KR20030042409A - The Manufacturing Method Of Acryl Globular Corpuscle - Google Patents

The Manufacturing Method Of Acryl Globular Corpuscle Download PDF

Info

Publication number
KR20030042409A
KR20030042409A KR1020010080119A KR20010080119A KR20030042409A KR 20030042409 A KR20030042409 A KR 20030042409A KR 1020010080119 A KR1020010080119 A KR 1020010080119A KR 20010080119 A KR20010080119 A KR 20010080119A KR 20030042409 A KR20030042409 A KR 20030042409A
Authority
KR
South Korea
Prior art keywords
solution
acrylic
fine particles
acryl
emulsion
Prior art date
Application number
KR1020010080119A
Other languages
Korean (ko)
Inventor
김범준
홍기정
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Publication of KR20030042409A publication Critical patent/KR20030042409A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters

Abstract

PURPOSE: Provided is a method for producing a spherical acrylic particle, which can control average particle size and particle size distribution of particle, and is useful for polymer additives for cosmetics. CONSTITUTION: The method for producing a spherical acrylic particle from an acrylic polymer, is characterized by comprising the steps of (i) formulating a first solution comprising acrylic polymer and a second solution comprising an emulsifier/dispersing agent; (ii) mixing the first solution and the second solution to form an emulsion from the mixture by stirring unit; and (iii) evaporating a solvent from the emulsion to precipitate spherical acrylic particles.

Description

아크릴 구상미립자의 제조방법{The Manufacturing Method Of Acryl Globular Corpuscle}Manufacturing Method Of Acryl Globular Corpuscle

본 발명은 아크릴 구상 미립자의 제조방법에 관한 것으로, 보다 상세하게는평균입경 및 입도분포 등을 제어할 수 있는 아크릴 구상미립자의 제조방법에 관한 것이다.The present invention relates to a method for producing acrylic spherical fine particles, and more particularly, to a method for producing acrylic spherical fine particles that can control the average particle diameter and particle size distribution.

아크릴의 초기 응용분야로는 섬유산업의 경사호제나, 날염, 사이징 및 기타 직물가공을 시초로 피혁, 제지 등의 기초가공제 역할은 물론 제조 공정에 이르기까지 다양하게 사용되어왔다. 그 후 접착제에 적용되어 목재, 제지, 건축으로 확산되었으며 최근에는 전기, 전자, 정보분야에서 고기능성 제품에 이르기까지 활용되고 자동차, 선박공업용뿐만 아니라 항공기, 고속전철, 환경산업에 이르기까지 금속·세라믹스의 대체재료로서 적용되고 있어 폭넓게 이용되고 있다. 그러나 이러한 범용재료로서의 아크릴과는 달리, 아크릴 미립자가 적용되는 분야인 의약, 화장품, 분체도료, 정보기록 부분에서의 수입의존도는 여전히 높아 계속적인 연구개발이 필요한 것으로 사료된다.The initial applications of acrylic have been used in the textile industry, starting from warp yarns, printing, sizing and other textile processing, as a basic processing agent for leather and paper, as well as the manufacturing process. Since then, it has been applied to adhesives and spread to wood, paper, and construction. Recently, it is used in electric, electronic and information fields for high-performance products, and for metals and ceramics not only for automobile and ship industry but also for aircraft, high-speed train, and environmental industry. It is applied as a substitute material for and is widely used. However, unlike acryl as a general-purpose material, import dependence in medicine, cosmetics, powder coating, and information recording, which are areas where acryl fine particles are applied, is still high.

종래의 아크릴의 합성방법으로서는 우선 acrylic acid를 라디칼 중합하여 얻은 polyacryl 산이 있다. 생성된 고분자의 구조는 매우 단순하여 반복 단위마다 carboxyl 기를 1개씩 가지고 있으며 나트륨 혹은 암모니움염으로 전환하여 고분자의 점도에 따라 특성 및 용도가 다른 킬레이트제 (chelate agent) 또는 분산제 (dispersing agent) 또는 경화제 (thickening agent)로 사용될 수 있다. 또한 acrylic acid-ester계로부터의 아크릴은 acrylic acid 와 polyoxyethylene acrylate를 공중합하여 얻는다. Carboxyl acid 음이온과 입체 반발 효과를 기대할 수 있다. As a conventional method of synthesizing acrylic, there is a polyacryl acid obtained by radical polymerization of acrylic acid. The resulting polymer has a very simple structure, one carboxyl group per repeat unit, converted to sodium or ammonium salts, and a chelate agent or dispersing agent or curing agent that has different properties and uses depending on the viscosity of the polymer. thickening agent). In addition, acrylic from acrylic acid ester is obtained by copolymerizing acrylic acid and polyoxyethylene acrylate. Carboxyl acid anion and steric repulsion effect can be expected.

또한 malic anhydrous-ester 계로부터의 아크릴은 무수말레인산과 폴리 옥시에틸렌아크릴레이트의 공중합에 의해 얻어진다. 무수말레인산을 가수분해하면 2개의 carboxyl기가 생성되므로 높은 carboxyl acid밀도와 입체 반발 효과를 기대할 수 있다. 한편 acrylic acid-ester 가교계로부터의 아크릴은 아크릴산과 비스아크릴레이트의 가교중합에 의해 얻어지는 것으로, 아크릴산 음이온과 가교 구조의 입체 반발 효과에 의해 우수한 분산성을 나타낸다. 이와 같이 각 monomer의 특성이 다르기 때문에 중합방법에 따라(균일계 중합은 괴상중합, 용액중합, 불균일계 중합은 현탁중합, 유화중합) 다양하게 제조가 가능하다.In addition, acryl from malic anhydrous-ester system is obtained by copolymerization of maleic anhydride with polyoxyethylene acrylate. Hydrolysis of maleic anhydride produces two carboxyl groups, so high carboxyl acid density and steric repulsion effect can be expected. On the other hand, acrylic from the acrylic acid-ester crosslinking system is obtained by crosslinking polymerization of acrylic acid and bisacrylate, and shows excellent dispersibility by the steric repulsion effect of the acrylic acid anion and the crosslinked structure. Since the properties of each monomer are different in this way, it can be produced in various ways depending on the polymerization method (homopolymerization, solution polymerization, heterogeneous polymerization, suspension polymerization, emulsion polymerization).

