KR20030036480A - Process for preparing low molecular polymannuronate, a novel use thereof as controller of serum lipids, and functional foods and health-aid foods comprising the same - Google Patents

Process for preparing low molecular polymannuronate, a novel use thereof as controller of serum lipids, and functional foods and health-aid foods comprising the same Download PDF

Info

Publication number
KR20030036480A
KR20030036480A KR1020030022565A KR20030022565A KR20030036480A KR 20030036480 A KR20030036480 A KR 20030036480A KR 1020030022565 A KR1020030022565 A KR 1020030022565A KR 20030022565 A KR20030022565 A KR 20030022565A KR 20030036480 A KR20030036480 A KR 20030036480A
Authority
KR
South Korea
Prior art keywords
polymanuronate
low molecular
molecular weight
cholesterol
group
Prior art date
Application number
KR1020030022565A
Other languages
Korean (ko)
Inventor
변재형
이진우
이동수
남택정
Original Assignee
(주)케이비피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)케이비피 filed Critical (주)케이비피
Publication of KR20030036480A publication Critical patent/KR20030036480A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/42Gripping members engaging only the external or internal surfaces of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PURPOSE: Provided are a method for manufacturing low molecular weight polymannuronate, novel use thereof as an improving agent of serum lipid, and a functional food and health food supplement containing the same. CONSTITUTION: Low molecular weight polymannuronate is characterized by average molecular weight of 10000-100000Da. The polymannuronate suppresses obesity, decreases the activity of GOT and GPT in serum, and reduces the content of cholesterol, phospholipid and low density lipoprotein, while increasing the content of high density lipoprotein.

Description

저분자 폴리만유로네이트의 제조방법, 혈청지질 개선제로서의 이의 신규 용도 및 이를 함유하는 기능성 식품 및 건강 보조 식품{Process for preparing low molecular polymannuronate, a novel use thereof as controller of serum lipids, and functional foods and health-aid foods comprising the same}Process for preparing low molecular polymannuronate, a novel use describes as controller of serum lipids, and functional foods and health- aid foods comprising the same}

본 발명은 고순도의 저분자 폴리만유로네이트 및 이의 제조방법, 혈청지질 개선제로서의 이의 신규 용도에 관한 것이다. 또한 본 발명은 이러한 저분자 폴리만유로네이트를 함유하는 기능성 식품 및 건강 보조 식품에 관한 것이다.The present invention relates to high purity low molecular polymanuronate and its preparation, and its novel use as a serum lipid improving agent. The present invention also relates to functional foods and dietary supplements containing such low molecular polymanuronates.

구체적으로 본 발명은 고분자 알긴산으로부터 유기산 분해 및 pH에 따른 용해도차 분리법에 의해 저분자 폴리만유로네이트만을 순수분리하는 방법, 및 이러한 방법으로 순수분리된 저분자 폴리만유로네이트, 이를 함유하는 기능성 식품 및 혈청지질개선 건강보조식품에 관한 것이다.Specifically, the present invention is a method for purely separating only low molecular polymanuronate by the decomposition of organic acid and solubility difference according to pH from polymer alginic acid, and low molecular polymanuronate purely separated in this way, functional food and serum containing the same It relates to a lipid-enhancing dietary supplement.

최근 고지방 및 고단백질 식이 등 식습관의 서구화에 따른 영양소의 과잉 섭취와, 운동량 부족 등의 원인으로, 고혈압, 동맥경화, 협심증, 심근경색 및 혈전증과 같은 난치성 심혈관계 질환, 비만 및 당뇨병이 증가하는 추세이고, 이들 질환의 예방 및 치료에 대한 관심이 급증하고 있다. 특히 화학 합성된 의약이 아니라, 천연물질에서 추출된 물질이 첨가된 식품으로 상기 질환을 예방 및 치료할 수 있다면, 부작용이나 거부감을 줄일 수 있는 가장 바람직하고 안전한 방법일 것이다.In recent years, there has been an increase in intractable cardiovascular diseases such as hypertension, arteriosclerosis, angina pectoris, myocardial infarction and thrombosis, obesity and diabetes due to excessive intake of nutrients and lack of exercise due to westernization of diet such as high fat and high protein diet. The interest in the prevention and treatment of these diseases is rapidly increasing. In particular, if the drug can be prevented and treated with foods added with materials extracted from natural substances, not chemically synthesized drugs, it will be the most desirable and safe way to reduce side effects or rejection.

이에 따라 최근 건강한 식생활을 위한 생리활성 식품소재 개발의 일환으로 식이섬유에 대한 연구개발이 다각도로 이루어지고 있다. 식이섬유는 변비예방, 비만방지, 항혈전, 항동맥경화, 항콜레스테롤 등 성인병에 대해 효과가 있는 것으로 알려져 있다[미국임상영양학회지 48, 1988, 748∼753; 미국임상영양학회지 52, 1990, 495∼499; 미국임상영양학회지 124, 1994, 78∼83).Accordingly, as part of the development of bioactive food materials for a healthy diet, research and development on dietary fiber has been conducted at various angles. Dietary fiber is known to be effective against adult diseases such as constipation prevention, obesity prevention, antithrombosis, anti-arteriosclerosis, and anti-cholesterol. American Society of Clinical Nutrition, 52, 1990, 495-499; American Society of Clinical Nutrition 124, 1994, 78-83.

특히, 식이섬유중 해조류(미역, 다시마, 모자반, 톳 등)의 세포벽 구성 다당류 성분 중 20 내지 30%를 차지하는 식이섬유 성분인 고분자 알긴산이 콜레스테롤 저하 및 비만 억제 효과가 있음이 알려져 있다[일본영양학잡지 26권 3호, 1974, 78∼83; 일본영양학잡지 33권 6호, 1974, 273-281; 일본수산학회지 59권 5호, 1993, 879∼884].In particular, it is known that macromolecular alginic acid, a dietary fiber component that accounts for 20 to 30% of the cell wall-constituting polysaccharides of seaweeds (seaweed, seaweed, kelp, yam, and soybeans) in dietary fiber, has an effect on lowering cholesterol and inhibiting obesity. 26, 3, 1974, 78-83; Japanese Nutrition Journal, Vol. 33, No. 6, 1974, 273-281; 59, 5, 1993, 879-884].

현재 알긴산 관련제품들이 많이 제조, 판매되고 있는데, 이들 대부분은 해조류에서 알긴산을 단순 가공추출하여 판매하고 있는 실정이며, 이들 제품에 함유된 알긴산은 분자량이 큰 고분자(약 400만 달톤 이상)인 것들이 대부분이다. 고분자 알긴산은 만유로네이트(M) 및 글루로네이트(G)로 구성된 중합체인데, 고분자 상태로는 점성이 높고 용해도가 낮아서 음료 등 식품에 고농도로 첨가하여 사용하기가 용이하지 않았다. 따라서 일본 공개특허공보 평6-7093호에는 저분자화한 알긴산을 이용하여 기능성 음료 등에 첨가제로서 활용하는 것을 개시하고 있다. 여기서 저분자화 알긴산이란 분자량 10,000 내지 900,000 달톤의 폴리글루로네이트 및 폴리만유로네이트가 혼재해 있는 상태를 의미한다. 저분자화 알긴산은 고분자화 알긴산에 비해 점성이 감소하고 용해도가 증가하며, 콜레스테롤 저하 등 고분자 알긴산이 갖는 효과는 증가하는 것으로 알려져 있다.Currently, many alginic acid-related products are manufactured and sold. Most of them are simply processed and extracted from alginic acid from seaweeds. Most of the alginic acid contained in these products are high molecular weight polymers (about 4 million daltons or more). to be. The polymer alginic acid is a polymer composed of only euroronate (M) and gluronate (G), and has high viscosity and low solubility in the polymer state, so that it is not easy to use it in high concentrations in foods such as beverages. Therefore, Japanese Unexamined Patent Application Publication No. Hei 6-7093 discloses the use of low molecular weight alginic acid as an additive for a functional beverage or the like. Here, the low molecular weight alginic acid means a state in which polygluronate and polymanuronate having a molecular weight of 10,000 to 900,000 Daltons are mixed. It is known that low molecular weight alginic acid has a lower viscosity and higher solubility than polymerized alginic acid, and the effect of high molecular alginic acid, such as cholesterol lowering, is increased.

고분자 알긴산을 저분자화하기 위하여 종래에 사용하던 방법으로는, 산, 알칼리를 이용하는 방법[Haug, A., Larsen, B. and Smidsrod, O. 1966. Acta Chem. Scand., 20(1), 183∼190; Hirst, E. and Rees, D. A. 1965. J. Chem. Soc., 9, 1182∼1187; Hirst, E. L., Percival, E. and Wold, J. K. 1964. J. Chem. Soc., 8, 1493∼1499], 열 및 압력을 이용하는 방법[일본특허 特開平6-7093, 1994; Kimura, Y., Watanabe, K. and Okuda, H. 1996. J. Ethnopharmacology. 54, 47∼54], 및 효소를 이용하는 방법[Doubet, R. S. and Quatrano, R. S. 1984. Appl. Environ. Microbiol. 47(4): 699-703; Dunne, W. M. and Buckmire, F. L. A. 1985. Appl. Environ. Microbiol. 50(1): 562-567; Hansen, J. B. and Nakamura, L. K. 1985. Appl. Environ. Microbiol., 49(4), 1019-1021; Haug, A. and Larsen, B. 1971. Carbohydr. Res., 17, 297-308; Romeo, T. and Preston, J. F. 1986. Biochemistry. 25(26): 8385-8391; Yonemoto, Y., Murata, K., Kimura, A., Yamaguchi, H. and Okayama, K. 1991. J. of Fermen. and Bioengin. 72(3): 152-157]이 있다. 그러나, 산, 알칼리를 이용하는 방법은 제품의 품질저하와 기기의 부식문제, 중화제의 필요성과 그 후처리의 문제가 있어 산업적으로 이용하기에 불리한 방법이다. 가압하에 100∼200℃에서 열처리하여 분자량 10,000∼900,000 달톤 수준의 저분자화한 알긴산을 제조하는 방법(일본특허 特開平6-7093, 1994)은 분해시간이 길며, 가압 하에 100℃ 이상의 고온에서 처리하므로 고온·고압을 위한 에너지가 소요되어 고비용이 요구되는 결점이 있다. 마지막으로 효소를 이용하는 방법도 장시간의 반응시간을 필요로 하므로 산업적으로 이용하기에는 적합하지 않다.In order to lower the molecular weight of alginic acid, conventionally used methods include using acid and alkali [Haug, A., Larsen, B. and Smidsrod, O. 1966. Acta Chem. Scand., 20 (1), 183-190; Hirst, E. and Rees, D. A. 1965. J. Chem. Soc., 9, 1182-1187; Hirst, E. L., Percival, E. and Wold, J. K. 1964. J. Chem. Soc., 8, 1493-1499], a method using heat and pressure [Japanese Patent No. 6-7093, 1994; Kimura, Y., Watanabe, K. and Okuda, H. 1996. J. Ethnopharmacology. 54, 47-54, and methods using enzymes [Doubet, R. S. and Quatrano, R. S. 1984. Appl. Environ. Microbiol. 47 (4): 699-703; Dunne, W. M. and Buckmire, F. L. A. 1985. Appl. Environ. Microbiol. 50 (1): 562-567; Hansen, J. B. and Nakamura, L. K. 1985. Appl. Environ. Microbiol., 49 (4), 1019-1021; Haug, A. and Larsen, B. 1971. Carbohydr. Res., 17, 297-308; Romeo, T. and Preston, J. F. 1986. Biochemistry. 25 (26): 8385-8391; Yonemoto, Y., Murata, K., Kimura, A., Yamaguchi, H. and Okayama, K. 1991. J. of Fermen. and Bioengin. 72 (3): 152-157. However, the method of using acid and alkali is disadvantageous for industrial use because of problems of deterioration of product, corrosion of equipment, necessity of neutralizer and post-treatment. The method of producing low molecular weight alginic acid with molecular weight of 10,000 to 900,000 Daltons by heat treatment at 100 to 200 ° C. under pressure (Japanese Patent 特 開平 6-7093, 1994) has a long decomposition time and is processed at a high temperature of 100 ° C. or higher under pressure. Energy is required for high temperature and high pressure, and high cost is required. Finally, the method using the enzyme also requires a long reaction time is not suitable for industrial use.

