KR20030042730A - A spiral wound membrane module - Google Patents
A spiral wound membrane module Download PDFInfo
- Publication number
- KR20030042730A KR20030042730A KR1020010073476A KR20010073476A KR20030042730A KR 20030042730 A KR20030042730 A KR 20030042730A KR 1020010073476 A KR1020010073476 A KR 1020010073476A KR 20010073476 A KR20010073476 A KR 20010073476A KR 20030042730 A KR20030042730 A KR 20030042730A
- Authority
- KR
- South Korea
- Prior art keywords
- membrane
- module
- water
- line
- supply water
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 79
- 239000008400 supply water Substances 0.000 claims abstract description 28
- 238000001471 micro-filtration Methods 0.000 claims abstract description 3
- 238000000108 ultra-filtration Methods 0.000 claims abstract description 3
- 238000005374 membrane filtration Methods 0.000 claims abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 112
- 238000000034 method Methods 0.000 claims description 11
- 238000000926 separation method Methods 0.000 claims description 8
- 238000001223 reverse osmosis Methods 0.000 claims description 6
- 230000005494 condensation Effects 0.000 claims 1
- 238000009833 condensation Methods 0.000 claims 1
- 238000011109 contamination Methods 0.000 abstract description 7
- 238000004140 cleaning Methods 0.000 abstract description 6
- 230000003204 osmotic effect Effects 0.000 abstract description 2
- 239000000706 filtrate Substances 0.000 abstract 4
- 238000001728 nano-filtration Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 239000012466 permeate Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000009285 membrane fouling Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/10—Spiral-wound membrane modules
- B01D63/12—Spiral-wound membrane modules comprising multiple spiral-wound assemblies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/027—Nanofiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/145—Ultrafiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/147—Microfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/003—Membrane bonding or sealing
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/442—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/08—Specific process operations in the concentrate stream
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/04—Specific sealing means
- B01D2313/041—Gaskets or O-rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/18—Specific valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/20—Specific housing
- B01D2313/201—Closed housing, vessels or containers
- B01D2313/2011—Pressure vessels
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
본 발명은 공급수의 간단한 유입흐름을 정,역방향으로 가변시켜 분리막의 오염을 저감시킴과 동시에 분리막의 세정효율을 향상시켜 그 사용수명을 연장하고, 모듈의 효율성을 향상시킬수 있는 나권형 분리막 모듈에 관한 것이다.The present invention reduces the contamination of the membrane by varying the simple inflow of the feed water in the forward and reverse directions, and at the same time to improve the cleaning efficiency of the membrane to extend the service life of the membrane, to improve the efficiency of the module spiral wound membrane module It is about.
일반적으로 반도체를 세척하는 세척수 및 보일러에 공급되는 공급수를 제조하기 위한 순수제조공정, 대체 수자원을 확보하기 위해 해수를 담수화시키는 공정, 생활하수나 산업폐수를 용수로 재이용하기 위한 고도의 하,폐수처리공정등 많은 수처리분야에서 분리막 모듈의 사용은 급증하고 있는 실정이다.Generally, pure water manufacturing process for manufacturing washing water to clean semiconductors and supply water to boilers, desalination of seawater to secure alternative water resources, and advanced sewage and wastewater treatment for reuse of domestic and industrial wastewater as water. In many water treatment fields such as processes, the use of membrane modules is increasing rapidly.
즉, 분리막 모듈은 실공정에서의 적용을 용이하게 하고 유효막 면적을 넓히기 위해 각각의 평막들을 함께 끼워 넣은 것으로 공급수의 압력을 수용하고, 공급수와 투과수의 흐름을 분리하는 역할을 한다. 상기 분리막 모듈은 통상 수역학적으로 공급수의 유속과 와류현상을 조절하여 농도분극을 최소화하도록 제작된다.That is, the membrane module serves to accommodate the pressure of the feed water and to separate the flow of the feed water and the permeate water by sandwiching the flat membranes together to facilitate the application in the actual process and to increase the effective membrane area. The membrane module is usually manufactured hydrodynamically to minimize the concentration polarization by controlling the flow rate and vortex of the feed water.
이러한 분리막모듈은 그 형태에 따라 크게 평판형 모듈, 나권형 모듈(spiral wound module), 관형 모듈, 중공사모듈등 다양한 형태의 모듈이 개발되어 상용화되고 있는데, 막면적이 넓고 시스템적용이 용이한 나권형 모듈이 가장 널리 사용되고 있다.These membrane modules have been developed and commercialized in various types of modules, such as flat panel module, spiral wound module, tubular module, hollow fiber module, etc., depending on their shape. The winding module is the most widely used.
도 1은 일반적인 나권형 분리막 모듈을 도시한 구성도로서, 도시한 바와같이, 나권형 분리막모듈(10)은 사각형 평막인 분리막(11)을 트리코트 직물과 같은 직포로 된 퍼미트캐리어(permeate carrier)(12)를 사이에 두고 막의 활성층 표면이 서로 반대가 되도록 샌드위치식으로 포개어 쌓은 다음, 샌드위치식으로 포개진 막들은 구멍이 형성된 원통형 집수관(13)에 나선형으로 감는다.1 is a configuration diagram showing a typical spiral wound membrane module, as shown, the spiral wound membrane module 10 is a permeate carrier (permeate carrier) made of a woven fabric such as a tricot fabric separator 11 is a rectangular flat membrane (12) sandwiched and sandwiched so that the active layer surfaces of the membranes are opposite to each other, the sandwiched membranes are spirally wound around the hole-shaped cylindrical water collecting tube (13).