그러나, 아크릴 구상미립자를 제조함에 있어서는 용액중합에 의한 침전제조법이나 현탁중합을 적용한 경우, 중합이 진행됨에 따라 침전생성된 아크릴미립자의 합일화 또는 응집이 일어나기 때문에 단분산의 미세한 아크릴 미립자를 제조할 수 없는 문제가 있다. 또한 평균입경 및 입도분포를 제어하는 것 역시 불가능하게 된다.However, in the production of acryl spherical fine particles, monolithic fine microparticles of monodispersion can be prepared when the precipitation production method or suspension polymerization by solution polymerization is applied, so that coalescence or agglomeration of the precipitated acrylic fine particles occurs as the polymerization proceeds. There is no problem. It is also impossible to control the mean particle size and particle size distribution.

또한 괴상중합에 의해 조제하는 경우, 얻어지는 괴상물을 기계적 방법에 의해 분쇄하지 않으면 안되어 공정이 복잡하게 된다. 또한 기계적 분쇄에 의한 미립자화는, 얻어진 분말은 입경이 큰데다가 또한 독립된 단분산의 미립자분말을 제조하는 것이 곤란하다. 게다가, 상기방법으로는 원하는 구상의 입자형태 및 입도분포 등을 제어하는 것도 곤란하다. 이 때문에 단분산성이 우수한 아크릴 구상미립자의 제조방법의 개발이 절실히 요망되고 있다.Moreover, when preparing by block polymerization, the obtained block must be pulverized by a mechanical method and the process becomes complicated. In addition, in the micronization by mechanical pulverization, the obtained powder has a large particle size and it is difficult to produce independent monodisperse fine particle powders. In addition, it is also difficult to control the spherical particle shape, particle size distribution, and the like by the above method. For this reason, the development of the manufacturing method of the acrylic spherical microparticles | fine-particles excellent in monodispersity is urgently desired.

따라서, 본 발명은 평균입경 및 입도분포 등을 제어할 수 있는 아크릴 구상미립자의 제조방법을 제공하는 것을 주목적으로 한다. 본 발명자는 종래기술의 문제점에 감안하여 연구를 거듭한 결과, 특정 공정들을 포함하는 방법에 의하여 상기목적을 달성할 수 있음을 발견하고, 드디어 본 발명을 완성하기에 이르렀다.Accordingly, the present invention aims to provide a method for producing acrylic spherical fine particles that can control the average particle size, particle size distribution and the like. As a result of repeated studies in view of the problems of the prior art, the inventors have found that the above object can be achieved by a method including specific processes, and finally, the present invention has been completed.

도1은 실시예 1에 의해 제조된 아크릴미립자의 주사전자현미경 사진1 is a scanning electron microscope photograph of acrylic particles prepared according to Example 1

도2는 실시예 1에 의해 제조된 아크릴미립자의 입도분포도2 is a particle size distribution diagram of the acrylic fine particles prepared in Example 1

도3은 실시예 2에 의해 제조된 아크릴미립자의 입도분포도3 is a particle size distribution diagram of acrylic fine particles prepared in Example 2

도4는 실시예 3에 의해 제조된 아크릴미립자의 주사전자현미경 사진Figure 4 is a scanning electron micrograph of the acrylic particles prepared in Example 3

도5는 실시예 3에 의해 제조된 아크릴미립자의 입도분포도5 is a particle size distribution diagram of acrylic fine particles prepared in Example 3

도6은 실시예 4에 의해 제조된 아크릴미립자의 주사전자현미경 사진6 is a scanning electron micrograph of the acrylic particles prepared in Example 4

도7은 실시예 4에 의해 제조된 아크릴미립자의 입도분포도7 is a particle size distribution diagram of the acrylic fine particles prepared in Example 4

도8은 비교예 1에 의해 제조된 아크릴미립자의 주사전자현미경 사진8 is a scanning electron micrograph of acrylic particles prepared by Comparative Example 1

도9는 비교예 1에 의해 제조된 아크릴미립자의 입도분포도9 is a particle size distribution diagram of acrylic fine particles prepared by Comparative Example 1

본 발명은 아래의 공정을 포함한다.The present invention includes the following steps.

아크릴고분자로부터 아크릴 구상미립자를 제조하는 방법에 있어서,In the method for producing acrylic spherical particles from acrylic polymer,

(a) 아크릴고분자를 포함하는 제1용액과 유화분산제를 포함하는 제2용액을 각각 조제하는 제1공정,(a) a first step of preparing a first solution containing an acrylic polymer and a second solution containing an emulsion dispersant, respectively;

(b) 제1용액과 제2용액을 혼합하여 교반수단에 의해 혼합용액으로부터 유화액을 제조하는 제2공정 및(b) a second step of preparing an emulsion from the mixed solution by stirring means by mixing the first solution and the second solution; and

(c) 제조된 유화액으로부터 용매를 증발시킴으로써 아크릴 구상미립자를 석출시키는 제3공정(c) a third step of depositing acrylic spherical fine particles by evaporating the solvent from the prepared emulsion

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

(1) 제1공정(1) First step

사용되는 아크릴고분자는 acrylic acid, methacrylic acid, acrylate ester (methyl, ethyl, n-butyl, Isobutyl, t-butyl, 2-ethyl hexyl, Desyl, 2-Ethoxy, ethyl, 2-Hydroxy propyl Acrylate)의 적어도 1종으로부터의 중합체로 이루어져 있다.Acrylic polymers used are at least one of acrylic acid, methacrylic acid, acrylate ester (methyl, ethyl, n-butyl, Isobutyl, t-butyl, 2-ethyl hexyl, Desyl, 2-Ethoxy, ethyl, 2-Hydroxy propyl Acrylate) It consists of a polymer from the species.