상기한 바와 같이, 저분자화 알긴산은 고분자 알긴산에 비해 콜레스테롤 저하 등의 효과는 증가하면서 용해도 등의 물성도 개선되어 저분자화 알긴산을 이용한 건강보조식품의 제조에 유용할 것으로 기대된다.As described above, low molecular weight alginic acid is expected to be useful in the manufacture of dietary supplements using low molecular weight alginic acid by improving the physical properties such as solubility while increasing the effect of lowering cholesterol and the like compared to the polymer alginic acid.

그러나, 저분자화 알긴산으로부터 콜레스테롤 저하 등의 효과에 직접적인 영향을 미치는 유효성분만을 추출하여 이를 식품에 직접 사용할 수 있다면, 더욱 고단위의 유효성분을 정확한 함량으로 함유하는 기능성 식품을 제조할 수 있을 것이므로, 그 산업적 기대 및 효과는 엄청날 것이다.However, if only the active ingredient extracted directly from the low-molecular-weight alginic acid directly affects the effects such as cholesterol lowering, and can be directly used in foods, functional foods containing higher units of the active ingredient in the correct content can be prepared. The industrial expectations and effects will be enormous.

즉, 이전에는 고분자 알긴산으로부터 그 유효성분인 저분자 폴리만유로네이트만을 고순도로 분리 제조하는 방법이 존재하지 않았고, 저분자 폴리만유로네이트 자체가 혈청지질개선제로서 유용한 물질임이 알려져 있지 않았다.That is, previously, there was no method for separating and manufacturing only the low molecular polymanuronate, which is an active ingredient from the polymer alginic acid, with high purity, and it was not known that the low molecular polymanuronate itself is a useful substance as a serum lipid improving agent.

한편, 폴리만유로네이트 자체는 투석환자로부터 독소를 걸러내는 방법에서 요독성 물질을 조절하는 물질로서[쿨베 등(Kulbe et al)의 미합중국특허 제4,689,322호], 및 장기이식에서의 면역 거부반응을 회피하기 위하여 세포나 조직등에 코팅하는 물질로서[도리안 등(Dorian et al.)의 미합중국특허 제5,656,468호]의 용도가 알려져 있을 뿐이다.On the other hand, polymanuronate itself is a substance that regulates toxic substances in a method of filtering toxins from dialysis patients (U.S. Patent No. 4,689,322 to Kulbe et al.), And immune rejection in organ transplantation. In order to circumvent, only the use of US Pat. No. 5,656,468 to Dorian et al. As a coating material for cells or tissues is known.

본 발명의 일차적인 목적은 고순도의 저분자 폴리만유로네이트의 제조방법을 제공하는 것이다.It is a primary object of the present invention to provide a process for the preparation of high purity low molecular polymanuronates.

본 발명의 다른 목적은 혈청지질 개선제로서의 저분자 폴리만유로네이트의 용도를 제공하는 것이다.Another object of the present invention is to provide the use of low molecular weight polymanuronate as a serum lipid improving agent.

본 발명의 또다른 목적은 고순도 저분자 폴리만유로네이트를 함유하는 기능성식품 및 건강보조식품을 제공하는 것이다.It is another object of the present invention to provide a functional food and health supplement containing high purity low molecular polymanuronate.

본 발명의 또다른 목적은 상기 용도를 갖는 고순도 저분자 폴리만유로네이트를 제공하는 것이다.It is another object of the present invention to provide a high purity low molecular polymanuronate having the above uses.

즉, 본 발명은 혈액 및 간장 중의 지방과 콜레스테롤 및 글루코스 수치의 저하에 의하여 고혈압, 동맥경화, 고콜레스테롤증 등의 심혈관계 질환, 비만 및 당뇨병을 치료 및 예방하는 효과를 갖는 기능성 식품 및 건강보조식품의 소재로서 유용한 물질 및 그 물질의 제조방법을 제공함으로써 인류 건강 증진 및 질병예방에 기여하고자 하는 것이다.That is, the present invention is a functional food and dietary supplement having the effect of treating and preventing cardiovascular diseases such as hypertension, arteriosclerosis, hypercholesterolemia, obesity, and diabetes by lowering fat, cholesterol, and glucose levels in blood and liver. It is intended to contribute to the promotion of human health and disease prevention by providing a useful material and a method of producing the material.

본 발명의 저분자 폴리만유로네이트의 제조방법은The method for producing the low molecular polymanuronate of the present invention

(1) 고분자 알긴산에 유기산을 첨가하고 가열하는 단계,(1) adding an organic acid to the polymer alginic acid and heating it,

(2) pH를 2.5 내지 3.5로 조절하는 단계, 및(2) adjusting the pH to 2.5 to 3.5, and

(3) 폴리만유로네이트를 회수하는 단계(3) recovering polymanuronate

를 포함한다.It includes.

상기 본 발명의 방법에 의하면, 고분자 알긴산을 유기산으로 부분가수분해를유도하여 보다 분자량이 작은 저분자화 알긴산으로 만들고, 이어서 폴리만유로네이트와 폴리글루로네이트의 혼성 블록으로 이루어진 저분자화 알긴산에서 pH 조절에 의한 용해도차법를 이용하여 폴리만유로네이트 블록만을 분리·제조할 수 있다.According to the method of the present invention, the polymer alginic acid induces partial hydrolysis into an organic acid to make a lower molecular weight alginic acid having a smaller molecular weight, and then pH control in the low molecular weight alginic acid composed of a hybrid block of polymanuronate and polygluronate. Only the polymanuronate block can be separated and manufactured using the solubility difference method.

본 발명에 사용될 수 있는 출발물질인 고분자 알긴산은 자연에서 존재하는 갈조류 시료 또는 이의 건조분말시료로부터 당업계에 공지된 적절한 추출, 중화 및 탈수, 감압건조 과정 등을 거쳐 얻을 수 있다.Polymeric alginic acid as a starting material that can be used in the present invention can be obtained through appropriate extraction, neutralization and dehydration, drying under reduced pressure, and the like known in the art from brown algae samples or dry powder samples thereof present in nature.

본 발명에서 사용될 수 있는 유기산으로는 구연산, 사과산, 수산, 젖산, 호박산, 주석산, 초산 등이 있으나, 이에 제한되는 것은 아니다. 알긴산을 가수분해하여 저분자화할 수 있는 유기산이라면 모두 본 발명에 사용될 수 있다. 유기산의 종류에 따라 알긴산의 저분자화 정도에 차이가 있을 수 있으나, 유기산의 농도나 가수분해 시간 등을 조절하여 저분자화 정도를 조절할 수 있다. 본 발명의 일 실시예에 의하면, 동일한 농도에서는 초산의 저분자화 정도가 가장 높은 것으로 나타났다. 본 발명의 한 실시태양에서 바람직한 유기산의 농도는 0.2몰 내지 2몰, 특히 0.2 몰 내지 1몰의 범위내일 것이 바람직하다.Organic acids that may be used in the present invention include citric acid, malic acid, fish acid, lactic acid, succinic acid, tartaric acid, acetic acid and the like, but is not limited thereto. Any organic acid capable of hydrolyzing alginic acid and low molecular weight can be used in the present invention. There may be a difference in the degree of low molecular weight of alginic acid according to the type of organic acid, but the degree of low molecular weight may be controlled by adjusting the concentration or hydrolysis time of the organic acid. According to one embodiment of the present invention, the low molecular weight of acetic acid was found to be the highest at the same concentration. In one embodiment of the present invention, the concentration of the preferred organic acid is preferably in the range of 0.2 mol to 2 mol, in particular 0.2 mol to 1 mol.

고분자 알긴산과 유기산과의 반응은 일반적으로 80∼120℃의 온도범위가 바람직하나, 특히 95 내지 105℃가 가장 적합하다.The reaction of the polymer alginic acid with the organic acid is generally preferred in the temperature range of 80 to 120 ℃, in particular 95 to 105 ℃ is most suitable.

제2단계에서 pH는 2.5 내지 3.5 로 조절하는 것이 바람직하다. 특히 2.8 내지 3.0으로 조절하는 것이 더욱 바람직하다. pH를 2.5 미만으로 하면, 얻어지는 폴리만유로네이트의 순도는 높아지지만, 수율이 낮아지고, pH를 3.5 초과하면, 순도가 낮아지므로, 순도와 수율을 가장 적절하게 조화시키는 범위가 바람직하기 때문이다. 폴리만유로네이트의 순도를 95%이상으로 얻기 위해서는 pH를 1.5이하까지 떨어뜨려야 하나 이 때 수율이 10∼20%밖에 되지 않아 실제 산업적인 이용을 위해서는 부적절하며, pH를 3.5∼4.0사이에서 조절하면 폴리만유로네이트의 순도가 훨씬 떨어지는 결과를 나타내었다.In the second step, the pH is preferably adjusted to 2.5 to 3.5. It is especially preferable to adjust to 2.8 to 3.0. If the pH is less than 2.5, the purity of the resulting polymanuronate is high, but the yield is low. If the pH is more than 3.5, the purity is low, and therefore, a range in which purity and yield are most appropriately balanced is preferable. In order to obtain more than 95% purity of polymanuronate, the pH must be lowered to 1.5 or less, but the yield is only 10-20%, which is inappropriate for practical industrial use. The purity of polymanuronate resulted in much lower purity.