이때, 상기 분리막(11)의 표면은 폴리프로필렌 재질의 매쉬(공급수 공간)로서 보호하는데, 이는 활성층의 보호뿐만 아니라 막표면에서의 와류를 증대시켜 물질전달을 촉진시키고, 농도분극을 감소시킨다.At this time, the surface of the separator 11 is protected by a polypropylene mesh (feed water space), which not only protects the active layer but also increases vortex at the surface of the membrane to promote mass transfer and reduce concentration polarization.
그리고, 상기 분리막으로 공급수를 투과시켜 처리수와 농축수로 분리하기 위해서, 막 - 투과수공간 - 막의 샌드위치 등 3면을 접착제로 봉하고, 나머지 한 면은 집수관(13)으로 개방하여 투과수만 빠져나가게 한다.Then, in order to permeate the feed water through the separation membrane to separate the treated water and the concentrated water, three surfaces such as a membrane-permeate-water-sandwich and the like are sealed with an adhesive, and the other side is opened with a collecting pipe 13 so that only the permeate is opened. To get out.
한편, 이러한 나권형 분리막 모듈(10)은 도 2와 3에 도시한 바와같이, 집수관(13)에 권선된 분리막(11)의 외주면이 유리섬유랩(14)으로 포장되고, 그 선단에는 공급수의 유입시 유입흐름에 의해서 외측으로 벌어지도록 몸체로부터 분할연장된 밀착날개(17)를 갖는 고무소재의 오링부재(15)가 장착되고, 후단에는 엔드플레이트(16)가 설치된다.On the other hand, such spiral wound membrane module 10, as shown in Figures 2 and 3, the outer circumferential surface of the membrane 11 wound on the collecting pipe 13 is wrapped with a glass fiber wrap 14, the supply end An o-ring member 15 made of rubber material having a contact blade 17 extended from the body so as to be opened outwardly by the inflow flow when water is introduced, and an end plate 16 is installed at the rear end.
그리고, 이러한 모듈(10)은 중공원통형의 압력용기(20)내에 넣어 사용하는데 통상 2개에서 6개까지의 모듈을 한 개의 압력용기(20)내에서 상기 모듈(10)의 집수관(13)사이를 연통결하는 튜브관(18)을 매개로 하여 직렬로 연결하여 사용하였다.In addition, the module 10 is used in the pressure vessel 20 of the hollow-cylindrical cylinder, and generally two to six modules are collected in the collection pipe 13 of the module 10 in one pressure vessel 20. It was used by connecting in series via a tube tube 18 to connect between.
즉, 나권형 분리막 모듈(10)에 있어서, 상기 오링부재(15)가 공급수가 유입도는 앞쪽에 위치되어 있기 때문에, 공급수가 상기 모듈(10)을 수용하고 있는 원통형 압력용기(20)내로 유입될 때, 공급수의 유입압력에 의해서 상기 오링부재(15)의 밀착날개(17)가 외측으로 들리면서 그 단부가 상기 압력용기(20)의 내주면과 밀착된다. 이에 따라, 유입되는 공급수가 압력용기(20)내에 정지한 상태로 있지 않고상기 모듈(10)내를 일정한 유속으로 흐르면서 공급수가 분리막을 통과하면서 순수한 물과 이물질을 분리처리하며,That is, in the spiral wound membrane module 10, since the O-ring member 15 is located in front of the feed water inflow, the feed water flows into the cylindrical pressure vessel 20 containing the module 10. When the contact blade 17 of the O-ring member 15 is lifted outward by the inflow pressure of the feed water, the end thereof is in close contact with the inner circumferential surface of the pressure vessel 20. Accordingly, the incoming feed water does not remain in the pressure vessel 20 but flows through the module 10 at a constant flow rate and separates pure water and foreign substances while passing the feed water through the separator.
이때 처리된 처리수는 상기 압력용기(20)내에서 모듈(10)의 집수관(13)사이를 연결하는 튜브관(18)으로 모이고, 이를 통하여 두 번째 모듈(10)로 유입되며, 상기 두 번째 모듈(10)내로 유입되는 공급수의 유입압력에 의해서 상기 모듈(10)의 선단에 장착된 오링부재(15)의 밀착날개(17)가 외측으로 벌어져 압력용기(20)에 밀착되며, 이러한 상태에서 모듈의 분리막을 통과한 처리수는 집수관(18)을 통하여 외부로 배출되고, 공급수는 농축수가 되어 시스템외부로 배출되도록 한다.At this time, the treated water is collected into the tube tube 18 connecting between the collection pipes 13 of the module 10 in the pressure vessel 20, and then flows into the second module 10 through the two. The close wing 17 of the O-ring member 15 mounted at the front end of the module 10 is opened to the outside by the inlet pressure of the feed water flowing into the second module 10 to be in close contact with the pressure vessel 20. The treated water passing through the separator of the module in the state is discharged to the outside through the collecting pipe 18, the supply water is concentrated water to be discharged to the outside of the system.