또한 본 발명에서 얻어지는 아크릴 구상미립자의 요구되는 물성 및 최종제품의 용도 등에 따라서, 이들 모노머들 간의 적절한 선택에 의해 제조된 중합체를 사용할 수 있다.In addition, according to the required physical properties of the acrylic spherical fine particles obtained in the present invention, the use of the final product, and the like, a polymer prepared by appropriate selection between these monomers can be used.

이러한 아크릴 고분자를 이용하여, 우선 제1공정으로서 아크릴고분자를 포함하는 제1용액과 유화분산제를 포함하는 제2용액을 각각 조제한다. 즉 본 발명에서는 아크릴고분자/유기용액과 유화분산수용액은 각각 별개의 용액으로서 조제해 둘 필요가 있다.Using such an acrylic polymer, first, a first solution containing an acrylic polymer and a second solution containing an emulsifying dispersant are prepared as a first step. That is, in the present invention, it is necessary to prepare the acrylic polymer / organic solution and the emulsion dispersion aqueous solution as separate solutions.

(a) 제1용액(a) First solution

제1용액에 사용하는 용매는 실질적으로 아크릴고분자가 용해되고, 또한 제2용액과 혼화되지 않는 것이라면 특별히 제한하지 않는다. 예를 들어 아세트알데하이드, 메틸초산, 에틸초산, 아밀초산염, 아닐린, 벤즈알데하이드, 벤젠, 4-염화탄소, 2-황화탄소, 클로로포름, 포름산, 농황산, 농질산, 사이클로헥산, 디부틸프탈레이트, 에틸초산염, 2-염화에틸렌, 불화수소산, 2-염화메틸렌, 염산, 질산, 톨루엔, 크실렌, 디에틸에테르, 디메틸포름아미드, 디메틸아세트아미드, N-메틸-2-피롤리돈의 적어도 1종을 포함하는 용매를 사용할 수 있다. 제1용액에 있어서 아크릴과 용매의 비율은 사용하는 아크릴의 종류, 용매의 종류, 제2용액의 농도 등에 따라서 적절히 설정한다면 좋은데, 보통은 아크릴 : 용매 = 1 : 3∼30 정도, 바람직하게는 1 : 5∼15로 한다.The solvent used for the first solution is not particularly limited as long as the acrylic polymer is substantially dissolved therein and is incompatible with the second solution. For example acetaldehyde, methyl acetate, ethyl acetate, amyl acetate, aniline, benzaldehyde, benzene, 4-chlorochloride, carbon dioxide, chloroform, formic acid, concentrated sulfuric acid, concentrated nitric acid, cyclohexane, dibutyl phthalate, ethyl acetate, Solvent containing at least one of 2-ethylene ethylene, hydrofluoric acid, 2-methylene chloride, hydrochloric acid, nitric acid, toluene, xylene, diethyl ether, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone Can be used. The ratio of acryl and solvent in the first solution may be appropriately set according to the type of acryl used, the kind of the solvent, the concentration of the second solution, and the like. Usually, acryl: solvent = 1: 3 to 30, preferably 1 : 5 to 15.

(b) 제2용액(b) second solution

제2용액으로 사용되는 유화분산제 함유 수용액은 특히 제한되지 않고, 예를 들어 젤라틴, 아라비아고무, 덱스트린, 카제인, 단백질, 폴리비닐알콜, 알긴산소다, 알부민 등의 고분자계 입체적 유화분산제와, 솔비탄모노올레이트 등의 저분자계 정전기적 유화분산제를 사용할 수 있다. 이들은 1종 또는 2종 이상을 사용할 수 있다. 나아가 본 발명에서는 상기 언급된 입체적 분산제 외에 다당류 화합물도 사용할 수 있다. 이들에 의해 얻어지는 아크릴 미립자의 입도분포 특성을 바꿀 수 있다.The emulsion dispersant-containing aqueous solution used as the second solution is not particularly limited. For example, polymer-based three-dimensional emulsion dispersants such as gelatin, gum arabic, dextrin, casein, protein, polyvinyl alcohol, sodium alginate, albumin, and sorbitan mono Low molecular static electrostatic emulsifiers such as oleate can be used. These can use 1 type (s) or 2 or more types. Furthermore, in the present invention, a polysaccharide compound may be used in addition to the above-mentioned steric dispersant. The particle size distribution characteristic of the acrylic fine particles obtained by these can be changed.

제2용액에 사용되는 용매는 물 이외에 실질적으로 유화분산제가 용해되고, 나아가 생성되는 아크릴 미립자가 용해되지 않는 것이라면 특히 제한되지 않는다. 또한 제1용액의 용매에 용해되는 용매라 할지라도 폴리머의 빈용매와 혼합하여 아크릴이 침전되도록 조정한다면 이들도 사용할 수 있다.The solvent used for the second solution is not particularly limited as long as the emulsion dispersant is substantially dissolved in addition to water and the resulting acrylic fine particles are not dissolved. Moreover, even if it is a solvent which melt | dissolves in the solvent of a 1st solution, these can also be used if it adjusts to precipitate an acryl by mixing with the poor solvent of a polymer.

제2용액에 있어서 유화분산제의 농도는 사용하는 아크릴의 종류, 제1용액의 농도 등에 따라서 적절히 설정하면 좋은데, 보통은 0.05∼10% (w/ℓ) 정도, 바람직하게는 0.2∼5% (w/ℓ)로 한다. 유화분산제의 농도가 0.05% 이하이면 구상 입자들이 응집, 합일되고, 유화분산제의 농도가 10%이상이면 경제성이 저하되며 이후 후고정에 제거의 번거로움이 있다.The concentration of the emulsifying dispersant in the second solution may be appropriately set according to the type of acryl to be used, the concentration of the first solution, and the like. Usually, about 0.05 to 10% (w / l), preferably 0.2 to 5% (w) / l). If the concentration of the emulsion dispersant is 0.05% or less, the spherical particles are aggregated and coalesced. If the concentration of the emulsion dispersant is 10% or more, the economic efficiency is lowered, and thereafter, it is troublesome to remove the post-fixing.