본 발명에 따라 얻어지는 저분자 폴리만유로네이트의 순도는 90% 이상으로 고순도이다. 본 명세서에서 저분자 폴리만유로네이트라 함은 평균 분자량 1,000 내지 100,000 달톤을 의미한다. 본 발명의 폴리만유로네이트는 바람직하게는 10,000 내지 100,000 달톤, 더욱 바람직하게는 30,000 내지 50,000 달톤의 분자량을 갖는 것이고, 가장 바람직하게는 35,000 내지 45,000 달톤의 분자량을 갖는 것이다.The purity of the low molecular polymanuronate obtained in accordance with the invention is at least 90% high. As used herein, the low molecular weight polymanuronate means an average molecular weight of 1,000 to 100,000 Daltons. The polymanuronate of the present invention preferably has a molecular weight of 10,000 to 100,000 Daltons, more preferably 30,000 to 50,000 Daltons, and most preferably has a molecular weight of 35,000 to 45,000 Daltons.

본 발명자들은 상기와 같이 얻어진 저분자 폴리만유로네이트가 고분자 알긴산, 저분자화 알긴산 및 저분자 폴리글루로네이트 보다 더 우수한 혈청지질개선 기능이 있음을 발견하였다. 여기서, "혈청지질개선" 기능이란, 혈액 및 간장 중의 총 콜레스테롤 수치를 낮추고, 유익한 고밀도지단백의 수치를 증가시키면서 저밀도지단백의 수치는 낮추고, 인지질 및 중성지질의 함량을 인체에 유익하게 조절하는 기능 및 지오티(GOT) 및 지피티(GPT) 수치를 저하시키는 기능을 포함하는 의미인 것으로 정의된다.The present inventors have found that the low molecular polymanuronate obtained as described above has better serum lipid improving function than the polymer alginic acid, low molecular weight alginic acid and low molecular polygluronate. Here, the "serum lipid improvement" function is to lower the total cholesterol level in the blood and liver, increase the level of beneficial high-density lipoprotein, lower the level of low-density lipoprotein, and control the content of phospholipid and neutral lipid to the human body. It is defined as meaning including the ability to lower GOT and GPT levels.

지오티 및 지피티란 각각 글루타믹옥살로트랜스아미네이즈 및 글루타믹피루빅트랜스아미네이즈 효소의 활성을 측정한 수치로, 이들 효소의 활성은 모든 형태의 간손상에서도 증가하며 매우 민감하다. 따라서, 지오티 및 지피티 수치의 저하능력은 간기능 향상을 보여주는 척도이다.Geoti and zipiti are measurements of the activity of glutamic oxalotransaminases and glutamic pyruvic transaminase enzymes, respectively, and the activity of these enzymes is highly sensitive to all types of liver damage. Thus, the ability to lower geotyi and geititi levels is a measure of improved liver function.

동물실험 결과, 저분자 폴리만유로네이트의 혈청기질개선효과가 저분자화 알긴산 및 저분자화 폴리글루로네이트에 비하여 비약적으로 증진되고 연속복용에서도 간기능 손상이 없음이 확인되었다(하기 실시예 3의 동물실험결과 참고). 본 발명의 저분자 폴리만유로네이트는 총 콜레스테롤 함량을 단순히 낮추는 것 뿐만 아니라 콜레스테롤 조성비를 유리하게 조절하는 효과가 있고, 혈청 지오티 및 지피티에 대한 상승억제 효과가 뛰어나 간기능 향상에도 크게 기여할 것으로 예상된다.As a result of animal experiments, it was confirmed that the serum substrate improvement effect of the low molecular polyman euronate is significantly improved compared to the low molecular weight alginic acid and the low molecular weight polygluronate, and there is no damage to the liver function even in continuous dose (the animal experiment of Example 3 below). See results). The low molecular polymanuronate of the present invention not only lowers the total cholesterol content, but also has an effect of advantageously controlling the cholesterol composition ratio, and is expected to contribute greatly to the improvement of liver function due to its excellent synergistic inhibitory effect on serum geothyroides and gephyti. do.

또한, 본 발명자들은 폴리만유로네이트가 카드뮴, 납, 수은과 같은 유해 중금속과의 결합능이 우수하여 이들 중금속을 체외로 배출하는 능력을 가짐을 발견하였다. 폴리만유로네이트의 유해 중금속 이온과의 결합능은 고분자 알긴산에 비하여 월등히 증가된 것으로 밝혀졌다.In addition, the present inventors have found that polymanuronate has excellent binding ability with harmful heavy metals such as cadmium, lead, and mercury, and thus has the ability to discharge these heavy metals out of the body. The binding capacity of polymanuronate with harmful heavy metal ions was found to be significantly increased compared to the polymer alginic acid.

또한, 기본적으로 폴리만유로네이트는 물과의 결합력과 보수성이 높아서 변비에도 탁월한 효과를 나타내는 것으로 예상된다.In addition, polymanuronate is expected to have an excellent effect on constipation due to its high binding strength and water retention.

상기한 바와 같이, 본 발명에서 얻어진 저분자 폴리만유로네이트는 고순도이면서 혈청지질개선효과가 탁월할 뿐만 아니라, 물에 대한 용해도 및 점성이 우수하고, 천연의 갈조류 특유의 이미 또는 이취를 갖지 않으므로, 다양한 식품에의 첨가제로서 및 단독으로 혈청지질개선 및 비만, 당뇨병의 예방 및 치료에 유용하게 사용될 수 있다.As described above, the low-molecular polymanuronate obtained in the present invention is not only high purity and excellent serum lipid improving effect, but also excellent in solubility and viscosity in water, and does not have the peculiar or odor characteristic of natural brown algae. As an additive to foods and alone, it can be usefully used for serum lipid improvement and prevention of obesity and diabetes.

또한, 본 발명에서 얻어진 폴리만유로네이트는 요독성 물질의 조절 물질 및 장기이식에서 면역거부반응을 피하기 위하여 세포나 조직에 코팅하는 물질로서의용도로도 사용될 수 있다.In addition, the polymanuronate obtained in the present invention can also be used as a substance for coating on cells or tissues in order to modulate toxic substances and to avoid immunorejection in organ transplantation.

본 발명의 저분자 폴리만유로네이트는 다양한 기능성 식품 및 건강보조식품의 제조시 식품의 주성분 또는 첨가제 및 보조제로 사용될 수 있다.The low molecular polymanuronate of the present invention can be used as a main ingredient or additives and auxiliaries of foods in the manufacture of various functional foods and dietary supplements.

본 명세서에서 "기능성 식품"이란, 일반 식품에 폴리만유로네이트를 첨가함으로써 일반 식품의 기능성을 향상시킨 식품을 의미한다. 기능성에는 물성 및 생리기능성으로 대별될 수 있는데, 본 발명의 폴리만유로네이트는 물성으로는 고유의 점성 및 중금속 이온과의 결합능을 가지고 있고, 생리기능성으로는 콜레스테롤 저하능 등의 고지혈증 예방 기능 및 간기능 개선과 관련하여 지오티 및 지피티 활성의 저하능을 가지는 것으로 나타났다. 따라서, 본 발명의 폴리만유로네이트를 일반 식품에 첨가할 경우 일반 식품의 물성 및 생리기능성이 향상될 것이고, 본 발명은 이러한 향상된 기능의 식품을 포괄적으로 "기능성 식품"이라 정의한다. 예를 들어 본 발명의 폴리만유로네이트를 햄 등의 2차 가공식품에 첨가하여 이 식품의 점도를 증가시키고, 고지혈증 예방 및 비만 예방 등의 기능을 향상시킨 경우, 이러한 2차 가공식품을 기능성 식품이라 부른다.As used herein, the term "functional food" means a food product having improved functionality of a general food product by adding polymanuronate to the general food product. Functionality can be roughly divided into physical properties and physiological functions. The polymanuronate of the present invention has inherent viscosity and binding properties with heavy metal ions as physical properties, and hyperlipidemia prevention functions such as cholesterol lowering ability and liver as physiological functions. It has been shown to have a lowering ability of geotyi and gepiti activity in relation to function improvement. Therefore, when the polymanuronate of the present invention is added to a general food, the physical properties and physiological function of the general food will be improved, and the present invention generally defines a food with such an improved function as a "functional food". For example, when the polymanuronate of the present invention is added to secondary processed foods such as ham to increase the viscosity of the food and to improve functions such as hyperlipidemia prevention and obesity prevention, such secondary processed foods are functional foods. It is called.

기능성 식품과 구별하여, 본 명세서에서 "건강보조식품" 또는 "특수영양식품"이란, 폴리만유로네이트를 일반식품에 첨가하거나 또는 폴리만유로네이트만을 캡슐화하는 등으로 제조한 건강식품으로, 이를 섭취할 경우 건강상 특정한 효과를 가져오는 것을 의미하는 것으로 해석된다. 즉, 건강보조식품은 특정의 약리기능을 가지는 것을 의미하나, 일반 약품과는 달리 식품을 원료로 하여 약품의 장기복용시 발생할 수 있는 부작용등이 없는 장점이 있다.Distinguishing from functional foods, "health supplement" or "special dietary supplement" in the present specification is a health food manufactured by adding polymanuronate to a general food or encapsulating only polymanuronate. It is interpreted to mean that it has a certain health effect. That is, the health supplement means that it has a specific pharmacological function, but unlike general medicine, it has the advantage that there are no side effects that may occur when the long-term use of the drug as a food raw material.

예를 들어, 폴리만유로네이트의 식이효율(즉, 체중증가 억제효과)의 기능을 이용하여 다이어트 기능성 식품을 제조할 수 있다. 또한 간기능향상 기능을 이용한 기능성 강화 식품, 숙취제거 간기능보호 음료 등을 제조할 수 있을 것이다.For example, dietary functional foods may be manufactured using the function of the dietary efficiency of polymanuronate (that is, weight gain inhibiting effect). In addition, functional enhancement foods using liver function enhancement function, it may be possible to manufacture a liver function protective drink to remove hangovers.