이러한 처리과정에서 공급수가 각각의 모듈을 지나는 동안 분리막의 오염현상이 점차 증가하고, 압력저하를 초래하여 분리의 구동력을 감소시키는 원인이 되는데, 분리막 모듈(10)을 공정에 적용하는 기술에 있어 가장 큰 장애가 되는 것은 막오염 현상이다.In this process, the fouling phenomenon of the membrane gradually increases while the feed water passes through each module, and the pressure decreases, which causes the driving force of the separation to be reduced. A major obstacle is membrane fouling.
분리막 모듈을 채용하여 사용하는 공정에서 일정시간이 경과하여 사용을 하면 막표면에 미세한 입자성 물질등이 부착하여 운전압력이 상승하고, 투과유량이 줄어들어 더 이상 통수를 하지 못하게 되며, 이때에는 막세정 약품을 공급수와 더불어 공급하여 부착된 물질을 세정함으로써 막성능을 회복시켰다.If a certain time passes in the process of adopting the membrane module, fine particulate matter or the like adheres to the membrane surface, increasing the operating pressure and decreasing the permeate flow rate so that water cannot be passed anymore. The chemicals were supplied with feed water to wash the adhered material to restore membrane performance.
현재까지 개발된 나권형 분리막 모듈은 공급수의 흐름특성상 한쪽방향으로 공급수가 유입되도록 되어 있어 압력용기내에 여러개의 모듈을 직렬로 연결하였을 때, 일방향으로 유입되는 공급수가 먼저 통과되는 전단부의 모듈이 먼저 오염되어 투과성능을 저하시키는 문제점이 있었다.The spiral wound membrane module developed so far is designed to allow the feed water to flow in one direction due to the flow characteristics of the feed water. When several modules are connected in series in the pressure vessel, the module at the front end where the feed water flows in one direction first passes first. There was a problem of deterioration of the permeation performance due to contamination.
국내의 분리막모듈에 관련된 기술은 대부분 외국에서 모듈 및 압력용기를 수입하여 사용하고 있는 실정이며, 일부에서는 흐름특성이 우수하고 운전압력이 낮은 모듈을 개발하기 위한 시도가 이루어지고 있으나, 가변형으로 공급수를 공급하는 모듈개발에 대한 연구는 거의 이루어지지 못하고 있다.Most of the technologies related to membrane modules in Korea are imported and used in foreign countries. In some cases, attempts have been made to develop modules with excellent flow characteristics and low operating pressure. Very little research has been done on the development of modules that supply the system.
한편, 나권형 모듈개발에 관련된 종래기술로서는 국내 특허공개 제93-21166호( 명칭 : 막분리성능이 우수한 나권형 모듈), 국내 특허공개 제96-2114호( 명칭 : 향류식 역삼투 나권형 모듈 및 이를 사용하는 고농도 용액의 농축장치), 국내 특허공개 제97-69104호( 명칭 : 나권형 역삼투막 모듈), 국내 특허공개 제2000-21020호( 명칭 : 나권형 분리막 모듈 제조방법), 국내 특허공개 제2000-36296호( 명칭 : 멀티리프가 구비된 나권형 역삼투 모듈)등에 개시되어 있지만, 상기 공보들에 개시된 기술들은 기존의 모듈특성을 일부 개량하여 효율적인 모듈에 관한 것이다.Meanwhile, the related arts related to spiral wound module development include Korean Patent Publication No. 93-21166 (name: spiral wound module with excellent membrane separation performance), and Korean Patent Publication No. 96-2114 (name: countercurrent reverse osmosis spiral wound module And a concentrating device for a high concentration solution using the same), domestic patent publication No. 97-69104 (name: spiral wound reverse osmosis membrane module), domestic patent publication No. 2000-21020 (name: manufacturing method of spiral wound separator module), domestic patent publication Although disclosed in No. 2000-36296 (name: spiral wound reverse osmosis module with multileaf), the techniques disclosed in the above publications relate to an efficient module by partially improving existing module characteristics.
또한, 국내특허공개 제96-21114호( 명칭 : 향류식 역삼투 나권형 모듈 및 이를 사용하는 고농도 용액의 농축장치)에서는 막오염을 저감시키면서 고농도의 용액을 농축시키는 방법을 개시하고 있으나, 이는 스페이스를 이용하여 공급수와 처리수가 서로 향류방향으로 공급되도록 하여 삼투압차를 감소시키는 것이며, 나권형 분리막 모듈에 향류를 공급하기 위해서 별도의 향류펌프를 사용해야만 하기 때문에, 막오염 제어를 위해서 외부동력을 이용하여 경제적이지 못한 문제점이 있는 것이다.In addition, Korean Patent Publication No. 96-21114 (name: countercurrent reverse osmosis spiral wound module and a concentrating device of a high concentration solution using the same) discloses a method of concentrating a high concentration solution while reducing membrane fouling, which is a space It is to reduce the osmotic pressure difference by supplying the feed water and the treated water to each other in the countercurrent direction, and to supply countercurrent to the spiral wound membrane module, a separate countercurrent pump must be used. There is a problem that is not economic to use.
따라서, 본 발명은 상기와 같은 종래의 문제점을 해소하기 위하여 제안된 것으로서, 그 목적은 공급수의 간단한 유입흐름을 정,역방향으로 가변시켜 분리막의 오염을 저감시킴과 동시에 분리막의 세정효율을 향상시켜 그 사용수명을 연장하고, 모듈의 효율성을 향상시킬수 있는 나권형 분리막 모듈을 제공하고자 한다.Therefore, the present invention has been proposed to solve the conventional problems as described above, the object of which is to change the simple inflow of the feed water in the forward and reverse directions to reduce the contamination of the membrane and at the same time improve the cleaning efficiency of the membrane It is intended to provide a spiral wound membrane module that can extend its service life and improve the efficiency of the module.