(2) 제2공정(2) second process

제2공정에서는 제1용액과 제2용액을 혼합하여, 교반수단에 의해 혼합용액으로부터 고분자유화용액을 만든다. 제1용액과 제2용액과의 혼합비율은 아크릴의 종류, 각 용액의 농도 등에 따라 적절히 변경가능한데, 보통은 1 : 1 ∼20 정도, 바람직하게는 1 : 2∼10로 되도록 혼합하면 좋다.In the second step, the first solution and the second solution are mixed to form a polymer emulsion solution from the mixed solution by the stirring means. Although the mixing ratio of a 1st solution and a 2nd solution can be suitably changed with the kind of acryl, the density | concentration of each solution, etc., Usually, it mixes so that it may be about 1: 1-20, Preferably it is 1: 2-10.

제1용액과 제2용액의 혼합비율이 1:1 이하이면 유화입자의 형성이 불가능하고, 제1용액과 제2용액의 혼합비율이 1:20 이상이면 반응조의 크기가 커저 수율이 떨어지게 된다.If the mixing ratio of the first solution and the second solution is 1: 1 or less, it is impossible to form the emulsified particles, and if the mixing ratio of the first solution and the second solution is 1:20 or more, the size of the reaction tank becomes large and the yield decreases.

상기 제2공정의 교반수단은 교반기에 의한 기계적 교반으로 호모믹서에 의해 교반속도를 조절함으로써 평균입경의 미세화가 가능하게 된다. 호모믹서는 공지의 교반장치 및 조작조건을 그대로 채용할 수 있다. 교반기의 회전속도는 소망하는 입경 등에 따라 적절히 설정하면 좋으며 보통은 1,000∼20,000 rpm 정도, 바람직하게는 2,000∼10,000 rpm으로 하면 좋다. 교반기의 회전속도가 1,000rpm 이하이면 형성된 유화입자의 크기가 너무 커져서 원하는 입경을 얻을 수 없게 되고, 교반기의 회전속도가 20,000rpm 이상이면 교반기에 과부하로 경제성이 떨어진다.The stirring means of the second step is capable of miniaturization of the average particle diameter by controlling the stirring speed by the homomixer by mechanical stirring by the stirrer. A homomixer can employ | adopt a well-known stirring apparatus and operation conditions as it is. The rotational speed of the stirrer may be appropriately set in accordance with the desired particle size and the like, and is usually about 1,000 to 20,000 rpm, preferably 2,000 to 10,000 rpm. If the rotational speed of the stirrer is less than 1,000rpm, the size of the emulsion particles formed is too large to obtain the desired particle size, and if the rotational speed of the stirrer is more than 20,000rpm, the economy is inferior due to overload.

상기 제 2 공정의 교반수단의 다른 실시예는 초음파 발생기에 의한 초음파 교반으로, 초음파 교반에 의해 교반속도를 조절함으로써 평균입경의 미세화가 가능하게 된다. 초음파 교반은 공지의 교반장치 및 조작조건을 그대로 채용할 수 있다. 초음파 발생기의 주파는 소망하는 입경 등에 따라 적절히 설정하면 좋으며 보통은 20∼130 KHz 정도, 바람직하게는 30∼80 KHz로 하면 좋다. 초음파 교반은 기계적 교반에 비해 더욱 미세한 교반을 수행할 수 있으며, 상기 초음파 교반 및 기계적교반 외에도 적용 가능한 다른 여러 가지 교반수단을 이용할 수 있다.Another embodiment of the stirring means of the second step is the ultrasonic stirring by the ultrasonic generator, it is possible to refine the average particle diameter by adjusting the stirring speed by the ultrasonic stirring. Ultrasonic stirring can employ | adopt a well-known stirring apparatus and operation conditions as it is. The frequency of the ultrasonic generator may be appropriately set in accordance with the desired particle size and the like, and may usually be about 20 to 130 KHz, preferably 30 to 80 KHz. Ultrasonic agitation can perform finer agitation than mechanical agitation, and other various agitation means can be used in addition to the ultrasonic agitation and mechanical stirring.

제2공정에 있어서의 온도는 특히 제한되지 않고 보통 10∼30℃ 정도, 바람직하게는 15∼25℃로 하면 좋다. 게다가 교반시간은 아크릴 미립자의 석출이 실질적으로 완료되기까지 행하면 좋으며, 보통은 30∼240분 정도인데 이 범위 외로 하더라도 지장은 없지만, 교반시간이 30분 이하이면 제1용액의 용매가 완전 휘발되지 않고, 교반시간이 240분 이상이면 입자간 응고 발생 가능성이 높아질 우려가 있다.The temperature in the second step is not particularly limited and may be usually about 10 to 30 ° C, preferably 15 to 25 ° C. In addition, the stirring time may be performed until the precipitation of the acrylic fine particles is substantially completed. Usually, it is about 30 to 240 minutes, but there is no problem even if it is outside this range, but if the stirring time is 30 minutes or less, the solvent of the first solution is not completely volatilized. If the agitation time is 240 minutes or more, there is a possibility that the possibility of coagulation between particles increases.

본 발명은 제2공정에 있어서 혼합용액에 아크릴의 빈용매를 더욱 첨가하는 것도 가능하다. 제1용액 또는 제2용액에 사용되는 용매는 종류에 따라서는 아크릴 미립자가 석출되지 않는 (또는 석출되기 어려운) 경우가 있는데, 이 경우에 아크릴의 빈용매를 첨가함으로써 아크릴 미립자를 보다 효율적으로 석출시킬 수 있다. 혼합용액에 첨가하는 빈용매는 특히 한정되어 있지 않으며, 생성되는 아크릴의 종류, 제1용액, 제2용액에 사용되는 용매 등에 따라 적절히 선택하면 좋다.In the second step, the present invention can further add an acrylic poor solvent to the mixed solution. Depending on the type of solvent used in the first or second solution, acrylic fine particles may not be precipitated (or difficult to precipitate). In this case, acrylic fine particles may be added to more efficiently precipitate the acrylic fine particles. Can be. The poor solvent added to the mixed solution is not particularly limited and may be appropriately selected depending on the kind of acrylic produced, the solvent used for the first solution, the second solution, and the like.