또한, 본 발명의 폴리만유로네이트는 고지혈증 환자를 위한 식이 요법 또는 고지혈증 방지를 위한 콜레스테롤 수치 저하 및 조절 효과를 갖는 건강보조식품의 제조에도 응용가능하다.In addition, the polymanuronate of the present invention is applicable to the manufacture of dietary supplements for hyperlipidemia patients or dietary supplements having a cholesterol lowering and control effect for preventing hyperlipidemia.

기타 변비예방을 위한 식이섬유 음료, 콜레스테롤 수치 저하 기능성 식빵, 라면, 마가린 제조 등의 다양한 분야에 응용가능하다.It is applicable to various fields such as dietary fiber drink for preventing constipation, cholesterol lowering functional bread, ramen, and margarine production.

본 발명에 따른 저분자 폴리만유로네이트를 함유하는 기능성 식품 및 건강보조식품에는 저분자 폴리만유로네이트를 0.01 내지 100 중량% 함유하는 것이 바람직하다. 특히 바람직한 함량은 첨가되는 식품군에 따라 차이가 있으나 일반적으로 음료로 조제할 경우에는 0.01∼5%내외, 면류 등에 첨가될 경우에는 10∼50%내외, 건강보조식품으로 조제할 경우에는 40∼100%내외로 적용하고자 하는 식품군에 따라 다양하게 첨가하여 이용할 수 있다.Functional foods and dietary supplements containing low molecular polymanuronate according to the present invention preferably contain from 0.01 to 100% by weight of low molecular polymanuronate. Particularly preferred contents are different depending on the food group to be added, but in general, it is about 0.01 to 5% when prepared as a drink, about 10 to 50% when added to noodles, and 40 to 100% when prepared as a dietary supplement. Depending on the food group to be applied in and out can be used in various ways.

본 발명에 따른 저분자 폴리만유로네이트 건조 분말을 일반 소맥분에 1 내지 50 중량%로 포함되도록 혼가하여 폴리만유로네이트 혼합 소맥분을 조성하고, 이 소맥분을 이용하여 통상의 라면 및 식빵의 제조방법으로 기능성 저분자 폴리만유로네이트 함유 라면 및 식빵을 제조할 수 있다.The low molecular polymanuronate dry powder according to the present invention is mixed so as to include 1 to 50% by weight in general wheat flour to form a polymanuronate mixed wheat flour, which is functional as a method for preparing a conventional ramen and bread using the wheat flour. Low molecular polymanuronate-containing ramen and bread can be prepared.

본 발명의 저분자 폴리만유로네이트를 주성분으로 함유하고 통상의 첨가제를 임의로 함유하는 캡슐제 및 정제 형태의 다이어트 식품을 통상의 제조공정으로 제조할 수 있다.Dietary foods in capsule and tablet form containing the low molecular polymanuronate of the present invention as a main component and optionally containing conventional additives can be produced by a conventional manufacturing process.

이 외에도 저분자 폴리만유로네이트의 용도는 식품산업에 있어 음료에 첨가하여 기능성 음료로도 이용이 가능하고, 식품에도 햄류 등 지방 또는 콜레스테롤이 많은 식품에 일정량 첨가하여 제조가공할 수 있으며, 면류에도 첨가하여 적용할 수 있고, 그외 갈비의 양념 및 소금 등에 혼합하는 양념류로도 이용이 가능하는 등 그 필요에 따라 다양하게 분말상으로 이용하던지 아니면 물에 녹여 이용할 수 있다.In addition, the use of low-molecular polymanuronate can be used as a functional drink by adding it to beverages in the food industry, and it can be added to foods high in fat or cholesterol, such as hams, and processed and added to noodles. It can be applied to, and can be used as a seasoning mixed with other seasonings and salt of ribs, etc. It can be used in various powder forms or dissolved in water depending on the needs.

이하 본 발명의 실시예를 참조하면서 본 발명의 구성 및 효과를 더욱 상세히 설명할 것이나 본 발명은 하기 실시예에 의하여 제한되지 않음이 명백하다.Hereinafter, the configuration and effects of the present invention will be described in more detail with reference to examples of the present invention, but it is obvious that the present invention is not limited by the following examples.

[실시예 1]Example 1

1. 저분자 폴리만유로네이트의 제조1. Preparation of low molecular polymanuronate

약 60그람의 알긴산(분자량 약 130만 달톤)을 하기 표1 내지 표6에 제시한 농도의 유기산 용액 600ml에 혼합하여 교반한 후 약 100℃에서 하기 표에 제시한 시간(유기산의 농도는 시간과는 함수관계이므로 유기산의 농도가 진할수록 시간은 짧게 소요됨)동안 가수분해시켜 저분자화하였다. 이 저분자화한 알긴산의 폴리만유로네이트와 폴리글루로네이트 혼합블록을 각각의 유기산으로 pH 2.8∼3.0으로 조정하고 원심분리하여 상층액과 침전으로 분리하였다. 이 때 상층액이 폴리만유로네이트 분획이고 침전이 폴리글루로네이트 분획이므로, 상층액을 취하여 이 상층액에 1몰 탄산나트륨을 첨가하여 중화시키고, 에탄올을 50%가 되게 첨가하여 침전을 생성시킨 후 원심분리하여 침전을 얻었다.About 60 grams of alginic acid (molecular weight: about 1.3 million daltons) was mixed with 600 ml of an organic acid solution having the concentrations shown in Tables 1 to 6, followed by stirring, and the time shown in the table below at about 100 ° C. Is a functional relationship, so the higher the concentration of organic acid, the shorter the time required). The low molecular weight alginate polymanuronate and polygluronate mixing blocks were adjusted to pH 2.8 to 3.0 with each organic acid and centrifuged to separate the supernatant and the precipitate. At this time, since the supernatant is the polymanuronate fraction and the precipitate is the polygluronate fraction, the supernatant is taken and neutralized by addition of 1 molar sodium carbonate to the supernatant, and ethanol is added to 50% to form a precipitate. Centrifugation gave a precipitate.

얻어진 침전을 최소량(약 200 ml)의 증류수에 용해하고, 여기에 다시 각 유기산으로 pH 2.8∼3.0으로 조정하고 원심분리하였다. 상층을 1몰 탄산나트륨으로 중화한 후에 같은 양의 에탄올로 재침전시키고 원심분리하여 저분자 폴리만유로네이트를 분리하였다.The obtained precipitate was dissolved in a minimum amount (about 200 ml) of distilled water, and again adjusted to pH 2.8 to 3.0 with each organic acid and centrifuged. The lower layer was neutralized with 1 molar sodium carbonate and then reprecipitated with the same amount of ethanol and centrifuged to separate low molecular polymanuronate.

2. 저분자 폴리만유로네이트의 분자량 측정2. Determination of Molecular Weight of Low Molecular Polymanuronate

본 발명의 저분자 폴리만유로네이트의 분자량은 세파로즈 시엘-4비 (Sepharose CL-4B)와 세파로즈 시엘-6비(Sepharose CL-6B), 칼럼크로마토그래피 (Ø12 mm × 97.6 cm)를 사용하며, 풀루란(Pullulan, Shodex standard P-82)을 분자량 표준으로 하여 측정하였다. 본 발명에서 제조된 폴리만유로네이트의 분자량은 46.1 킬로달톤이었다.The molecular weight of the low molecular polymanuronate of the present invention uses Sepharose Ciel-4 ratio (Sepharose CL-4B) and Sepharose Ciel-6 ratio (Sepharose CL-6B), column chromatography (Ø12 mm × 97.6 cm) , Pullulan (Pullulan, Shodex standard P-82) was measured as the molecular weight standard. The molecular weight of the polymanuronate prepared in the present invention was 46.1 kilodaltons.

3. 저분자 폴리만유로네이트의 순도검정3. Purity test of low molecular polymanuronate

분리한 저분자 폴리만유로네이트의 순도검정 및 조성분석은 저분자 폴리만유로네이트를 1% 트리에칠아민용액에 용해한 후에 5% 메탄올을 함유한 0.02몰 인산칼륨 완충액(pH 4.6)으로 왓트만 파티실 10-에스에이엑스(Whatman Partisil 10-SAX) 음이온교환칼럼(250 × 4.6 mm i.d.)을 사용하여 고속액체크로마토그래피로서 분석하였다. 순도검정에는 글루유론산 락톤과 만유론산 락톤(시그마사제)을 표준품으로 하여 시료분석과 같은 조건으로 고속액체크로마토그래피에 의하여 분석한 크로마토그램을 기준으로 하여 각각의 용리패턴을 비교하여 순도를 판정하였다. 본 발명에서 제조된 폴리만유로네이트의 순도는 가수분해시간별로 각각 1시간-91%, 3시간-93%, 5시간-96% 이었다.Purity and composition analysis of the separated low molecular polymanuronate was performed by dissolving the low molecular polymanuronate in 1% triethylamine solution and then Whatman patil with 0.02 molar potassium phosphate buffer (pH 4.6) containing 5% methanol. It was analyzed as high performance liquid chromatography using Whatman Partisil 10-SAX anion exchange column (250 × 4.6 mm id). Purity test was performed by comparing the elution pattern of each of the elution pattern on the basis of the chromatogram analyzed by high-performance liquid chromatography under the same conditions as the sample analysis, using the gluuronic acid lactone and manuronic acid lactone (manufactured by Sigma) as a standard product. . The purity of the polymanuronate prepared in the present invention was 1 hour-91%, 3 hours-93% and 5 hours-96% for each hydrolysis time.

[실시예 2] 다양한 유기산에 의한 다양한 분해조건에서 고분자 알긴산의 분해 실험결과Example 2 Results of Decomposition of Polymer Alginic Acid Under Various Decomposition Conditions by Various Organic Acids

다양한 종류의 유기산을 이용하여 동일한 시간동안 가수분해한 결과를 표 1에 나타내었다. 유기산의 종류에 따라 저분자화 정도에 차이를 보였으며 동일 농도에서는 초산으로 가수분해한 것이 가장 저분자화 정도가 높았다. 각각의 수율은 약 80%전후로 거의 유사한 경향을 보였다.Table 1 shows the results of hydrolysis for the same time using various kinds of organic acids. The degree of low molecular weight was different according to the type of organic acid, and hydrolysis with acetic acid at the same concentration was the lowest. Each yield tended to be nearly similar around 80%.