도 1은 일반적인 분리막모듈을 도시한 사시도,1 is a perspective view showing a general separator module,
도 2는 종래기술에 따른 나권형 분리막 모듈을 도시한 구성도,Figure 2 is a block diagram showing a spiral wound membrane module according to the prior art,
도 3은 종래기술에 따른 나권형 분리막 모듈을 압력용기애 채용한 사용상태도,Figure 3 is a state of use employing a spiral wound membrane module according to the prior art pressure vessel,
도 4는 본 발명에 따른 나권형 분리막 모듈을 도시한 구성도,Figure 4 is a block diagram showing a spiral wound membrane module according to the present invention,
도 5(a)(b)는 본 발명에 따른 나권형 분리막 모듈을 압력용기에 채용한 사용상태도,Figure 5 (a) (b) is a state of use employing the spiral wound membrane module according to the present invention in a pressure vessel,
도 6(a)(b)은 본 발명에 따른 나권형 분리막 모듈의 실시예를 도시한 개략도.Figure 6 (a) (b) is a schematic diagram showing an embodiment of a spiral wound membrane module according to the present invention.
* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings
1 ..... 모듈1a ..... 모듈본체1 ..... Module 1a ..... Module Body
3,4 ... 오링부재3a,4b ... 밀착날개3,4 ... O-ring members 3a, 4b ...
5 ..... 공급수라인6 ..... 농축수라인5 ..... Supply Water Line 6 ..... Concentrated Water Line
7 ..... 처리수라인 8 ..... 역방향공급수라인7 ..... Treated water line 8 ..... Reverse feed water line
9 ..... 역방향농축수라인11 .... 분리막9 ..... Reverse Concentration Line 11 .... Membrane
13 .... 집수관20 .... 압력용기13 .... Collection pipe 20 .... Pressure vessel
상기와 같은 목적을 달성하기 위한 기술적인 구성으로써, 본 발명은,As a technical configuration for achieving the above object, the present invention,
중공원통형 압력용기내에 수용되어 상기 압력용기의 일측으로 유입되는 공급수를 처리수와 농축수로 각각 분리하여 타측으로 유출시킬수 있도록 집수관과 이에 권선되는 분리막으로 이루어진 나권형 분리막 모듈에 있어서,In the spiral wound membrane module consisting of a water collecting pipe and a separator wound around the water supply pipe so as to be separated into the treated water and the concentrated water, respectively, which is accommodated in the hollow cylinder-type pressure vessel and flows into one side of the pressure vessel.
모듈본체의 선,후단에 공급수의 유입방향과 대응시 외측으로 벌어져 상기 압력용기의 내주면에 단부가 접하는 밀착날개를 갖는 오링부재를 각각 갖추어 상기 모듈본체의 외주면과 상기 압력용기의 내주면사이의 공간으로 상기 공급수가 통과되지 않도록 밀폐함을 특징으로 하는 나권형 분리막 모듈을 마련함에 의한다.Space between the outer circumferential surface of the module body and the inner circumferential surface of the pressure vessel, each having an o-ring member having a close contact with the end portion on the inner circumferential surface of the pressure vessel, which is opened outwardly in correspondence with the inflow direction of the feed water at the front and rear ends of the module body. By providing a spiral wound membrane module characterized in that the sealing so as not to pass through the supply water.
이하, 본 발명을 도면에 따라서 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
도 4는 본 발명에 따른 나권형 분리막 모듈을 도시한 구성도이고, 도 5(a)(b)는 본 발명에 따른 나권형 분리막 모듈을 압력용기에 채용한 사용상태도이며, 도 6(a)(b)은 본 발명에 따른 나권형 분리막 모듈의 실시예를 도시한 개략도이다.Figure 4 is a block diagram showing a spiral wound membrane module according to the present invention, Figure 5 (a) (b) is a state diagram using the spiral wound membrane module according to the invention employing a pressure vessel, Figure 6 (a) (b) is a schematic diagram showing an embodiment of a spiral wound membrane module according to the present invention.
본 발명의 모듈(1)은 도 4 내지 6(a)(b)에 도시한 바와같이, 압력용기(20)내에 적어도 1개이상 배치되어 처리하고자 하는 공급수가 상기 압력용기(20)의 일단 또는 타단중 어느 한 방향으로 유입되더라고 상기 압력용기(20)내로 유입된 공급수가 정지되어 있지 않고 상기 모듈(1)내를 흐르면서 처리될수 있도록 구성한다.As shown in Figs. 4 to 6 (a) and (b), at least one or more of the supply water to be treated is disposed in the pressure vessel 20 as shown in Figs. The supply water introduced into the pressure vessel 20 can be processed while flowing in the module 1 without being stopped even if it flows in either direction.