(3) 제3공정(3) Third process

제3공정에 있어서 유화액으로부터 제1액의 유기용매를 가열·증발함으로써 반응계 외로 제거하면서 아크릴 구상미립자를 석출시킨다. 유화액에 대한 가열온도는 제1용액에 사용된 용매의 종류에 따라 다르나 보통은 30∼100℃ 정도가 바람직하며, 고온가열로 갈수록 제2용액의 증발량을 감안하여 제2용액의 보충이 필요하게 된다. 가열온도가 30℃이하이면 제1용액의 용매가 증발되기 어렵고, 가열온도가 100℃이상이면 제2용액의 용매가 증발되어 생성입자간 응고가 쉽게 발생된다.In the third step, acrylic spherical fine particles are precipitated while removing the organic solvent of the first liquid from the emulsion by heating and evaporating it out of the reaction system. The heating temperature for the emulsion varies depending on the type of solvent used in the first solution, but usually 30 to 100 ° C. is preferred, and the second solution needs to be replenished in consideration of the evaporation amount of the second solution as the high temperature is heated. . If the heating temperature is 30 ° C or less, the solvent of the first solution is difficult to evaporate. If the heating temperature is 100 ° C or more, the solvent of the second solution is evaporated, and coagulation between the produced particles occurs easily.

가열시점은 유화액이 형성되어지는 10초∼30분 정도, 바람직하게는 1∼15분으로 하면 좋다. 용매증발을 위한 가열은 아크릴 미립자의 석출이 완료되기까지 행하면 좋다.The heating time is about 10 seconds to 30 minutes, preferably 1 to 15 minutes when the emulsion is formed. The heating for solvent evaporation may be performed until the deposition of the acrylic fine particles is completed.

제3공정에서 침전생성된 아크릴미립자는 원심분리법 등의 공지의 방법에 따라 고액분리하여 회수하면 좋다. 제3공정에서 얻어지는 아크릴미립자 (분말)는 구상으로서 생성되는 경우는 일반적으로는 평균입경 0.05∼80㎛ (바람직하게는 0.1∼20㎛)으로 단분산상의 것이다. 본 발명에 의하면 구상에 대한 부정형상은 0.1% 미만으로 제조할 수 있어 최대의 표면적을 가지게 된다.The acrylic fine particles precipitated in the third step may be recovered by solid-liquid separation according to a known method such as centrifugation. When the fine particles (powder) obtained in the third step are produced as spherical particles, they are generally monodisperse with an average particle diameter of 0.05 to 80 µm (preferably 0.1 to 20 µm). According to the present invention, the irregular shape with respect to the spherical shape can be made less than 0.1% to have the maximum surface area.

이하에 실시예를 나타내어, 본 발명의 특징을 보다 명확히 하고자 한다. 또한 본 발명에 있어서 평균입경 및 입도분포는 입도분석기 (Malvern Instruments, UK)를 이용하였고, 입자표면은 주사형전자현미경 (SEM)으로 관찰하였다.Examples will be shown below to further clarify the features of the present invention. In the present invention, the average particle size and the particle size distribution were measured using a particle size analyzer (Malvern Instruments, UK), and the particle surface was observed by scanning electron microscopy (SEM).

(실시예 1)(Example 1)

제1용액으로서 아세톤에 용해시킨 10㎖ (아크릴 : 아세톤 = 1 : 4), 제2용액으로서 0.5% 폴리비닐알콜 함유 수용액 20 ml를 제조하였다. 이어서 25℃에서 양쪽 용액을 혼합하여 호모믹서(3,000 rpm)로 유화액을 제조하였다. 제조된 유화액은 40℃에서 60분 교반함으로써 아크릴미립자를 석출하였다. 그 후, 원심법에 의해 석출물을 회수하고 감압건조에 의해 미립자 (분말)를 얻었다.10 ml (acrylic: acetone = 1: 4) dissolved in acetone as a first solution and 20 ml of 0.5% polyvinyl alcohol-containing aqueous solution were prepared as a second solution. Both solutions were then mixed at 25 ° C. to prepare an emulsion with a homomixer (3,000 rpm). The prepared emulsion precipitated acrylic fine particles by stirring at 40 ° C for 60 minutes. Then, the precipitate was collect | recovered by the centrifugal method and the fine particle (powder) was obtained by drying under reduced pressure.

석출한 미립자를 주사형전자현미경 (SEM)으로 관찰함으로써, 아크릴미립자가단분산상의 균일한 구상입자로 구성되어 있는 것을 확인하였다. 그 관찰결과를 도 1에 나타내었다. 또한 입도분석기에 의한 측정결과, 아크릴미립자의 평균입경은 3.04㎛였다. 그 측정결과를 도 2에 나타내었다.By observing the precipitated fine particles with a scanning electron microscope (SEM), it was confirmed that the acryl fine particles were composed of uniform spherical particles in the monodisperse phase. The observation result is shown in FIG. Moreover, the average particle diameter of acryl fine particles was 3.04 micrometers as a result of the measurement by the particle size analyzer. The measurement result is shown in FIG.