사용한 유기산과 생성된 폴리만유로네이트 분자량의 상관관계Correlation between Organic Acids Used and Molecular Weights of Polymanuronates Produced 유기산(0.4 몰)Organic acid (0.4 mol) 반응시간(시간)Response time (hours) 분자량(킬로달톤)Molecular weight (kilodaltons) 구연산사과산수산젖산호박산주석산초산Citric Acid Apple Acid Lactic Acid 33333333333333 24.053.237.633.835.433.17.524.053.237.633.835.433.17.5

* 반응은 100℃의 항온조건에서 실행.* The reaction is carried out at a constant temperature of 100 ℃.

다양한 농도(0.2∼1.0몰)의 초산을 이용하여 동일한 시간동안 가수분해한 결과를 표 2에 나타내었다. 알긴산의 저분자화 정도는 유기산의 농도가 진할수록 높게 나타났다. 그러나, 저농도의 초산을 이용한 경우에도 생성된 폴리만유로네이트의 분자량은 40,000 달톤 정도로 원래 알긴산 분자량의 1/30 수준으로 그 저분자화 효과가 큰 것으로 나타났다.Table 2 shows the results of hydrolysis during the same time using various concentrations (0.2 to 1.0 mole) of acetic acid. The degree of low molecular weight of alginic acid was higher with higher concentration of organic acid. However, even when a low concentration of acetic acid was used, the molecular weight of the produced polymanuronate was about 40,000 Daltons, which was about 1/30 of the original alginic acid molecular weight.

초산농도와 생성된 폴리만유로네이트 분자량과의 상관관계Correlation between acetic acid concentration and molecular weight of polymanuronate produced 초산농도(몰)Acetic Acid Concentration (Mall) 반응시간(시간)Response time (hours) 분자량(킬로달톤)Molecular weight (kilodaltons) 00.20.40.60.81.000.20.40.60.81.0 033333033333 1,283.040.07.53.81.90.61,283.040.07.53.81.90.6

* 반응은 100℃의 항온조건에서 실행.* The reaction is carried out at a constant temperature of 100 ℃.

동일한 농도의 유기산을 이용하고 다만 가수분해 시간만을 달리하였을 때의 저분자화 정도를 각각 초산, 사과산, 수산 및 구연산을 대상으로 측정하여 표 3∼6에 나타내었다. 가수분해는 10∼240분의 시간대에서 반응시간이 증가함에 따라 저분자화도 높게 나타났다. 특히 초기반응시간 (10∼60분) 동안에 저분자화가 급격하게 일어남을 알 수 있었다.When the same concentration of organic acid was used but only hydrolysis time was different, the degree of low molecular weight was measured for acetic acid, malic acid, fish acid and citric acid, respectively, and the results are shown in Tables 3 to 6. Hydrolysis showed high molecular weight as the reaction time increased from 10 to 240 minutes. In particular, it was found that low molecular weight occurred rapidly during the initial reaction time (10 to 60 minutes).

초산에서 반응시간과 생성된 폴리만유로네이트 분자량과의 상관관계Correlation between Reaction Time and Acetyl Polymanuronate Molecular Weight in Acetic Acid 초산농도(몰)Acetic Acid Concentration (Mall) 반응시간(분)Response time (minutes) 분자량(킬로달톤)Molecular weight (kilodaltons) 0.40.4 0102040556012018024001020405560120180240 1,283.0462.1185.6109.043.232.823.77.54.41,283.0462.1185.6109.043.232.823.77.54.4

* 반응은 100℃의 항온조건에서 실행.* The reaction is carried out at a constant temperature of 100 ℃.

사과산에서 반응시간과 생성된 폴리만유로네이트 분자량과의 상관관계Correlation between Reaction Time and Molecular Weight of Polymanuronate in Malic Acid 사과산농도(몰)Malic Acid Concentration (Mall) 반응시간(분)Response time (minutes) 분자량(킬로달톤)Molecular weight (kilodaltons) 0.40.4 02040601201802400204060120180240 1,283.0569.0446.1234.2123.953.224.01,283.0569.0446.1234.2123.953.224.0

* 반응은 100℃의 항온조건에서 실행.* The reaction is carried out at a constant temperature of 100 ℃.

수산에서 반응시간과 생성된 폴리만유로네이트 분자량과의 상관관계Correlation between Reaction Time and Molecular Weight of Polymanuronate Produced in Fisheries 수산농도(몰)Fisheries concentration (mall) 반응시간(분)Response time (minutes) 분자량(킬로달톤)Molecular weight (kilodaltons) 0.40.4 02040601201802400204060120180240 1,283.0465.4354.8162.882.537.615.41,283.0465.4354.8162.882.537.615.4

* 반응은 100℃의 항온조건에서 실행.* The reaction is carried out at a constant temperature of 100 ℃.

구연산에서 반응시간과 생성된 폴리만유로네이트 분자량과의 상관관계Correlation between the Reaction Time and the Polymanuronate Molecular Weight Produced in Citric Acid 구연산농도(몰)Citric Acid Concentration (Mall) 반응시간(분)Response time (minutes) 분자량(킬로달톤)Molecular weight (kilodaltons) 0.40.4 02040601201802400204060120180240 1,283.0452.4332.8154.078.524.013.21,283.0452.4332.8154.078.524.013.2

* 반응은 100℃의 항온조건에서 실행.* The reaction is carried out at a constant temperature of 100 ℃.

[실시예 3] 저분자 폴리만유로네이트의 효과 실험 [동물실험]Example 3 Effect Experiment of Low Molecular Polymanuronate [Animal Experiment]

1. 실험재료 및 방법1. Experimental Materials and Methods

(1) 실험식이의 조제: 기초식이, 콜레스테롤식이 및 실험식이의 조성은 표 1과 같다. 콜레스테롤식이는 기초식이에 콜레스테롤 1%를 첨가한 양만큼 자당(sucrose)의 양을 줄여 조제하고, 실험식이는 기초식이의 자당 양에서 콜레스테롤 1%와 저분자 폴리만유로네이트 5%, 폴리글루로네이트 5% 및 폴리만유로네이트와 폴리글루로네이트 각각 2.5%씩에 해당하는 양만큼을 줄인 양으로 각각 조제하였다.(1) Preparation of experimental diet: The composition of the basic diet, cholesterol diet and experimental diet is shown in Table 1. The cholesterol diet is prepared by reducing the amount of sucrose by adding 1% cholesterol to the basic diet, and the experimental diet is 1% cholesterol, 5% low molecular polymanuronate, and polygluronate from the amount of sucrose of the basic diet. 5% and polymanuronate and polygluronate were prepared by reducing the amount corresponding to 2.5% each, respectively.

실험사료의 조성 (g/kg)Composition of Experimental Feed (g / kg) 식이성분Dietary Ingredients 실험동물군Laboratory animals 기초식이군Basic diet 대조군Control 폴리만유로네이트군Polymanuronate group 폴리만유로네이트+폴리글루로네이트군Polyman euronate + polygluronate group 폴리글루로네이트군Polygluronate Group 카제인라드유콘오일미네랄비타민염화콜린콜레스테롤콜린산나트륨폴리만유로네이트폴리글루로네이트설탕Caseinradyukonoilmineralvitaminchlorinecholinecholesterolcholate sodium choline polymanuronatepolygluronatesugar 1808020408.520000669.51808020408.520000669.5 1808020408.52102.5006571808020408.52102.500657 1808020408.52102.55006071808020408.52102.5500607 1808020408.52102.525256071808020408.52102.52525607 1808020408.52102.50506071808020408.52102.5050607

(2) 실험동물(2) experimental animals

본 실험에 사용한 실험동물은 스프래규 도우리종(Sprague Dawley, SD) 4주령 웅성 랫트(대한실험동물연구소에서 구입)이다. 이를 상기 표7의 실험동물군 각 그룹당(총 5 그룹) 10마리씩으로 하여 상기 조성의 실험사료로 5주간 사육하였다.The experimental animals used in this experiment were Sprague Dawley (SD) 4 week old male rats (purchased from the Korea Institute of Laboratory Animals). This was made for each of the experimental animal group of Table 7 (total 5 groups) 10 animals for 5 weeks as the experimental feed of the composition.

이때 실험동물의 사육조건은 온도가 22±2℃, 습도는 65±3% RH가 자동조절되는 동물사육실에서 5주간 사육한 다음, 채혈하여 혈청을 분리하여, 혈청과 간의 콜레스테롤, 중성지질, 인지질 및 저밀도지단백의 억제효과를 분석 검토하였다.At this time, the breeding conditions of experimental animals were raised for 5 weeks in an animal control room where the temperature was 22 ± 2 ℃ and the humidity was 65 ± 3% RH, and then blood was collected to separate serum, cholesterol, neutral lipid and phospholipids of liver and liver. And the inhibitory effect of low density lipoprotein was analyzed and examined.

그리고, 콜레스테롤, 중성지질, 인지질 및 저밀도지단백의 함량은 킷트시약[신양화학(주)제조]을, 그리고 실험동물의 사료는 식품등급을 사용하였다.The content of cholesterol, triglyceride, phospholipid and low density lipoprotein was kit reagent [manufactured by Shinyang Chemical Co., Ltd.], and the food grade of experimental animals was used.

*(3) 총콜레스테롤과 유리콜레스테롤: 혈청과 간장 추출시료 중의 총콜레스테롤과 유리콜레스테롤은 혈청과 추출시료 각 100 ㎕를 취하여 총콜레스테롤 측정용 콜레스테롤 CII-테스트 킷트시약(신양화학(주)제)과 유리콜레스테롤 측정용 유리콜레스테롤 C-테스트 킷트시약(신양화학(주)제)을 써서 각각 측정하였다.* (3) Total Cholesterol and Free Cholesterol: Total Cholesterol and Free Cholesterol in serum and soy sauce extract samples take 100 μl of serum and sample extracts and measure Cholesterol CII-Test Kit (Shinyang Chemical Co., Ltd.) It measured using the free cholesterol C-test kit reagent (made by Shinyang Chemical Co., Ltd.) for free cholesterol measurement.

(4) 중성지질 및 인지질: 중성지질의 농도는 혈청과 간장 추출시료 각 100 ㎕를 취하여 중성지질 G-테스트 킷트시약 (신양화학(주)제)을 써서, 인지질의 농도는 혈청과 간장 추출시료 각 100 ㎕를 취하여 인지질 C-테스트 킷트시약(신양화학(주)제)을 써서 각각 측정하였다.(4) Neutral Lipids and Phospholipids: Neutral lipid concentrations were taken from 100 μl of serum and soy extract samples, and neutral lipid G-test kit reagent (Shinyang Chemical Co., Ltd.) was used. 100 μl was taken and measured using a phospholipid C-test kit reagent (manufactured by Shinyang Chemical Co., Ltd.).