즉, 일측으로부터 유입되는 공급수를 처리수와 농축수로 각각 분리하여 타측으로 유출시킬수 있도록 집수관(13)과 이에 권선되는 분리막(11)으로 이루어진 모듈본체(1a)의 선,후단에는 각각 일측으로부터 타측으로 흐르는 공급수의 유입방향과의 대응시마다 유입되는 공급수의 압력에 의해서 외측으로 벌어져 상기 압력용기(20)의 내주면에 단부가 접하여 밀착되는 밀착날개(3a)(4a)를 갖는 오링부재(3)(4)를 각각 갖추어 구성한다.In other words, each side of the module body (1a) consisting of the collecting pipe 13 and the separation membrane 11 wound on the side so that the feed water flowing from one side can be separated into the treated water and the concentrated water, respectively, and flowed out to the other side. O-ring member having a close contact (3a, 4a) in contact with the inner circumferential surface of the pressure vessel 20 is opened to the outside by the pressure of the feed water flowing in each time corresponding to the inflow direction of the feed water flowing from the other side (3) (4) is provided and configured respectively.
여기서, 상기 분리막(11)은 역삼투막, 나노필터막, 한외여과막및 정밀여과막중 어느 한가지를 선택하여 구성하여도 좋다.Here, the separation membrane 11 may be configured by selecting any one of a reverse osmosis membrane, a nano filter membrane, an ultrafiltration membrane, and a microfiltration membrane.
이에 따라, 상기 압력용기(20)의 선단 또는 후단측으로 유입되는 공급수와의 대응시 상기 모듈본체의 외주면과 상기 압력용기(20)의 내주면사이의 공간으로 통과되지 않도록 공간을 밀폐한다.Accordingly, the space is sealed so as not to pass through the space between the outer circumferential surface of the module body and the inner circumferential surface of the pressure vessel 20 when the water supply flows into the front end or the rear end of the pressure vessel 20.
그리고, 상기 압력용기(20)의 선,후단에는 공급수의 유입방향을 정방향 또는 역방향을 가변시킬 수 있도록 제 1밸브(V1)를 갖추어 공급수가 공급되는 공급수라인(5)과, 제 2밸브(V2)를 갖추어 농축수가 배출되는 농축수라인(6)및 처리수가 배출되는 처리수라인(7)을 연통설치하고, 제 3밸브(V3)를 갖추어 상기 공급수라인(5)과 처리수라인(6)사이에 연결되는 역방향공급수라인(8)및 제 4밸브(V4)를 갖추어 공급수 역방향 공급시 농축수가 배출되는 역방향농축라인(9)등으로 구성된다.In addition, a supply water line 5 having a first valve V1 and a second valve at the front and rear ends of the pressure vessel 20 to change the inflow direction of the supply water in a forward or reverse direction. (V2) is provided with a concentrated water line 6 through which the concentrated water is discharged and a treated water line 7 through which the treated water is discharged, and a third valve V3 is provided to provide the supply water line 5 and the treated water line. It comprises a reverse feed water line (8) and a fourth valve (V4) connected between the (6) and the reverse concentration line (9) for the concentrated water is discharged when the feed water reverse supply.
상술한 바와같은 구성을 갖는 본 발명의 작용 및 효과에 대해서 설명한다.The operation and effects of the present invention having the configuration as described above will be described.
먼저, 메인펌프(30)를 통하여 제 1밸브(V1)가 개방된 공급수라인(5)을 통하여 폐수인 공급수를 압력용기(20)의 일측 좌측단으로 공급하면, 상기 압력용기(20)의 내부에는 본 발명의 나권형 분리막 모듈(1)이 적어도 1개 이상 설치되어 있기 때문에, 상기 압력용기(20)이 최좌측단에 배치된 모듈(1)의 좌우양단에 조립된 오링부재(3)(4)중 좌측단의 오링부재(3)의 밀착날개(3a)는 종래와 마찬가지로 공급수의 유입압력에 의해서 외측으로 들어올려지면서 상기 압력용기(20)의 내주면과 모듈(1)의 외주면사이의 틈새로 공급수가 유입되지 않도록 상기 틈새를 밀폐한다.First, when the supply water, which is wastewater, is supplied to one side of the left side of the pressure vessel 20 through the supply water line 5 in which the first valve V1 is opened through the main pump 30, the pressure vessel 20 is provided. Since at least one spiral wound membrane module 1 of the present invention is installed inside the O-ring member 3 assembled at both left and right ends of the module 1 in which the pressure vessel 20 is disposed at the leftmost end. (3), the close wing 3a of the O-ring member 3 at the left end is lifted outward by the inlet pressure of the feed water, as in the prior art, while the inner circumferential surface of the pressure vessel 20 and the outer circumferential surface of the module 1 The gap is sealed so that the feed water does not flow into the gap therebetween.
이러한 경우, 상기 압력용기(20)의 모듈(1)을 통과하는 공급수는 분리막에 의해서 농축수와 처리수로 분리되어 상기 농축수는 제 2밸브(V2)가 개방된 농축수라인(6)을 통하여, 그리고 상기 처리수는 처리수라인(7)을 통하여 후공정으로 배출된다.In this case, the feed water passing through the module 1 of the pressure vessel 20 is separated into concentrated water and treated water by a separation membrane, and the concentrated water is a concentrated water line 6 having a second valve V2 opened. And through the treated water line 7 is discharged to a later process.
이때, 역방향 공급수라인(8)의 제 3밸브(V3)및 역방향농축수라인(9)의 제 4밸브(V4)는 공급수의 정방향 공급인 도면상 좌측에서 우측으로 이루어지도록 닫혀져야 한다.At this time, the third valve V3 of the reverse feed water line 8 and the fourth valve V4 of the reverse concentrate water supply line 9 should be closed so as to be made from left to right in the drawing as a forward supply of feed water.