(실시예 2)(Example 2)

제1용액으로서 메틸렌클로라이드에 용해시킨 10㎖ (아크릴 : 메틸렌클로라이드 = 1 : 4), 제2용액으로서 0.5% 폴리비닐알콜 함유 수용액 20 ml를 제조하였다. 이어서 25℃에서 양쪽 용액을 혼합하여 호모믹서 (3,000 rpm)로 유화액을 제조하였다. 제조된 유화액은 40℃에서 60분 교반함으로써 아크릴미립자를 석출하였다. 그 후, 원심법에 의해 석출물을 회수하고 감압건조에 의해 미립자 (분말)를 얻었다.As a first solution, 10 ml (acryl: methylene chloride = 1: 1) dissolved in methylene chloride and 20 ml of 0.5% polyvinyl alcohol-containing aqueous solution were prepared as a second solution. Both solutions were then mixed at 25 ° C. to prepare an emulsion with a homomixer (3,000 rpm). The prepared emulsion precipitated acrylic fine particles by stirring at 40 ° C for 60 minutes. Then, the precipitate was collect | recovered by the centrifugal method and the fine particle (powder) was obtained by drying under reduced pressure.

석출한 미립자를 주사형전자현미경 (SEM)으로 관찰함으로써, 아크릴미립자가 단분산상의 균일한 구상입자로 구성되어 있는 것을 확인하였으며, 또한 입도분석기에 의한 아크릴미립자의 평균입경은 3.7㎛였다. 입도분포도를 도 3에 나타내었다.By observing the precipitated fine particles with a scanning electron microscope (SEM), it was confirmed that the acryl fine particles were composed of homogeneous spherical particles in a monodisperse phase, and the average particle diameter of the acryl fine particles by the particle size analyzer was 3.7 µm. Particle size distribution is shown in FIG. 3.

(실시예 3)(Example 3)

제1용액으로서 메틸렌클로라이드에 용해시킨 10㎖ (아크릴 : 아세톤 = 1 : 4), 제2용액으로서 0.5% 폴리비닐알콜 함유 수용액 20 ml를 제조하였다. 이어서 25℃에서 양쪽 용액을 혼합하여 초음파 교반(30 KHz)로 유화액을 제조하였다. 제조된 유화액은 40℃에서 60분 교반함으로써 아크릴 미립자를 석출하였다. 그 후, 원심법에 의해 석출물을 회수하고 감압건조에 의해 미립자 (분말)를 얻었다.As a first solution, 10 ml (acryl: acetone = 1: 4) dissolved in methylene chloride and 20 ml of a 0.5% polyvinyl alcohol-containing aqueous solution were prepared as a second solution. Both solutions were then mixed at 25 ° C. to prepare an emulsion by ultrasonic stirring (30 KHz). The prepared emulsion precipitated acrylic microparticles | fine-particles by stirring at 40 degreeC for 60 minutes. Then, the precipitate was collect | recovered by the centrifugal method and the fine particle (powder) was obtained by drying under reduced pressure.

석출한 미립자를 주사형전자현미경 (SEM)으로 관찰함으로써, 아크릴미립자가 단분산상의 균일한 구상입자로 구성되어 있는 것을 확인하였다. 그 관찰 결과를 도 4에 나타내었다. 또한 입도분석기에 의한 측정결과, 아크릴미립자의 평균입경은 1.45㎛였다. 그 측정결과를 도 5에 나타내었다.By observing the precipitated fine particles with a scanning electron microscope (SEM), it was confirmed that the acryl fine particles were composed of uniform spherical particles in a monodisperse phase. The observation result is shown in FIG. Moreover, the average particle diameter of the acryl fine particles was 1.45 micrometers as a result of the measurement by the particle size analyzer. The measurement results are shown in FIG. 5.

(실시예 4)(Example 4)

제1용액으로서 메틸렌클로라이드에 용해시킨 10㎖ (아크릴 : 메틸렌클로라이드 = 1 : 4), 제2용액으로서 0.5% 폴리비닐알콜 함유 수용액 20 ml를 제조하였다. 이어서 25℃에서 양쪽 용액을 혼합하여 초음파 교반(30KHz)으로 유화액을 제조하였다. 제조된 유화액은 40℃에서 60분 교반함으로써 아크릴미립자를 석출하였다. 그 후, 원심법에 의해 석출물을 회수하고 감압건조에 의해 미립자 (분말)를 얻었다.As a first solution, 10 ml (acryl: methylene chloride = 1: 1) dissolved in methylene chloride and 20 ml of 0.5% polyvinyl alcohol-containing aqueous solution were prepared as a second solution. Both solutions were then mixed at 25 ° C. to prepare an emulsion by ultrasonic stirring (30 KHz). The prepared emulsion precipitated acrylic fine particles by stirring at 40 ° C for 60 minutes. Then, the precipitate was collect | recovered by the centrifugal method and the fine particle (powder) was obtained by drying under reduced pressure.

석출한 미립자를 주사형전자현미경 (SEM)으로 관찰함으로써, 아크릴미립자가 단분산상의 균일한 구상입자로 구성되어 있는 것을 확인하였다. 그 관찰 결과를 도 6에 나타내었다. 또한 입도분석기에 의한 측정결과, 아크릴 미립자의 평균입경은 2.33㎛였다. 그 측정결과를 도 7에 나타내었다.By observing the precipitated fine particles with a scanning electron microscope (SEM), it was confirmed that the acryl fine particles were composed of uniform spherical particles in a monodisperse phase. The observation result is shown in FIG. Moreover, as a result of the measurement by the particle size analyzer, the average particle diameter of acryl microparticles | fine-particles was 2.33 micrometers. The measurement result is shown in FIG.

(비교예 1)(Comparative Example 1)

제1용액으로서 아세톤에 용해시킨 10㎖ (아크릴 : 아세톤 = 1 : 2)을 사용한 것을 제외하고는 실시예 1과 같은 방법으로 제조하였다.It was prepared in the same manner as in Example 1 except that 10 ml (acryl: acetone = 1: 2) dissolved in acetone was used as the first solution.

석출한 미립자를 주사형전자현미경 (SEM)으로 관찰함으로써, 아크릴미립자가응집상의 불균일한 입자로 이루어져 있는 것을 확인하였다. 그 관찰결과를 도 8에 나타내었다. 또한 입도분석기에 의한 측정결과, 아크릴미립자의 평균입경은 23.3㎛였으며, 그 측정결과를 도 9에 나타내었다.By observing the precipitated fine particles with a scanning electron microscope (SEM), it was confirmed that the acrylic fine particles consisted of non-coherent particles in agglomerated phase. The observation result is shown in FIG. As a result of the particle size analyzer, the average particle diameter of acryl fine particles was 23.3 μm, and the measurement results are shown in FIG. 9.