(5) 고밀도지단백- 및 저밀도지단백-콜레스테롤: 혈청과 간장 중의 고밀도지단백-콜레스테롤의 농도는 혈청과 간장 추출시료 각 100 ㎕를 취하여 고밀도지단백-콜레스테롤 C-테스트 킷트시약 (신양화학(주)제)을 써서 측정하였고,저밀도지단백-콜레스테롤은 총콜레스테롤의 농도에서 고밀도지단백-콜레스테롤의 농도를 감한 값으로 나타내었다.(5) High density lipoprotein- and low density lipoprotein-cholesterol: The concentration of high density lipoprotein-cholesterol in serum and soy sauce is obtained by taking 100 μl of serum and soy sauce extract sample, respectively, and the high density lipoprotein-cholesterol C-test kit reagent (manufactured by Shinyang Chemical Co., Ltd.). The low density lipoprotein-cholesterol was expressed by subtracting the concentration of high density lipoprotein-cholesterol from the total cholesterol concentration.

(6) 글루타믹 옥살로아세틱 트랜스아미나아제 (GOT) 및 글루타믹 피루빅 트랜스아미나아제 (GPT) 활성 : 혈청 100 ㎕를 취하여 GOT 및 GPT 활성측정용 킷트시약 (신양화학(주)제)을 써서 측정하였다.(6) Glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) activity: Kit reagent for measuring GOT and GPT activity by taking 100 μl of serum (Shinyang Chemical Co., Ltd.) ) Was measured.

(7) 통계처리: 실험결과는 통계처리에 의하여 실험군별로 평균치와 표준오차를 계산하였고, p<0.01 수준에서 둔칸스 다중 테스트(Duncan's multiple test)로 각 실험군간의 유의성을 검정하였다.(7) Statistical treatment: The experimental results were calculated for each experimental group by statistical processing, and the significance between each experimental group was tested by Duncan's multiple test at p <0.01.

2. 저분자 폴리만유로네이트의 비만억제 효과2. Anti-obesity Effect of Low Molecular Polymanuronate

5%의 저분자 폴리만유로네이트를 동물의 식이에 혼합하여 5주간 섭이시켜 체중의 감소효과를 살펴보면 표 8에서 보는 바와 같이 본 발명의 저분자 폴리만유로네이트 첨가군이 대조군에 비해 체중의 증가를 효과적으로 억제함을 알 수 있었다.5% of low molecular weight polymanuronate was mixed with the animal's diet for 5 weeks to see the weight loss effect. As shown in Table 8, the low molecular weight polymanuronate addition group of the present invention effectively increased the weight gain compared to the control group. It was found that suppression.

사육실험기간 중의 식이효율Dietary Efficiency During the Breeding Experiment 실험군Experimental group 체중증가Weight gain 사료섭취량Feed intake 식이효율Dietary efficiency 기초식이군Basic diet 197.2197.2 429.1429.1 0.460.46 대조군*1 Control group * 1 212.6212.6 433.8433.8 0.490.49 폴리만유로네이트군*2 Polymanuronate group * 2 199.0199.0 446.8446.8 0.440.44 폴리만유로네이트+폴리글루로네이트군*3 Polyman euronate + polygluronate group * 3 201.6201.6 453.4453.4 0.440.44 폴리글루로네이트군*4 Polygluronate Group * 4 200.1200.1 442.1442.1 0.450.45

*1 기초식이 + 콜레스테롤 1% 식이군* 1 Basic diet + 1% cholesterol

*2 기초식이 + 콜레스테롤 1% + 폴리만유로네이트 5% 식이군* 2 Basic diet + Cholesterol 1% + Polymanuronate 5% diet group

*3 기초식이 + 콜레스테롤 1% + 폴리만유로네이트 2.5% + 폴리글루로네이트 2.5% 식이군* 3 Basic diet + Cholesterol 1% + Polymanuronate 2.5% + Polygluronate 2.5%

*4 기초식이 + 폴리글루로네이트 5% 식이군* 4 Basic diet + polygluronate 5% diet group

3. 저분자 폴리만유로네이트의 콜레스테롤 저하 효과3. Cholesterol-lowering effect of low molecular polymanuronate

본 발명의 5% 저분자 폴리만유로네이트를 5주 동안 실험동물에 투여한 다음 혈청 및 간을 분리하여 성인병 발병의 원인물질로 알려진 콜레스테롤, 중성지질 및 저밀도 지단백 함량을 비교한 결과 표 9에서 보는 바와 같이 모든 실험사료 식이군의 혈청과 간장지질 중의 콜레스테롤 함량은 콜레스테롤식이군보다 유의적으로 낮았으며, 특히 저분자 폴리만유로네이트 식이군의 저하효과가 현저하였으며, 폴리만유로네이트와 폴리글루로네이트 혼합식이군의 효과가 폴리글루로네이트식이군에 비하여 우수하였다. 이 결과로부터 폴리만유로네이트의 식이는 폴리글루로네이트의 식이에 비하면 혈액 및 간장 중의 콜레스테롤 저감효과가 큰 것을 확인할 수 있었다. 본 발명제품인 저분자 폴리만유로네이트 식이에 의해 혈청콜레스테롤 함량은 대조군에 비하여 46%정도 감소하였으며, 간장 콜레스테롤 함량은 59%나 감소하였다.The 5% low molecular weight polymanuronate of the present invention was administered to experimental animals for 5 weeks, and then serum and liver were separated to compare cholesterol, triglyceride, and low density lipoprotein contents, which are known as the causative agents of adult disease. The cholesterol content of serum and hepatic lipids of all experimental diet groups was significantly lower than that of the cholesterol diet group, and the lowering effect of the low molecular polymanuronate diet group was remarkable, and the polymanuronate and polygluronate mixtures The effect of the diet group was superior to the polygluronate diet group. From this result, it was confirmed that the diet of polyman euronate has a greater effect of reducing cholesterol in blood and liver than the diet of polygluronate. Serum cholesterol content was reduced by 46% and hepatic cholesterol content was reduced by 59% by the low molecular polymanuronate diet of the present invention.

혈청 및 간장 콜레스테롤 저하효과Serum and liver cholesterol lowering effect 실험군Experimental group 혈청콜레스테롤(mg/㎗)Serum Cholesterol (mg / ㎗) 간장콜레스테롤(mg/g)Soy Cholesterol (mg / g) 기초식이군Basic diet 35.1±1.335.1 ± 1.3 7.4±0.27.4 ± 0.2 대조군*1 Control group * 1 284.2±3.6284.2 ± 3.6 35.6±0.335.6 ± 0.3 폴리만유로네이트군*2 Polymanuronate group * 2 153.3±2.7153.3 ± 2.7 14.7±0.214.7 ± 0.2 폴리만유로네이트+폴리글루로네이트군*3 Polyman euronate + polygluronate group * 3 207.5±3.3207.5 ± 3.3 19.6±0.219.6 ± 0.2 폴리글루로네이트군*4 Polygluronate Group * 4 218.8±3.4218.8 ± 3.4 22.1±0.322.1 ± 0.3

*1, *2, *3, *4; [표 8] 참조* 1, * 2, * 3, * 4; See [Table 8]

4. 저분자 폴리만유로네이트의 중성지질 및 인지질에 대한 효과4. Effect of Low Molecular Polymanuronate on Neutral and Phospholipids

상기 3항의 실험과 동일한 실험의 결과 표 10과와 표 11에서 나타낸 바와 같이, 혈청 중의 중성지질의 양은 콜레스테롤식이군에서 가장 높았고, 저분자 폴리만유로네이트 식이군이 가장 낮았으며, 다른 실험사료 식이군은 기초식이군군과 비슷한 함량을 보였다. 간장지질에서도 혈청과 마찬가지로 콜레스테롤 식이군이 가장 높았으며 저분자 폴리만유로네이트 식이군이 가장 낮았다. 인지질의 양은 혈청과 간장 모두에서 콜레스테롤 식이군이 가장 높았고, 기초식이군이 가장 낮았다. 실험사료 식이군에서는 모두 콜레스테롤 식이군에 비하여 인지질의 함량이 낮았으며, 그 효과는 저분자 폴리만유로네이트 식이군에서 가장 현저하였다. 본 발명제품인 저분자 폴리만유로네이트에 의하여 혈청에서의 중성지질과 인지질의 함량은 대조군에 비하여 각각 42%와 48% 감소하였다. 그리고 간장에서는 각각 35%와 40% 감소하였다.As shown in Table 10 and Table 11, the amount of triglyceride in serum was the highest in the cholesterol diet group, the lowest in the low molecular polymanuronate diet group, and the other experimental diet diet group. The content was similar to that of the basic diet group. Hepatic lipids, like serum, had the highest cholesterol and low molecular weight polymanuronate diets. The amount of phospholipid was highest in the cholesterol diet group and lowest in the basic diet group in both serum and liver. In the experimental diet diet group, the phospholipid content was lower than the cholesterol diet group, and the effect was the most significant in the low molecular polymanuronate diet group. The low molecular weight polymanuronate, the product of the present invention, reduced the content of neutral lipids and phospholipids in the serum by 42% and 48%, respectively. Soy sauce decreased 35% and 40%, respectively.

