면적이 160∼180㎡/g인 것임을 특징으로 하는 중하중용 공기입 타이어의 트레드 고무 조성물.The tread rubber composition according to claim 1, wherein the silica has a nitrogen adsorption specific surface area of 160 to 180 m 2 / g. 제 1 항에 있어서, 원료고무는 천연고무 단독 또는 스티렌-부타디엔 고무 30중량부 이내와의 혼합 고무인 것임을 특징으로 하는 중하중용 공기입 타이어의 트레드 고무 조성물.The tread rubber composition of a heavy-duty pneumatic tire according to claim 1, wherein the raw material rubber is natural rubber alone or a mixed rubber with less than 30 parts by weight of styrene-butadiene rubber. 제 1 항에 있어서, 가황촉진제는 N-사이클로헥실벤조티아졸-2-설펜아미드 또는 N-t-부틸 벤조티아졸 설펜아미드인 것임을 특징으로 하는 중하중용 공기입 타이어의 트레드 고무 조성물.The tread rubber composition of a heavy-duty pneumatic tire according to claim 1, wherein the vulcanization accelerator is N-cyclohexylbenzothiazole-2-sulfenamide or N-t-butyl benzothiazole sulfenamide.
KR1020010073695A 2001-11-26 2001-11-26 Tread rubber composition for pneumatic tire KR20030042882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010073695A KR20030042882A (en) 2001-11-26 2001-11-26 Tread rubber composition for pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010073695A KR20030042882A (en) 2001-11-26 2001-11-26 Tread rubber composition for pneumatic tire

Publications (1)

Publication Number Publication Date
KR20030042882A true KR20030042882A (en) 2003-06-02

Family

ID=29571312

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010073695A KR20030042882A (en) 2001-11-26 2001-11-26 Tread rubber composition for pneumatic tire

Country Status (1)

Country Link
KR (1) KR20030042882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705791B1 (en) * 2005-09-15 2007-04-10 금호타이어 주식회사 Hard Apex Compound for Truck-Bus Tire
KR101939496B1 (en) * 2017-09-22 2019-01-16 금호타이어 주식회사 Rubber composite of heavy tyre

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598074A (en) * 1991-10-09 1993-04-20 Bridgestone Corp Heavy-duty tire
JPH1160810A (en) * 1997-08-20 1999-03-05 Bridgestone Corp Heavy duty pneumatic tire
JPH1160809A (en) * 1997-08-12 1999-03-05 Bridgestone Corp Rubber composition and heavy duty tire therewith
KR0177633B1 (en) * 1993-05-21 1999-05-15 윤양중 Tire tread rubber composition improving anti-cutting & anti-chipping
JP2001206984A (en) * 2000-01-26 2001-07-31 Bridgestone Corp Method for producing carbon black/silica-filled rubber composition and pneumatic tire for heavy duty

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598074A (en) * 1991-10-09 1993-04-20 Bridgestone Corp Heavy-duty tire
KR0177633B1 (en) * 1993-05-21 1999-05-15 윤양중 Tire tread rubber composition improving anti-cutting & anti-chipping
JPH1160809A (en) * 1997-08-12 1999-03-05 Bridgestone Corp Rubber composition and heavy duty tire therewith
JPH1160810A (en) * 1997-08-20 1999-03-05 Bridgestone Corp Heavy duty pneumatic tire
JP2001206984A (en) * 2000-01-26 2001-07-31 Bridgestone Corp Method for producing carbon black/silica-filled rubber composition and pneumatic tire for heavy duty

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705791B1 (en) * 2005-09-15 2007-04-10 금호타이어 주식회사 Hard Apex Compound for Truck-Bus Tire
KR101939496B1 (en) * 2017-09-22 2019-01-16 금호타이어 주식회사 Rubber composite of heavy tyre

Similar Documents

Publication Publication Date Title
CA2281735C (en) Tire with silica reinforced tread and/or sidewall components
JP6243499B2 (en) Side wall for tire
JP5647674B2 (en) Tire rubber composition containing acetylacetonate compound
CA2230624A1 (en) Tire with thread of rubber composition containing two different carbon blacks
US20100059160A1 (en) Carbon black reinforced rubber composition with aromatic guanidine antiozonant and tire having component thereof
CA2316011A1 (en) Tire with silica-reinforced tread comprised of trans 1,4-polybutadiene, solution sbr, polyisoprene and defined amount of carbon black and amorphous silica
JP5450090B2 (en) Rubber composition containing polymaleimide compound
JP2012503055A (en) Tire sidewall
KR100228208B1 (en) A rubber composition for tire tread
US7019084B2 (en) Tire with rubber composition
KR100964922B1 (en) Rubber composition for tire tread
KR100411739B1 (en) Tread rubber composition improved wet traction
KR100760824B1 (en) Rubber composition for truck/bus tire tread
KR20030042882A (en) Tread rubber composition for pneumatic tire
JPH1017719A (en) Rubber composition for tire tread
KR100449890B1 (en) Tire tread rubber composition for bus
KR100760825B1 (en) Rubber composition for truck/bus tire tread
JP2004307619A (en) Rubber composition and pneumatic tire using it as tread rubber
CN105754166B (en) A kind of rubber composition is with vulcanizing rubber and its preparation method and application
KR100570266B1 (en) Silica and Silane Coupling Reinforced Silica Tread Compound
KR102384417B1 (en) Rubber composition for tire tread and tire manufactured by using it
KR100635609B1 (en) Tire tread rubber composition for improving good extrusion
KR20050121354A (en) Rubber composition for tire of truck or bus
KR20000001556A (en) Rubber composition for tire thread improving abrasion-proof
KR100593021B1 (en) Tread rubber composition for ultra high performance tire

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application