본 발명의 제조방법에 의하여 마이크로미터에서 나노미터 영역에 이르기까지 소망하는 입도 및 그 분포형태를 제어할 수 있다.According to the production method of the present invention, the desired particle size and its distribution form can be controlled from the micrometer to the nanometer region.

본 발명에 의해 얻어진 아크릴 구상미립자는 화장품용 고분자첨가제로서 사용되어질 수 있으며, 그 외의 각종 용도에 폭넓게 사용하는 것이 가능하게 된다. 예를 들면 전기·전자재료, 의료용재료, 각종 필터용재료, 광기능재료, 크로마토그래피용재료, 스페이서제, 필름첨가제, 복합재료첨가제, 아크릴바니쉬첨가제 등에도 유용하다.Acrylic spherical fine particles obtained by the present invention can be used as a polymer additive for cosmetics, it is possible to use a wide range of other various applications. For example, it is also useful for electrical / electronic materials, medical materials, various filter materials, optical functional materials, chromatography materials, spacer agents, film additives, composite material additives, acrylic varnish additives, and the like.

Claims (7)

아크릴고분자로부터 아크릴 구상미립자를 제조하는 방법에 있어서,In the method for producing acrylic spherical particles from acrylic polymer, (a) 아크릴고분자를 포함하는 제1용액과 유화분산제를 포함하는 제2용액을 각각 조제하는 제1공정,(a) a first step of preparing a first solution containing an acrylic polymer and a second solution containing an emulsion dispersant, respectively; (b) 제1용액과 제2용액을 혼합하여 교반수단에 의해 혼합용액으로부터 유화액을 제조하는 제2공정 및(b) a second step of preparing an emulsion from the mixed solution by stirring means by mixing the first solution and the second solution; and (c) 제조된 유화액으로부터 용매를 증발시킴으로써 아크릴 구상미립자를 석출시키는 제3공정을 포함하는 것을 특징으로 하는 것을 특징으로 하는 아크릴 구상미립자의 제조방법.and (c) a third step of depositing acrylic spherical fine particles by evaporating the solvent from the prepared emulsion. 제 1 항에 있어서, 상기 제1공정의 제1액의 아크릴고분자는 acrylic acid, methacrylic acid, acrylate ester (methyl, ethyl, n-butyl, Isobutyl, t-butyl, 2-ethyl hexyl, Desyl, 2-Ethoxy, ethyl, 2-Hydroxy propyl Acrylate)의 적어도 1종으로부터의 중합체인 것을 특징으로 하는 아크릴 구상미립자의 제조방법.According to claim 1, wherein the acrylic polymer of the first liquid of the first step is acrylic acid, methacrylic acid, acrylate ester (methyl, ethyl, n-butyl, Isobutyl, t-butyl, 2-ethyl hexyl, Desyl, 2- Ethoxy, ethyl, 2-Hydroxy propyl Acrylate) A method for producing acrylic spherical particles, characterized in that the polymer from at least one kind. 제 1 항에 있어서, 상기 제1용액의 용매는 아세트알데하이드, 메틸초산, 에틸초산, 아밀초산염, 아닐린, 벤즈알데하이드, 벤젠, 4-염화탄소, 2-황화탄소, 클로로포름, 포름산, 농황산, 농질산, 사이클로헥산, 디부틸프탈레이트, 에틸초산염, 2-염화에틸렌, 불화수소산, 2-염화메틸렌, 염산, 질산, 톨루엔, 크실렌, 디에틸에테르, 디메틸포름아미드, 디메틸아세트아미드, N-메틸-2-피롤리돈의 적어도 1종을 포함하며, 아크릴과 용매의 비율이 1 : 3∼30으로 이루어진 것을 특징으로 하는 아크릴 구상미립자의 제조방법.The method of claim 1, wherein the solvent of the first solution is acetaldehyde, methyl acetate, ethyl acetate, amyl acetate, aniline, benzaldehyde, benzene, 4-chlorochloride, carbon dioxide, chloroform, formic acid, concentrated sulfuric acid, concentrated nitric acid, Cyclohexane, dibutyl phthalate, ethyl acetate, 2-chloroethylene, hydrofluoric acid, 2-methylene chloride, hydrochloric acid, nitric acid, toluene, xylene, diethyl ether, dimethylformamide, dimethylacetamide, N-methyl-2-pi A method for producing acryl spherical fine particles comprising at least one kind of rolidone, wherein the ratio of acryl and solvent is 1: 3 to 30. 제 1 항에 있어서, 상기 제2용액의 용매는 젤라틴, 아라비아고무, 덱스트린, 카제인, 단백질, 폴리비닐알콜, 알긴산소다, 알부민 등의 고분자계 입체적 유화분산제와, 솔비탄모노올레이트 등의 저분자계 정전기적 유화분산제의 적어도 1종을 포함하며, 용액내 분산제의 농도가 0.05∼10% (w/ℓ)로 이루어진 것을 특징으로 하는 아크릴 구상미립자의 제조방법.The method of claim 1, wherein the solvent of the second solution is gelatin, gum arabic, dextrin, casein, protein, polyvinyl alcohol, soda alginate, albumin and the like, high molecular stereoscopic dispersant and low molecular weight such as sorbitan monooleate A method for producing acryl spherical fine particles comprising at least one kind of an electrostatic emulsion dispersant, wherein the concentration of the dispersant in the solution is 0.05 to 10% (w / l). 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 교반수단은 교반기에의한 기계적 교반이며, 상기 제 1 용액과 제 2 용액과의 혼합비율은 1:1∼20, 교반기의 회전속도는 1,000∼20,000 rpm, 교반시간이 30∼240분으로 이루어진 것을 특징으로 하는 아크릴 구상미립자의 제조방법.The method according to any one of claims 1 to 4, wherein the stirring means is mechanical stirring by a stirrer, the mixing ratio of the first solution and the second solution is 1: 1 to 20, and the rotation speed of the stirrer is A method for producing acrylic spherical fine particles, characterized in that consisting of 1,000 to 20,000 rpm, the stirring time is 30 to 240 minutes. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 교반수단은 초음파 발생기에 의한 초음파 교반이며, 상기 제 1 용액과 제 2 용액과의 혼합비율은 1:1∼20, 교반시간이 30∼240분으로 이루어진 것을 특징으로 하는 아크릴 구상미립자의 제조방법.The method according to any one of claims 1 to 4, wherein the stirring means is ultrasonic stirring by an ultrasonic generator, the mixing ratio of the first solution and the second solution is 1: 1-20, and the stirring time is 30- Acrylic spherical fine particles production method, characterized in that consisting of 240 minutes. 제 1 항에 있어서, 상기 제3공정에 있어서 유화액으로부터 제1용액의 유기용매를 30∼100 ℃로 가열·증발시킴으로써 아크릴 구상미립자를 석출시키는 것을 특징으로 하는 아크릴 구상미립자의 제조방법.The method for producing acrylic spherical fine particles according to claim 1, wherein in the third step, acrylic spherical fine particles are precipitated by heating and evaporating the organic solvent of the first solution at 30 to 100 ° C.
KR1020010080119A 2001-11-20 2001-12-17 The Manufacturing Method Of Acryl Globular Corpuscle KR20030042409A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020010072353 2001-11-20
KR20010072353 2001-11-20