한편, 일정한 운전시간이 경과되어 상기 모듈(1)을 구성하는 분리막의 오염이 진행되면, 상기 모듈(1)을 채용한 시스템의 처리유량은 필연적으로 저하하게 된다.On the other hand, when the constant operation time has elapsed and contamination of the separator constituting the module 1 proceeds, the processing flow rate of the system employing the module 1 inevitably decreases.
이러한 경우, 작업자는 공급수의 정방향 운전시 닫혀져 있던 공급수 역방향 공급용 밸브부재를 개방하여 공급수를 상기와 반대로 압력용기(20)에 역방향으로 공급하면, 공급수가 도면상 우측에서 좌측으로 공급되면서 상기 압력용기(20)의 최좌우단에 배치된 모듈(1)의 좌우양단에 조립된 오링부재(3)(4)중 우측단의 오링부재(4)의 밀착날개(4a)가 역방향으로 공급되는 공급수의 유입압력에 의해서 외측으로 들어올려지면서 상기 압력용기(20)의 내주면과 모듈(1)의 외주면사이의 틈새로 공급수가 유입되지 않도록 밀폐하여 공급수는 모듈(1)내부로 흐르도록 한다.In this case, when the operator opens the valve member for supplying the reverse water supply which was closed during the forward operation of the feed water and supplies the feed water to the pressure vessel 20 in the opposite direction to the above, the feed water is supplied from right to left on the drawing. The contacting blade 4a of the O-ring member 4 at the right end of the O-ring members 3 and 4 assembled at the left and right ends of the module 1 disposed at the left and right ends of the pressure vessel 20 is supplied in the reverse direction. While being lifted outward by the inlet pressure of the supply water, the supply water is sealed so that the supply water does not flow into the gap between the inner circumferential surface of the pressure vessel 20 and the outer circumferential surface of the module 1 so that the feed water flows into the module 1. do.
연속하여, 상기 모듈(1)의 분리막을 통과한 공급수는 농축수와 처리수로 분리되어 상기 농축수는 제 4밸브(V4)가 개방된 농축수라인(9)을 통하여, 그리고 상기 처리수는 처리수라인(7)을 통하여 후공정으로 배출된다.Subsequently, the feed water passing through the separator of the module 1 is separated into concentrated water and treated water so that the concentrated water is through the concentrated water line 9 with the fourth valve V4 opened, and the treated water. Is discharged to the after-process through the treatment water line (7).
상기와 같이 수처리하고자 하는 공급수의 공급방향이 모듈(1)을 기준으로 하여 정방향 또는 역방향으로 바뀌면, 막오염이 전체모듈(1)을 통하여 고르게 진행되며, 이미 진행된 미세입자에 의한 막오염도 반대방향으로 부터 유입되는 유체의 유속에 의하여 자연스럽게 제거되는 역세(back-washing)효과가 발생하여 처리효율을 극대화시킬수 있는 것이다.When the supply direction of the feed water to be treated as described above is changed in the forward or reverse direction based on the module (1), the membrane contamination proceeds evenly through the entire module (1), the membrane contamination by the fine particles already advanced also in the opposite direction The back-washing effect is naturally removed by the flow rate of the fluid flowing from the to maximize the treatment efficiency.
이하, 본 발명의 실시예를 간략하게 설명하면, 공장폐수를 대상으로 30일동안 24시간 연속으로 공급하고, 동일한 조건에서 종래의 모듈(10)과 본 발명의 모듈(1)의 처리효율을 정확히 평가하기 위해, 공급수는 공장에서 발생하는 폐수를 원수로 하고, 다른 운전조건(공급유량및 운전압력)은 동일하게 유지한 상태에서 라인 1은 종래의 모듈(10)을 채용하고, 제 5밸브(V5)를 갖는 농축수라인(19)을 설치하였으며, 라인 2는 본 발명의 모듈(1)을 채용하고, 정,역방향으로 공급수흐름을 전환할수 있도록 역방향공급수라인(8)및 역방향농축수라인(9)을 설치하였다. 그리고, 본 실험에서 사용된 모듈은 모델번호 BW-3040 이고, 압력용기(20)내에 모듈을 2개씩 배치하였다.Hereinafter, the embodiment of the present invention will be briefly described, supplying factory wastewater continuously for 24 hours for 30 days, and accurately treating the processing efficiency of the conventional module 10 and the module 1 of the present invention under the same conditions. For the evaluation, the feed water is the wastewater generated in the factory as raw water, the line 1 adopts the conventional module 10 while the other operating conditions (supply flow rate and operating pressure) remain the same, and the fifth valve A concentrated water line 19 having a V5 was installed, and the line 2 employs the module 1 of the present invention, and has a reverse feed water line 8 and a reverse concentrate so as to switch the feed water flow in the forward and reverse directions. The male line 9 was installed. The module used in this experiment was model number BW-3040, and two modules were placed in the pressure vessel 20.
이러한 상태에서 운전일수가 경과함에 따라 종래 모듈(1)과 본 발명의 모듈(1)의 처리유량을 측정하였다.In this state, as the number of operating days elapsed, the flow rates of the conventional module 1 and the module 1 of the present invention were measured.