혈청 및 간장 중성지질 저하효과Serum and hepatic triglyceride lowering effect 실험군Experimental group 혈청중성지질(mg/㎗)Serum triglyceride (mg / dl) 간장중성지질(mg/g)Soy triglyceride (mg / g) 기초식이군Basic diet 62.5±3.462.5 ± 3.4 42.3±1.342.3 ± 1.3 대조군*1 Control group * 1 93.3±4.293.3 ± 4.2 79.2±2.079.2 ± 2.0 폴리만유로네이트군*2 Polymanuronate group * 2 54.3±2.454.3 ± 2.4 40.8±1.740.8 ± 1.7 폴리만유로네이트+폴리글루로네이트군*3 Polyman euronate + polygluronate group * 3 60.0±2.760.0 ± 2.7 49.2±1.949.2 ± 1.9 폴리글루로네이트군*4 Polygluronate Group * 4 72.1±2.972.1 ± 2.9 51.9±1.951.9 ± 1.9

*1, *2, *3, *4; [표 8] 참조* 1, * 2, * 3, * 4; See [Table 8]

혈청 및 간장 인지질 저하효과Serum and Soy Phospholipid Lowering Effects 실험군Experimental group 혈청인지질(mg/㎗)Serum Phospholipids (mg / dL) 간장인지질(mg/g)Soy Phospholipids (mg / g) 기초식이군Basic diet 48.9±1.548.9 ± 1.5 10.2±0.810.2 ± 0.8 대조군*1 Control group * 1 98.8±3.298.8 ± 3.2 24.5±1.524.5 ± 1.5 폴리만유로네이트군*2 Polymanuronate group * 2 63.8±2.663.8 ± 2.6 14.8±0.914.8 ± 0.9 폴리만유로네이트+폴리글루로네이트군*3 Polyman euronate + polygluronate group * 3 68.5±2.968.5 ± 2.9 15.7±0.715.7 ± 0.7 폴리글루로네이트군*4 Polygluronate Group * 4 68.0±3.068.0 ± 3.0 18.6±0.718.6 ± 0.7

*1, *2, *3, *4; [표 8] 참조* 1, * 2, * 3, * 4; See [Table 8]

5. 저분자 폴리만유로네이트의 고밀도지단백- 및 저밀도지단백-콜레스테롤에 대한 효과5. Effects of Low Molecular Weight Polymanuronate on High Density Lipoprotein- and Low Density Lipoprotein-cholesterol

상기 3항의 실험과 동일한 실험의 결과, 표 12과 표 13에서 나타낸 바와 같이, 고밀도지단백-콜레스테롤의 함량은 혈청에서 콜레스테롤 식이군이 가장 낮았고, 저분자 폴리만유로네이트식이군이 가장 높았다. 그리고 그 외 실험사료군도 콜레스테롤 식이군에 비하여 월등히 많은 함량을 보였다. 간장지질에서는 기초식이군이 가장 낮았으며, 저분자 폴리만유로네이트 식이군이 가장 높은 함량을 보였다. 저밀도 지단백 콜레스테롤 함량은 혈청중에서 콜레스테롤 식이군이 가장 높은 함량을 나타내었고, 기초식이군이 가장 낮았다. 실험사료 식이군은 콜레스테롤 식이군에 비하여 현저하게 저하하는 효과를 보였고 이는 저분자 폴리만유로네이트 식이군에서 현저하였다. 간장지질에서도 실험사료 식이군에서 저밀도 지단백 콜레스테롤의 저감효과가 높게 나타났고, 결과는 혈청에서와 같은 경향이었다. 그리고, 효과는 저분자 폴리만유로네이트 식이군에서 가장 뛰어남을 알 수 있었다. 본 발명제품인 저분자 폴리만유로네이트에 의하여 혈청에서의 고밀도지단백의 함량은 대조군에 비하여 4.6배 증가하였고 저밀도지단백의 함량은 59% 감소하였다. 그리고 간장에서는 고밀도지단백이 1.2배 증가하였고 저밀도지단백은 74% 감소하였다.As shown in Table 3 and Table 13, the high density lipoprotein-cholesterol content was the lowest in the cholesterol diet group and the lowest in the low molecular polymanuronate diet group. In addition, the experimental feed group also showed a much higher content than the cholesterol diet group. The hepatic lipids were the lowest in the basic diet group and the low molecular polymanuronate diet group had the highest content. The low-density lipoprotein cholesterol content was the highest in the cholesterol diet group and the lowest in the basic diet group. The experimental diet group showed a significantly lower effect than the cholesterol diet group, which was remarkable in the low molecular polymanuronate diet group. Hepatic lipids also showed a high effect of low-density lipoprotein cholesterol in the experimental diet group, and the results were the same as in serum. And, the effect was found to be the most excellent in the low molecular polymanuronate diet group. The low molecular weight polyman euroneate of the present invention increased the content of high density lipoproteins in serum by 4.6 times and the low density lipoprotein content was reduced by 59%. In the liver, high density lipoprotein increased 1.2 times and low density lipoprotein decreased 74%.

혈청 및 간장 고밀도지단백 콜레스테롤 증가효과Increased serum and hepatic high density lipoprotein cholesterol 실험군Experimental group 혈청고밀도지단백(mg/㎗)Serum High Density Lipoprotein (mg / ㎗) 간장고밀도지단백(mg/g)Soy High Density Lipoprotein (mg / g) 기초식이군Basic diet 27.8±1.127.8 ± 1.1 3.3±0.13.3 ± 0.1 대조군*1 Control group * 1 8.6±0.28.6 ± 0.2 5.7±0.35.7 ± 0.3 폴리만유로네이트군*2 Polymanuronate group * 2 39.4±0.939.4 ± 0.9 6.8±0.26.8 ± 0.2 폴리만유로네이트+폴리글루로네이트군*3 Polyman euronate + polygluronate group * 3 23.5±0.623.5 ± 0.6 5.4±0.45.4 ± 0.4 폴리글루로네이트군*4 Polygluronate Group * 4 15.2±0.715.2 ± 0.7 4.9±0.34.9 ± 0.3

*1, *2, *3, *4; [표 8] 참조* 1, * 2, * 3, * 4; See [Table 8]

혈청 및 간장 저밀도지단백 콜레스테롤 저하효과Serum and liver low density lipoprotein cholesterol lowering effect 실험군Experimental group 혈청저밀도지단백(mg/㎗)Serum Low Density Lipoprotein (mg / dl) 간장저밀도지단백(mg/g)Soy Low Density Lipoprotein (mg / g) 기초식이군Basic diet 7.3±0.37.3 ± 0.3 4.1±0.34.1 ± 0.3 대조군*1 Control group * 1 275.6±3.4275.6 ± 3.4 29.9±0.529.9 ± 0.5 폴리만유로네이트군*2 Polymanuronate group * 2 113.9±1.4113.9 ± 1.4 7.9±0.27.9 ± 0.2 폴리만유로네이트+폴리글루로네이트군*3 Polyman euronate + polygluronate group * 3 184.0±2.4184.0 ± 2.4 14.2±0.314.2 ± 0.3 폴리글루로네이트군*4 Polygluronate Group * 4 203.6±2.9203.6 ± 2.9 17.2±0.317.2 ± 0.3

*1, *2, *3, *4; [표 8] 참조* 1, * 2, * 3, * 4; See [Table 8]

6. 저분자 폴리만유로네이트의 혈청 GOT와 GPT에 대한 효과6. Effect of Low Molecular Polymanuronate on Serum GOT and GPT

상기 3항의 실험과 동일한 실험의 결과, 표 14에서 나타낸 바와 같이, 본 발명제품인 저분자 폴리만유로네이트에 의한 GOT와 GPT의 변화는 대조군과 비교하여 GOT는 38%, GPT는 30%의 감소효과를 나타내었다.As a result of the same experiment as in the above 3, as shown in Table 14, the change of GOT and GPT by the low molecular polymanuronate of the present invention has a 38% reduction in GOT and 30% in GPT compared to the control group. Indicated.

혈청 중의 GOT·GPT 저하효과GOT / GPT lowering effect in serum 실험군Experimental group GOT(카르멘, Karmen)GOT (Karmen) GPT(카르멘)GPT (Carmen) 기초식이군Basic diet 23.6±1.723.6 ± 1.7 18.5±1.418.5 ± 1.4 대조군*1 Control group * 1 45.2±2.345.2 ± 2.3 23.4±2.523.4 ± 2.5 폴리만유로네이트군*2 Polymanuronate group * 2 27.8±2.127.8 ± 2.1 16.3±1.516.3 ± 1.5 폴리만유로네이트+폴리글루로네이트군*3 Polyman euronate + polygluronate group * 3 31.9±1.831.9 ± 1.8 18.5±1.818.5 ± 1.8 폴리글루로네이트군*4 Polygluronate Group * 4 33.4±2.033.4 ± 2.0 18.8±1.918.8 ± 1.9

*1, *2, *3, *4; [표 8] 참조* 1, * 2, * 3, * 4; See [Table 8]

7. 급성독성시험7. Acute Toxicity Test

4주령의 수컷 ICR계 마우스 80마리를 사용하여 저분자 폴리만유로네이트를 2g/kg으로 경구투여하였다. 투여후 6시간은 매시간 관찰하였고, 2주간 일반상태 및 운동성, 체중추이, 외관 및 자율신경증상을 주의깊게 관찰을 행하였다.Eighty-week-old male ICR mice were administered orally at 2 g / kg of low molecular weight polymanuronate. Six hours after dosing was observed every hour, and for two weeks the general state and motility, weight trend, appearance and autonomic symptoms were carefully observed.

경구투여후 2주간 매일 관찰한 결과 운동활동의 변화, 체중추이의 변화, 경련 및 반사활동의 이상 등이 관찰되지 않았다.Daily observations for 2 weeks after oral administration showed no changes in exercise activity, weight change, convulsions and reflex activity.

즉, 급성독성시험 결과 LD50은 2000 mg/kg 이상이었다.In other words, LD50 was over 2000 mg / kg.

[실시예 4] 폴리만유로네이트의 중금속 흡착능 실험Example 4 Heavy Metal Adsorption Capacity of Polymanuronate

정제한 해조류 알긴산, 본 발명에 따라 분리 정제된 폴리만유로네이트 및 폴리글루로네이트를 증류수에 용해시키고, 농도를 400 μg/ml로 조정하였다. 금속염을 증류수에 용해시켜, 0, 50 또는 100 mM 농도로 준비하였다. 해조류 알긴산, 폴리만유로네이트 및 폴리글루로네이트 용액 각각을 각각의 금속 양이온 용액과 4:1의 부피비로 혼합하였다. 이 혼합물을 실온에서 2시간 동안 배양시키고 원심분리(1,800×g에서 20분)하였다. 각 상청액내의 중합체의 농도를 페놀-황산법[Dubois et al., 1956.Anal. Chem., 28, 350-356]으로 측정하였다. 침전된 중합체의 농도를 계산하고 이를 이용하여 각 중금속 양이온에 대한 중합체의 상대적 친화도를 계산하는데 사용하였다. 그 결과를 표15에 나타낸다.Purified algae alginic acid, polymanuronate and polygluronate separated and purified according to the present invention were dissolved in distilled water and the concentration was adjusted to 400 μg / ml. Metal salts were dissolved in distilled water and prepared at 0, 50 or 100 mM concentration. Each of the algae alginic acid, polymanuronate and polygluronate solutions was mixed with each metal cation solution in a volume ratio of 4: 1. The mixture was incubated for 2 hours at room temperature and centrifuged (20 minutes at 1,800 × g). The concentration of polymer in each supernatant was determined by the phenol-sulfuric acid method [Dubois et al., 1956.Anal. Chem., 28, 350-356]. The concentration of precipitated polymer was calculated and used to calculate the relative affinity of the polymer for each heavy metal cation. The results are shown in Table 15.