Publications (1)

Publication Number Publication Date
KR20030042409A true KR20030042409A (en) 2003-05-28

Family

ID=29570417

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010080119A KR20030042409A (en) 2001-11-20 2001-12-17 The Manufacturing Method Of Acryl Globular Corpuscle

Country Status (1)

Country Link
KR (1) KR20030042409A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030087812A (en) * 2002-05-10 2003-11-15 주식회사 효성 Manufacturing method of spherical polyamide fine-particles
KR20040022637A (en) * 2002-09-09 2004-03-16 주식회사 효성 A Manufacturing Method of a Acryl Minute Particle Using Simultaneous Emulsification
WO2007111730A2 (en) * 2005-12-09 2007-10-04 3M Innovative Properties Company Intermediate elastomer compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940014543A (en) * 1992-12-08 1994-07-18 윌리암 에프. 마쉬 Redispersible acrylic polymer powder for cement phase composition
KR19990070970A (en) * 1998-02-26 1999-09-15 김공수 Method for producing porous polymer particles
JPH11292978A (en) * 1998-04-06 1999-10-26 Dainippon Ink & Chem Inc Production of resin powder and resin powder
KR20000000245A (en) * 1999-10-06 2000-01-15 김공수 Preparation of Scent polymer Microparticles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940014543A (en) * 1992-12-08 1994-07-18 윌리암 에프. 마쉬 Redispersible acrylic polymer powder for cement phase composition
KR19990070970A (en) * 1998-02-26 1999-09-15 김공수 Method for producing porous polymer particles
JPH11292978A (en) * 1998-04-06 1999-10-26 Dainippon Ink & Chem Inc Production of resin powder and resin powder
KR20000000245A (en) * 1999-10-06 2000-01-15 김공수 Preparation of Scent polymer Microparticles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030087812A (en) * 2002-05-10 2003-11-15 주식회사 효성 Manufacturing method of spherical polyamide fine-particles
KR20040022637A (en) * 2002-09-09 2004-03-16 주식회사 효성 A Manufacturing Method of a Acryl Minute Particle Using Simultaneous Emulsification
WO2007111730A2 (en) * 2005-12-09 2007-10-04 3M Innovative Properties Company Intermediate elastomer compositions
WO2007111730A3 (en) * 2005-12-09 2007-11-15 3M Innovative Properties Co Intermediate elastomer compositions

Similar Documents

Publication Publication Date Title
KR950005305B1 (en) Electrophoretic display particles and process for their prepartion
JP5390193B2 (en) Cellulose microparticles and dispersions and dispersions thereof
US3923704A (en) Process for making porous polyester granules
KR100442164B1 (en) Manufacturing method of precipitated polyamide powder with narrow particle size distribution and low porosity
CA1217893A (en) Method for making polymodal aqueous synthetic resin dispersions
US8012450B2 (en) Method for making mesoporous material
JPS6346091B2 (en)
CN113181846B (en) Preparation method of pure lignin microcapsule based on Pickering emulsion solvent volatilization
JPH08511728A (en) Method of heat-aggregating aqueous dispersion
KR20030042409A (en) The Manufacturing Method Of Acryl Globular Corpuscle
KR20070004516A (en) Spherical composite composition and process for producing spherical composite composition
KR100580271B1 (en) Amino resin composite and method of producing same
CN110105506B (en) Preparation method of pot-shaped polymer microspheres
KR20030067867A (en) The Manufacturing Method Of Globular Fine Grain Of Polybutylene Succinate
Kang et al. Study on soap‐free P (MMA‐EA‐AA or MAA) latex particles with narrow size distribution
JP3111486B2 (en) Method for producing acrylonitrile polymer fine particles
KR20030087812A (en) Manufacturing method of spherical polyamide fine-particles
CN103342768B (en) A kind of method utilizing emulsifier-free emulsion polymerization to prepare PMMA microsphere
JPS58128112A (en) Flocculating method of latex particle
KR100812671B1 (en) Process for preparing fully crosslinked polystyrene beads by using a new mixture solvent as media in precipitation polymerization
Wang et al. Synthesis and characterization of uniform‐sized hollow chitosan microspheres
Wang et al. Polystyrene microspheres with narrow particle size distribution
KR100625048B1 (en) A method for preparing fine particles of monodispersed barium titanate using emulsion
Liu et al. Bi-compartmental responsive polymer particles
JPH11236417A (en) Finely granular polyvinyl alcohol-based resin

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application