즉, 운전개시일부터 5일간은 메인펌프(30)로부터 공급수를 정방향으로 상기 라인 1과 라인 2에 각각 2400L/hr으로 동일하게 공급하고, 운전압력이 약 20㎏/㎠ 으로 유지되도록 농축수라인(19)(6)의 밸브(V5)(V2)를 조절하였다. 이때, 라인 2의 제 3,4밸브(V3)(V4)는 닫고 제 1밸브(V1)는 열어 상기 라인 1과 동일한 방향으로 공급수가 공급되도록 한다.That is, for 5 days from the start of operation, the feed water from the main pump 30 is equally supplied to the lines 1 and 2 at 2400 L / hr in the forward direction, and the concentrated water line is maintained at about 20 kg / cm 2. The valves V5 and V2 of (19) and (6) were adjusted. At this time, the third and fourth valves V3 and V4 of the line 2 are closed and the first valve V1 is opened to supply the supply water in the same direction as the line 1.
이후 5일이 경과한 후에는 종래 모듈(10)이 채용된 라인 1은 그대로 두고, 본 발명의 모듈(1)이 채용된 라인 2에서 밸브 1,2(V1)(V2)는 닫고, 제 3밸브(V3)는 열어 공급수를 상기와 반대로 역방향으로 공급하며, 이때에도 공급수의 공급유량이 2400L/hr으로 동일하게 공급되고, 운전압력이 약 20㎏/㎠ 으로 유지되도록 농축수라인(19)의 밸브(V5)와 역방향농축수라인(9)의 제 2밸브(V2)를 조절하였다.After 5 days have elapsed, the line 1 in which the conventional module 10 is adopted is left as it is, and the valve 1,2 (V1) V2 is closed in the line 2 in which the module 1 of the present invention is employed, and the third The valve V3 is opened to supply the feed water in the opposite direction to the above, and even in this case, the supply flow rate of the feed water is equally supplied at 2400 L / hr, and the concentrated water line 19 is maintained such that the operating pressure is maintained at about 20 kg / cm 2. ) Valve V5 and the second valve V2 of the reverse concentration water line 9 were adjusted.
이와 같은 방법으로 운전된 두시스템의 운전압력과 처리수량및 처리수의 수질을 측정하고, 그 결과를 하기 표 1에 나타내었다.The operating pressure and amount of treated water and the quality of the treated water of the two systems operated in this way were measured, and the results are shown in Table 1 below.
상기 표 1에서 알수 있듯이, 운전시간이 경과함에 따라 종래의 모듈은 그 처리유량이 급격히 저하되는 반면에, 본 발명의 모듈은 상대적으로 처리유량의 감소가 적음을 알수 있다. 또한, 30일 운전기간동안 전체 처리유량의 합이 종래 모듈의 경우 1800L 인 반면에 본 발명 모듈의 경우 2260L 로서 본 발명의 모듈에서 처리한 유량이 460L 더 많았음을 알수 있어 본 발명의 모듈이 종래의 모듈과 비교하여 26%의 처리효율이 향상됨을 알수 있다.As can be seen from Table 1, while the operation time has elapsed, the conventional module has a sharp decrease in the processing flow rate, whereas the module of the present invention has a relatively small decrease in the processing flow rate. In addition, the sum of the total flow rates during the 30-day operation period is 1800L for the conventional module, while the flow rate treated in the module of the present invention was more than 460L as the module of the present invention as 2260L for the module of the present invention. It can be seen that the processing efficiency is improved by 26% compared to the module of.
상술한 바와같은 본 발명에 의하면, 공급수의 공급방향에 관계없이 공급수의 처리가 가능하도록 종래의 나권형 분리막 모듈의 구조를 크게 변경하지 않고 좌우양단에 밀착날개를 갖는 오링부재를 각각 설치함으로써, 분리막의 오염을 균일하게 하여 종래의 모듈과 비교하여 동일한 조건에서 처리수량을 현저히 향상시킬수 있고, 그 사용수명을 연장할수 있다. 또한, 분리막 세정작업시 세정방향을 바꾸어 주면서 분리막을 세정할수 있기 때문에, 분리막 세정후 막성능 회복율을 향상시키수 있는 효과가 얻어진다.According to the present invention as described above, by providing the O-ring member having a close contact at each of the left and right ends without significantly changing the structure of the conventional spiral wound membrane module so that the supply of water can be processed irrespective of the supply direction of the supply water By uniformly contaminating the separation membrane, the treated water can be remarkably improved under the same conditions as compared with the conventional module, and the service life thereof can be extended. In addition, since the membrane can be cleaned while changing the cleaning direction during the membrane cleaning operation, the effect of improving the membrane performance recovery rate after the membrane cleaning is obtained.