중금속 이온에 의한 중합체의 침전Precipitation of Polymers by Heavy Metal Ions 중금속이온Heavy metal ion 농도(nM)*1 Concentration (nM) * 1 폴리만유로네이트Polymanuronate 폴리글루로네이트Polygluronate 알긴산Alginic acid 칼슘calcium 8.08.0 8.58.5 17.617.6 카드뮴cadmium 3.53.5 3.63.6 3.63.6 코발트cobalt 20.220.2 9.99.9 11.511.5 구리Copper 3.53.5 4.64.6 3.23.2 iron 2.72.7 3.43.4 2.72.7 수은Mercury 18.018.0 77.777.7 100<100 < 마그네슘magnesium 100<100 < 100<100 < 100<100 < 망간manganese 37.237.2 90.290.2 63.563.5 루비듐rubidium 15.515.5 16.916.9 24.124.1 스트론튬strontium 15.615.6 16.616.6 23.123.1 아연zinc 15.215.2 18.318.3 14.514.5 lead 5.25.2 5.55.5 5.35.3

*1. 400㎍/ml(w/v)의 각 중합체 용액(폴리만유로네이트 용액, 폴리글루로네이트 용액 및 알긴산 용액)으로부터 50%의 중합체를 침전시키는데 필요한 금속이온의 농도.*One. The concentration of metal ions needed to precipitate 50% of the polymer from 400 μg / ml (w / v) of each polymer solution (polymanuronate solution, polygluronate solution and alginic acid solution).

폴리만유로네이트와 중금속간의 결합능을 살펴보면, 철, 구리, 카드뮴, 납 및 칼슘 등과는 결합능이 뛰어났으며, 그외 아연, 스트론튬, 루비듐, 수은, 코발트 등과도 좋은 결합능을 보였다. 그러나 마그네슘과는 결합능이 약하였다.As for the binding ability between polymanuronate and heavy metals, it showed excellent binding ability with iron, copper, cadmium, lead and calcium, and others with zinc, strontium, rubidium, mercury and cobalt. However, the binding ability with magnesium was weak.

폴리글루로네이트는 전체적으로 폴리만유로네이트와 비슷한 경향을 나타내었으나 망간과 수은에 있어서는 폴리만유로네이트에 비해 낮은 결합능을 보였다.Polygluronate showed a similar tendency to polymanuronate as a whole, but showed lower binding capacity than polymanuronate in manganese and mercury.

한편, 알긴산에서는 전체적으로 폴리만유로네이트와 폴리글루로네이트에 비해 금속과의 결합능이 낮은 경향을 나타내었다.On the other hand, alginic acid showed a lower tendency of binding to metals than polymanuronate and polygluronate as a whole.

본 발명의 저분자 폴리만유로네이트 제조방법에서는 고분자 알긴산을 가수분해하는 단계에서 유기산을 사용함에 의해, 종래 염산이나 황산 등의 무기산을 이용하던 방법에 비하여 기기부식 등의 문제가 없으며, 중화처리 및 후처리가 필요없어지는 장점이 있으며, 기타 효소 및 고온 고압하의 가수분해법에 비하여도 가수분해 시간이 현저히 단축되고, 비용이 절감되는 효과가 있다.In the method for preparing low molecular polymanuronate of the present invention, by using an organic acid in the step of hydrolyzing the polymer alginic acid, there is no problem of device corrosion and the like compared to the method using inorganic acids such as hydrochloric acid or sulfuric acid, and after neutralization treatment There is an advantage that no treatment is required, and the hydrolysis time is significantly shortened and cost is reduced compared to other enzymes and hydrolysis under high temperature and high pressure.

본 발명의 방법에 따르면 순도가 90%이상인 일정한 수준의 단계적으로 저분자화한 폴리만유로네이트를 얻을 수 있는 장점이 있다.According to the method of the present invention, there is an advantage in that a low molecular weight polyman euronate at a predetermined level having a purity of 90% or more can be obtained.

본 발명의 방법으로 얻어진 저분자 폴리만유로네이트는 천연 알긴산의 유효성분으로서, 고분자 알긴산이 갖는 콜레스테롤 저해 효과 및 기타 유용한 효과는 증진시키면서 해조류 특유의 이미·이취가 나지 않고 용해도가 높은 고순도의 단일 물질로서, 이를 식품 첨가제 또는 보조제로서 사용할 경우 소량으로 사용하여도 우수한 콜레스테롤 저하등의 목적하는 효과를 거둘 수 있고, 식품내 목적하는 기능조절을 위한 함량조절이 가능하다는 장점이 있다.The low molecular polymanuronate obtained by the method of the present invention is an active ingredient of natural alginic acid, and is a high-purity single substance having high solubility and high solubility without enhancing the cholesterol inhibitory effect and other useful effects of the high molecular alginic acid. , If it is used as a food additive or an adjuvant, even if used in a small amount can achieve the desired effect, such as excellent cholesterol lowering, there is an advantage that it is possible to adjust the content for the desired function control in food.

Claims (2)

평균분자량이 10,000 내지 100,000 달톤인 저분자 폴리만유로네이트 혼합물Low molecular polymanuronate mixtures with an average molecular weight of 10,000 to 100,000 daltons 순도 90% 이상으로 순수분리된, 평균분자량 10,000 내지 100,000 달톤의 저분자 폴리만유로네이트 혼합물.A low molecular polymanuronate mixture with an average molecular weight of 10,000 to 100,000 Daltons, purely separated by at least 90% purity.
KR1020030022565A 2000-02-03 2003-04-10 Process for preparing low molecular polymannuronate, a novel use thereof as controller of serum lipids, and functional foods and health-aid foods comprising the same KR20030036480A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020000005294 2000-02-03
KR20000005294 2000-02-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0083853A Division KR100501584B1 (en) 2000-02-03 2000-12-28 Process for preparing low molecular polymannuronate, a novel use thereof as controller of serum lipids, and functional foods and health-aid foods comprising the same

Publications (1)

Publication Number Publication Date
KR20030036480A true KR20030036480A (en) 2003-05-09

Family

ID=29561851

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030022565A KR20030036480A (en) 2000-02-03 2003-04-10 Process for preparing low molecular polymannuronate, a novel use thereof as controller of serum lipids, and functional foods and health-aid foods comprising the same

Country Status (1)

Country Link
KR (1) KR20030036480A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100915596B1 (en) * 2007-10-22 2009-09-03 경포대영어조합법인 Preparation Method of Assistance Material for Calcium Assimilation Containing Sargassum spp. Extracts as Essential Ingredient
KR101314069B1 (en) * 2011-12-16 2013-10-07 대구가톨릭대학교산학협력단 Pork skin and low molecular alginate solution containing blood sugar and blood cholesterol lowering with the functionality of the method for preparing low-calorie dombaegi hamburger patty and hamburger patties with this
CN104082748A (en) * 2014-07-23 2014-10-08 凯泽(武汉)健康管理有限公司 Functional food for conditioning lipid balance
KR101516787B1 (en) * 2014-01-28 2015-05-04 동의대학교 산학협력단 Methods for Preparing Polymannuronate from Brown Seaweed Alginate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100915596B1 (en) * 2007-10-22 2009-09-03 경포대영어조합법인 Preparation Method of Assistance Material for Calcium Assimilation Containing Sargassum spp. Extracts as Essential Ingredient
KR101314069B1 (en) * 2011-12-16 2013-10-07 대구가톨릭대학교산학협력단 Pork skin and low molecular alginate solution containing blood sugar and blood cholesterol lowering with the functionality of the method for preparing low-calorie dombaegi hamburger patty and hamburger patties with this
KR101516787B1 (en) * 2014-01-28 2015-05-04 동의대학교 산학협력단 Methods for Preparing Polymannuronate from Brown Seaweed Alginate
CN104082748A (en) * 2014-07-23 2014-10-08 凯泽(武汉)健康管理有限公司 Functional food for conditioning lipid balance

Similar Documents

Publication Publication Date Title
KR100501584B1 (en) Process for preparing low molecular polymannuronate, a novel use thereof as controller of serum lipids, and functional foods and health-aid foods comprising the same
KR102080562B1 (en) Hypoglycemic hyper-branched maltodextrins
Sánchez-Machado et al. Chitosan
JPH08500589A (en) Astragalus Polysaccharide Immunomodulator
Zhou et al. Hypolipidaemic effects of oat flakes and β‐glucans derived from four Chinese naked oat (Avena nuda) cultivars in Wistar–Lewis rats
JP2002223727A (en) Functional food
JPH0683652B2 (en) Lipid metabolism-improved product and method for producing the same
KR20030036480A (en) Process for preparing low molecular polymannuronate, a novel use thereof as controller of serum lipids, and functional foods and health-aid foods comprising the same
JP5866693B2 (en) Precancerous lesion occurrence inhibitor and method for colorectal cancer
US20090054373A1 (en) Chitin derivatives for hyperlipidemia
JP6457281B2 (en) Modified hyaluronic acid and / or salt thereof, and method for producing the same
US20190231898A1 (en) Pharmaceutical composition containing hyaluronic acid nanoparticles for preventing or treating inflammatory disease and metabolic disease
KR100473445B1 (en) cholesterol reducer and health food containing chitosan and ε-polylysine
KR20100060634A (en) Composition for activating mitochondria
AU2007242781A1 (en) Use of fungal polysaccharides as pharmaceutical composition or food complements
JP2766439B2 (en) Cholesterol suppressant
JPH04210639A (en) Dietary fiber with reduced electrolyte content
US20180325156A1 (en) Immune-enhancing composition comprising arabinoxylan from corn or corn processing by-product
RU2360683C1 (en) Corrective composition for pathologic carbohydrate, lipid disbolism and antioxidant organism state involvement
Olennikov et al. biologically active substances from cacalia hastate leaves. 1. carbohydrates from leaves and their hypoglycemic activity
JP7337300B1 (en) Carob polysaccharide for prevention and improvement of metabolic syndrome, method for producing the same, and use thereof
JP7312485B2 (en) adiponectin secretagogue
WO2024090341A1 (en) Anti-aging agent
WO2012096108A1 (en) Suppressor for increase in blood gip level, suppressor for increase in blood insulin level, postprandial blood triglyceride level reducing agent, and suppressor for increase in blood glucose level
JP2009298768A (en) METABOLIC SYNDROME IMPROVER USING beta-1,3-1,6-D-GLUCAN

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J801 Dismissal of trial

Free format text: REJECTION OF TRIAL FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20040501

Effective date: 20050325