본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 청구범위에 의해 마련되는 본 발명의 정신이나 분야를 벗어나지 않는 한도내에서 본 발명이 다양하게 개조 및 변화될수 있다는 것을 당업계에서 통상의 지식을 가진자는 용이하게 알수 있음을 밝혀두고자 한다.While the invention has been shown and described with respect to specific embodiments thereof, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit or scope of the invention as set forth in the claims below. I would like to clarify that knowledge is easy to know.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010073476A KR20030042730A (en) | 2001-11-23 | 2001-11-23 | A spiral wound membrane module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010073476A KR20030042730A (en) | 2001-11-23 | 2001-11-23 | A spiral wound membrane module |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20030042730A true KR20030042730A (en) | 2003-06-02 |
Family
ID=29571169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020010073476A KR20030042730A (en) | 2001-11-23 | 2001-11-23 | A spiral wound membrane module |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20030042730A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100758380B1 (en) * | 2006-09-14 | 2007-09-18 | 주식회사 디엠퓨어텍 | Treatment apparatus for recycling concentrated-water using reverse osmosis process |
KR100789032B1 (en) * | 2003-09-17 | 2007-12-26 | 닛토덴코 가부시키가이샤 | Seal ring holder for membrane element and membrane element |
KR102037008B1 (en) * | 2018-12-28 | 2019-10-25 | 주식회사 한화건설 | Membrane fouling dispersion system of the RO unit using directional switching valve and maintenance method for membrane fouling dispersion |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4016083A (en) * | 1974-12-18 | 1977-04-05 | Daicel, Ltd. | Spirally-wound membrane-type separator module capable of reversing the direction of liquid flow |
JPH0359029U (en) * | 1989-10-04 | 1991-06-10 | ||
US5690829A (en) * | 1992-06-02 | 1997-11-25 | Lauer; Guenter | Conditioning process and device for producing pure water |
EP1022050A2 (en) * | 1999-01-22 | 2000-07-26 | Nitto Denko Corporation | Spiral wound type membrane element and methods of running and washing it |
US20010000895A1 (en) * | 1999-05-17 | 2001-05-10 | Shamsuddin Ilias | Flux-enhanced cross-flow membrane filter |
-
2001
- 2001-11-23 KR KR1020010073476A patent/KR20030042730A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4016083A (en) * | 1974-12-18 | 1977-04-05 | Daicel, Ltd. | Spirally-wound membrane-type separator module capable of reversing the direction of liquid flow |
JPH0359029U (en) * | 1989-10-04 | 1991-06-10 | ||
US5690829A (en) * | 1992-06-02 | 1997-11-25 | Lauer; Guenter | Conditioning process and device for producing pure water |
EP1022050A2 (en) * | 1999-01-22 | 2000-07-26 | Nitto Denko Corporation | Spiral wound type membrane element and methods of running and washing it |
US20010000895A1 (en) * | 1999-05-17 | 2001-05-10 | Shamsuddin Ilias | Flux-enhanced cross-flow membrane filter |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100789032B1 (en) * | 2003-09-17 | 2007-12-26 | 닛토덴코 가부시키가이샤 | Seal ring holder for membrane element and membrane element |
KR100789041B1 (en) * | 2003-09-17 | 2007-12-26 | 닛토덴코 가부시키가이샤 | Seal ring holder for membrane element and membrane element |
US7749382B2 (en) | 2003-09-17 | 2010-07-06 | Nitto Denko Corporation | Seal ring holder for membrane element and membrane element |
US7910000B2 (en) | 2003-09-17 | 2011-03-22 | Nitto Denko Corporation | Seal ring holder for membrane element and membrane element |
KR100758380B1 (en) * | 2006-09-14 | 2007-09-18 | 주식회사 디엠퓨어텍 | Treatment apparatus for recycling concentrated-water using reverse osmosis process |
KR102037008B1 (en) * | 2018-12-28 | 2019-10-25 | 주식회사 한화건설 | Membrane fouling dispersion system of the RO unit using directional switching valve and maintenance method for membrane fouling dispersion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Singh et al. | Introduction to membrane processes for water treatment | |
RU2119377C1 (en) | Method for producing pure water and device for its embodiment | |
JP4996067B2 (en) | Water treatment apparatus using reverse osmosis membrane and method of using the same | |
CN108217844A (en) | A kind of water purification machine is positive and negative to rinse membranous system and control method | |
NZ234632A (en) | Membrane separation system: pump and valve arrangement facilitating backwashing | |
US20150144560A1 (en) | Separation membrane unit and method for using the same to produce fresh water | |
US10583401B2 (en) | Integrated ultrafiltration and reverse osmosis desalination systems | |
JP4251879B2 (en) | Operation method of separation membrane module | |
US7422690B2 (en) | Filtering system | |
EP1894612B1 (en) | Method for purifying water by means of a membrane filtration unit | |
KR101508763B1 (en) | Hollow fiber membrane module using positive pressure and back washing method using the same | |
KR101179489B1 (en) | Low-energy system for purifying waste water using forward osmosis | |
WO2021249096A1 (en) | Backwashable filter element-nanofiltration drinking water deep purification system | |
KR20050033547A (en) | Separation membrane module and method of operating separation membrane module | |
KR101769609B1 (en) | Two-way back washing device and reverse osmosis water purification system using the same | |
KR101031673B1 (en) | Stacked membrane filtration system and stacking method thereof | |
KR20030042730A (en) | A spiral wound membrane module | |
CN207567042U (en) | A kind of ultra-pure-water treatment system | |
EP3439770B1 (en) | Fouling resistant membrane spacers | |
US20220387936A1 (en) | Filter structure having function of selectively collecting water through opposite ends thereof and filtering method using same | |
JP4454922B2 (en) | Control method of filtration apparatus using hollow fiber type separation membrane | |
KR101444881B1 (en) | Valve for water treatment | |
JP2005046762A (en) | Water treatment method and water treatment apparatus | |
WO2019111116A1 (en) | Environmentally friendly water intake and pretreatment method and system | |
CN212832952U (en) | Concentration system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |