KR20030033806A - Manufacturing method of outsole or midsole for sports shoes - Google Patents
Manufacturing method of outsole or midsole for sports shoes Download PDFInfo
- Publication number
- KR20030033806A KR20030033806A KR1020010065946A KR20010065946A KR20030033806A KR 20030033806 A KR20030033806 A KR 20030033806A KR 1020010065946 A KR1020010065946 A KR 1020010065946A KR 20010065946 A KR20010065946 A KR 20010065946A KR 20030033806 A KR20030033806 A KR 20030033806A
- Authority
- KR
- South Korea
- Prior art keywords
- midsole
- preform
- outsole
- weight
- compression molding
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D35/00—Producing footwear
- B29D35/12—Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
- B29D35/126—Uppers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/02—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/3415—Heating or cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D35/00—Producing footwear
- B29D35/0009—Producing footwear by injection moulding; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D35/00—Producing footwear
- B29D35/0054—Producing footwear by compression moulding, vulcanising or the like; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D35/00—Producing footwear
- B29D35/12—Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
- B29D35/122—Soles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/06—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
- C08J9/10—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
- C08J9/102—Azo-compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/06—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
- C08J9/10—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
- C08J9/104—Hydrazines; Hydrazides; Semicarbazides; Semicarbazones; Hydrazones; Derivatives thereof
- C08J9/105—Hydrazines; Hydrazides; Semicarbazides; Semicarbazones; Hydrazones; Derivatives thereof containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/06—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
- C08J9/10—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
- C08J9/107—Nitroso compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0853—Vinylacetate
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
본 발명은 신발용 겉창과 중창의 제조방법에 관한 것으로, 더욱 상세하게는 발포체용 혼련물을 사출성형 또는 압축성형에 의해 원하는 창의 크기보다 작은 1차 프리폼을 제조한 후, 상기 프리폼을 요구되는 크기의 금형에 투입하여 2차 압축성형으로 가교와 발포를 다시 한번 진행시키고 냉각성형으로 창의 외관을 완성하여 원료의 손실이 적고 접착특성이 우수하고 창의 부위에 따른 물성의 편차가 크지 않고 제품의 고급화를 가능케 하며 무광특성이 우수한 신발용 겉창과 중창을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a shoe outsole and midsole, and more particularly, after preparing a primary preform smaller than the desired window size by injection molding or compression molding the foam mixture, the preform required size After injection into the mold of secondary compression molding, the cross-linking and foaming are progressed once again, and the appearance of the window is completed by cooling molding, so there is little loss of raw materials, excellent adhesive properties, and there is no big variation in physical properties according to the part of the window. The present invention relates to a method for manufacturing shoe outsoles and midsoles, which makes it possible and has excellent matt properties.
신발산업의 경우 노동집약적 산업으로 평가되어 우리 나라도 한때 저임금과 우수한 노동력을 앞세워 세계 최고의 신발 생산 기지로 국내 수출 산업을 주도하였다. 그러나, 노동 임금의 상승에 따른 가격경쟁력의 저하가 나타남과 동시에 노동집약적이고 부가가치가 낮은 산업이라는 인식이 팽배해져 신발에 대한 개발의 의지가 약해짐에 따라 점차적으로 경쟁력을 잃고 있는 현실이다. 이러한 현실에서 기존의 신발용 중창 및 겉창 제조방법을 적용할 경우 많은 양의 원료 손실이 발생되어 가격경쟁력을 보다 약화시키고, 또한 현재 사회 전반적으로 강조되고 있는 환경친화라는 관점에서도 시대를 역행하고 있는 것도 사실이다.In the case of the shoe industry, it was evaluated as a labor-intensive industry, and Korea also led the domestic export industry as the world's leading shoe production base with low wages and excellent labor. However, as the price competitiveness decreases due to the increase in labor wages, the perception of a labor-intensive and low-value-added industry spreads, and as the will for development of shoes weakens, it is gradually losing its competitiveness. In this reality, the application of existing manufacturing methods for midsoles and outsoles for shoes incurs a large amount of raw material loss, weakening price competitiveness, and reversing the era in terms of environmental friendliness, which is currently being emphasized throughout society. It is true.
따라서, 국내 신발 산업이 신발 생산 기지로서의 역할을 하기 위하여 또한 현재의 고임금 체계에서 신발 제품의 가격 경쟁력을 유지하기 위해서는 기술력 우위를 점하고 있는 신발용 부품 중심의 기술 개발과 더불어 생산성 향상이나 공정 단축 등의 기술 우위의 생산 체제를 유지하는 것이 바람직하리라 사료된다. 이를 위한 하나의 방법으로 신발용 발포체 성형방법의 개선에 따른 경쟁력을 확보하고자 하였다. 기존의 열재성형법의 경우 1차 프리폼을 제조한 후 재단 및 그라인딩을 통하여 대략적인 창모양으로 만든 후 이것을 금형에 투입하여 2차 압축성형하여 신발의 중창이나 겉창으로 제조하였다[Phylon 법]. 이러한 방법을 사용할 경우 재단 및 그라인딩 과정을 거쳐야 하므로 작업공정이 복잡하고 많은 양의 원료 손실도 발생됨과 동시에 압축성형을 통하여 창을 제조하므로 창의 두께에 따른 비중의 차이가 발생이 되어 전체적으로 창의 물성이 부위별로 다르게 나타난다는 문제점이 발생이 되었다. 이러한 문제를 해결하기 위해 새로운 열재성형법이 개발되었는데 기존의 열재성형법과 다르게 1차 프리폼의 형태를 창의 형태로 직접적으로 제조하여 재단 및 그라인딩의 공정을 거치지 않고 바로 2차 압축성형을 통해 신발의 중창이나 겉창을 제조하였다[CMP 법]. 이렇게 새로운 열재성형법을 이용할 경우 기존의 열재형법에서 문제시되는 원료의 손실 및 작업공정 개선이라는 측면에서는 상당히 효율성이 있지만 여전히 압축공정에 따른 창의 부위별 물성이다르게 나타난다는 문제점이 발생이 되고 있다. 또한, 1차 프리폼을 그대로 사용하여 2차 압축성형을 하기 때문에 이렇게 제조되어진 중창 및 겉창의 경우 스킨(skin)층의 두께가 두꺼워져서 접착성에 문제가 발생되고 창에 나타나는 광택 또한 크게 나타나므로 신발의 고급화가 어렵게 된다. 이러한 열재성형법에서 나타나는 문제점의 해결을 위해 사출성형법이 도입되었지만 사출성형의 경우 혼련물의 흐름성이 큰 문제가 되어 사용되어지는 고분자 및 첨가제의 사용범위의 한계가 발생되었다[Injection 법].Therefore, in order for the domestic shoe industry to serve as a shoe production base, and to maintain the price competitiveness of shoe products in the current high wage system, the development of technology focusing on the parts for shoes, which have a technological edge, along with productivity improvement and shortening of processes, etc. It would be desirable to maintain a production system of technological advantage. As one method for this purpose, it was intended to secure the competitiveness of the improved foam molding method for shoes. In the case of the existing thermal re-molding method, after the first preform was manufactured, it was made into a rough window shape through cutting and grinding, and then, it was put into a mold and subjected to secondary compression molding to manufacture a shoe midsole or outsole [Phylon method]. When using this method, it is necessary to go through the cutting and grinding process, which leads to complicated work process and loss of a large amount of raw materials, and manufactures the window through compression molding. There is a problem that appears very different. In order to solve this problem, a new thermal re-forming method was developed. Unlike the existing thermal re-forming method, the first preform is directly manufactured in the form of a window, and it is directly processed through the second compression molding without the process of cutting and grinding. Outsoles were prepared [CMP method]. The new thermal re-forming method is very efficient in terms of loss of raw materials and work process improvement, which is a problem in the existing thermal re-forming method, but there are still problems that the physical properties of parts of the window appear differently according to the compression process. In addition, since the first preform is used as it is and the second compression molding, the thickness of the skin layer is increased in the case of the midsole and the outsole manufactured as described above. It becomes difficult to upscale. The injection molding method was introduced to solve the problems in the thermal re-molding method, but in the case of the injection molding, the flowability of the kneaded material becomes a big problem, causing a limitation of the range of use of the polymer and the additive used [Injection method].
이에, 본 발명자들은 환경친화 및 가격경쟁력 향상이라는 관점에서 원료의 손실 및 작업공정의 개선과 아울러 제품의 고급화 및 고기능성화가 가능토록 하기 위해 발포체용 혼련물을 사출성형 또는 압축성형에 의해 원하는 창의 크기보다 작은 1차 프리폼을 제조한 후, 상기 프리폼을 요구되는 크기의 금형에 투입하여 2차 압축성형에 의해 가교와 발포를 다시 한번 진행시키고 냉각성형에 의해 신발용 겉창 또는 중창을 제조함으로써 본 발명을 완성하였다.Therefore, the inventors of the present invention desired the size of the window desired by injection molding or compression molding the kneaded material for foam in order to improve the loss of raw materials and work process, and to improve the product quality and high functionality in terms of environmental friendliness and price competitiveness. After preparing a smaller primary preform, the present invention is prepared by injecting the preform into a mold of a required size, and further performing crosslinking and foaming by secondary compression molding and manufacturing a shoe outsole or midsole by cooling molding. Completed.
따라서, 본 발명은 원료의 손실 및 작업공정의 개선과 아울러 제품의 고급화 및 고기능성화가 가능한 신발용 겉창 또는 중창의 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a shoe outsole or midsole manufacturing method capable of improving the quality and high functionality of the product as well as the loss of raw materials and the improvement of the work process.
본 발명은 발포체용 혼련물을 사출성형 또는 압축성형에 의해 1차 프리폼을 제조한 후 상기 프리폼을 금형에 투입하여 2차 압축성형으로 다시 가교와 발포를 진행시키고 냉각성형으로 창의 외관을 완성하는 신발용 겉창 또는 중창의 제조방법을 그 특징으로 한다.The present invention is to prepare the primary preform by injection molding or compression molding the foam mixture, and then put the preform into the mold to proceed crosslinking and foaming again to the secondary compression molding and to complete the appearance of the window by cooling molding. It is characterized by the manufacturing method of the outsole or midsole.
이와 같은 본 발명을 상세히 설명하면 다음과 같다.The present invention will be described in detail as follows.
본 발명에서 먼저 발포체용 혼련물을 제조하기 위해 일반적인 발포체용 소재로 사용되어지는 EVA(Ethylene Vinyl Acetate) 또는 에틸렌-알파-올레핀 공중합체를 기재로 사용하여 혼련물을 제조한다. 이때, 가교제 및 발포제를 사용하여야 하는데 가교제의 경우 퍼옥사이드계 화합물, 바람직하게는 1분 반감기 온도가 130 ∼ 200 ℃인 것으로 t-부틸퍼옥시이소프로필카르보네이트, t-부틸퍼옥시라우릴레이트, 벤조일퍼옥사이드, t-부틸퍼옥시아세테이트, t-부틸퍼옥시벤조에이트, 디-t-부틸디퍼옥시프탈레이트, t-부틸퍼옥시말레인산, 시클로헥사논퍼옥사이드, t-부틸큐밀퍼옥사이드, t-부틸히드로퍼옥사이드, 1,1-비스(t-부틸퍼옥시)-3,3,5-스리메틸시크로헥산, t-부틸퍼옥시벤조에이트, 디큐밀퍼옥사이드, 2,2-비스(t-부틸퍼옥시)부탄, 1,1-디(t-부틸퍼옥시)시클로헥산, 메틸에틸케톤퍼옥사이드, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, 2,5-디메틸-2,5-(t-부틸퍼옥시)헥신-3, 2,5-디메틸-2,5-디(벤조일퍼옥시)헥산, 2,5-디메틸-2,5-디(벤조일퍼옥시)헥신-3, 2,5-디메틸-2,5-디(벤조일퍼옥시)헥산-3, 디-t-부틸퍼옥사이드, 디-t-부틸퍼옥사이드, n-부틸-4,4-비스(t-부틸퍼옥시)발러레이트, 2,2'-비스(부틸퍼옥시이소프로필)벤젠 등을 기재 100 중량부에 대하여 0.3 ∼ 1.5 중량부를 사용한다. 이때 가교제의 사용량이 0.3 중량부 미만일 경우 불완전가교로 인하여 발포체의 외관이 불안정하거나 역학적 물성이 떨어지는 문제점이 있으며, 1.5 중량부 초과 사용시에는 발포체의 과가교 현상이 나타나서 발포체가 찢어지는 문제가 발생된다.In the present invention, first, a kneaded product is prepared using EVA (Ethylene Vinyl Acetate) or an ethylene-alpha-olefin copolymer which is used as a general foam material to prepare a kneaded product for foam. In this case, a crosslinking agent and a foaming agent should be used. In the case of the crosslinking agent, the peroxide-based compound, preferably 1-minute half-life temperature of 130 to 200 ° C., is selected from t-butylperoxyisopropyl carbonate and t-butylperoxylaurate. , Benzoyl peroxide, t-butyl peroxy acetate, t-butyl peroxy benzoate, di-t-butyl diperoxy phthalate, t-butyl peroxy maleic acid, cyclohexanone peroxide, t-butyl cumyl peroxide, t- Butylhydroperoxide, 1,1-bis (t-butylperoxy) -3,3,5-srimethylcyclohexane, t-butylperoxybenzoate, dicumylperoxide, 2,2-bis (t- Butylperoxy) butane, 1,1-di (t-butylperoxy) cyclohexane, methylethylketone peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5 -Dimethyl-2,5- (t-butylperoxy) hexyn-3, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 2,5-dimethyl-2,5-di (benzoylper Oxy) hexin-3, 2,5-dimethyl-2,5-di (ben) Ylperoxy) hexane-3, di-t-butylperoxide, di-t-butylperoxide, n-butyl-4,4-bis (t-butylperoxy) valerate, 2,2'-bis (butyl 0.3-1.5 weight part of peroxyisopropyl) benzene etc. are used with respect to 100 weight part of base materials. In this case, when the amount of the crosslinking agent is less than 0.3 parts by weight, the appearance of the foam may be unstable or the mechanical properties may be deteriorated due to incomplete crosslinking. When the amount of the crosslinking agent is used, the foam may be torn due to the overcrossing phenomenon of the foam.
그리고, 가교제의 가교효율을 높이기 위해 가교조제의 사용도 가능한데 황, 트리알릴시아누레이트, 트리알릴이소시아누레이트, 트리메틸올프로판트리메타크릴레이트, 디에틸렌글리콜디아크릴레이트, 디에틸렌글리콜디메타크릴레이트, 부틸렌글리콜아크릴레이트, 부틸렌글리콜디메타크릴레이트, 금속-아크릴레이트, 금속-메타크릴레이트 및 1,2-폴리부타디엔 등을 기재 100 중량부에 대하여 0.1 ∼ 2.0 중량부를 사용한다.In addition, in order to increase the crosslinking efficiency of the crosslinking agent, a crosslinking aid may also be used. Sulfur, triallyl cyanurate, triallyl isocyanurate, trimethylolpropane trimethacrylate, diethylene glycol diacrylate, and diethylene glycol dimetha 0.1 to 2.0 parts by weight of acrylate, butylene glycol acrylate, butylene glycol dimethacrylate, metal acrylate, metal methacrylate, 1,2-polybutadiene and the like are used based on 100 parts by weight of the substrate.
발포제로는 분해온도가 130 ∼ 200 ℃인 아조디카본아미드(ADCA), 아조비스이소부티로니트릴, 디아조아미노아조벤젠 등의 아조계 화합물, N,N'- 디니트로소펜타메틸렌테트라아민(DPT) 등의 니트로소계 화합물, p-톨루엔술포닐히드라지드(TSH), p,p'옥시비스(벤젠술포닐히드라지드)(OBSH), 벤젠술포닐히드라지드 등의 술포닐히드라지드계 화합물, p-톨루엔 술포닐 세미카바자이드(TSS) 등을 단독 또는 병용하여 기재 100 중량부에 대하여 1 ∼ 7 중량부 사용한다. 이때, 1 중량부 미만 사용하면 발포체의 비중이 높게 되어 경량화라는 관점에서 문제점이 있으며, 7 중량부 초과 사용하면 발포체의 저비중화에 따른 물성 저하 및 수지의 고온점탄성의 한계를 넘는 급작스런 팽창으로 균일한 기포의 발포체를 얻을 수 없는 문제점이있다.Examples of the blowing agent include azo compounds such as azodicarbonamide (ADCA), azobisisobutyronitrile and diazoaminoazobenzene having a decomposition temperature of 130 to 200 ° C, and N, N'-dinitrosopentamethylenetetraamine (DPT Nitroso-based compounds such as), sulfonylhydrazide-based compounds such as p-toluenesulfonylhydrazide (TSH), p, p'oxybis (benzenesulfonylhydrazide) (OBSH), and benzenesulfonylhydrazide, p 1-7 weight part of toluene sulfonyl semicarbazide (TSS) etc. are used individually or in combination and 100 weight part of base materials are used. At this time, if less than 1 part by weight, the specific gravity of the foam is high, there is a problem in terms of weight reduction, and when it is used over 7 parts by weight of the foam uniformity due to the drop in physical properties due to low specific gravity of the foam and sudden expansion beyond the limit of high temperature viscoelasticity of the resin There is a problem that the foam of the foam can not be obtained.
이렇게 제조되어진 다양한 물성 및 발포배율을 나타낼 수 있는 혼련물을 사용하여 발포체용 창을 제조한다. 먼저, 1차 프리폼의 창을 제조하기 위하여 사출성형이나 압축성형을 이용하는데, 1차 프리폼의 크기가 2차 압축성형에 사용되어지는 금형의 30 ∼ 80% 정도 차지할 수 있도록 설계한다. 따라서, 2차 프레스에 사용되어지는 금형의 크기에 따라 1차 프리폼의 크기가 달라져야 하며, 이것은 발포제양을 조절하거나 1차 프리폼 제조에 사용되어지는 금형의 크기를 조절해서 결정한다. 1차 프리폼의 제조 조건은 압축성형의 경우 130 ∼ 190 ℃, 바람직하게는 170 ℃, 120 ∼ 170 kg/cm2, 바람직하게는 150 kg/cm2의 조건에서 3 ∼ 4분 정도 압축성형하고, 사출성형의 경우에도 130 ∼ 190 ℃, 바람직하게는 170 ℃에서 3 ∼ 4분 정도 성형하여 가교와 발포가 진행되어진 1차 프리폼을 제조한다. 이렇게 제조되어진 1차 프리폼을 사용하여 요구되는 크기의 금형에 투입하여 2차 압축성형을 150 ∼ 180 ℃, 바람직하게는 170 ℃, 120 ∼ 170 kg/cm2, 바람직하게는 150 kg/cm2의 조건에서 8 ∼ 10분 정도 실시하여 금형내에서 가열하여 다시 한번 가교와 발포에 의해 팽창시키고 금형내에서 그대로 냉각하여 창의 외관을 갖추도록 성형한다. 이렇게 제조되어진 중창 또는 겉창의 경우 열재성형법에 비해 원료손실의 절감 및 작업공정의 단순화가 가능하며 압축을 통해 재성형하지 않으므로 창의 부위별에 따른 물성의 차이가 크지 않고, 또한 제조되어진 창의 스킨층의 두께가 얇게 되어 접착성 및 무광효과가 우수한 발포체 제조를 제조할 수 있어 고기능성 및 고급화가 가능한 창의 제조가 가능하다.The window for the foam is manufactured by using a kneaded material which can exhibit various physical properties and expansion ratios thus prepared. First, injection molding or compression molding is used to manufacture the window of the primary preform, and the size of the primary preform is designed to occupy about 30 to 80% of the mold used for the secondary compression molding. Therefore, the size of the primary preform must be changed according to the size of the mold used in the secondary press, which is determined by adjusting the foaming quantity or adjusting the size of the mold used for manufacturing the primary preform. The conditions for the preparation of the primary preform are compression molding for about 3 to 4 minutes under conditions of 130 to 190 ° C, preferably 170 ° C and 120 to 170 kg / cm 2 , preferably 150 kg / cm 2 for compression molding. In the case of injection molding, a primary preform in which crosslinking and foaming are advanced is formed by molding at 130 to 190 ° C, preferably at 170 ° C for 3 to 4 minutes. The primary preform thus prepared is put into a mold of the required size and the secondary compression molding is carried out at 150 to 180 ° C, preferably at 170 ° C and 120 to 170 kg / cm 2 , preferably at 150 kg / cm 2 . It is carried out for about 8 to 10 minutes under the conditions, and is heated in the mold to expand by crosslinking and foaming again, and cooled in the mold as it is to form the window. In the case of the midsole or outsole manufactured in this way, raw material loss can be reduced and the work process can be simplified compared to the thermal re-molding method. Since the reshaping is not performed through compression, the difference in physical properties according to the part of the window is not large. The thin thickness enables the manufacture of foam having excellent adhesion and matting effect, which enables the manufacture of highly functional and high quality windows.
이하, 본 발명을 다음 실시예에 의거하여 상세히 설명하겠는바, 본 발명이 이에 의거하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail based on the following examples, but the present invention is not limited thereto.
실시예 1Example 1
EVA 360 단독의 100 중량부에 대하여 산화아연 3 중량부, 스테아린산 1 중량부를 사용하여 95 ℃의 니이더에서 약 10분 동안 혼합한 후, 표면 온도가 85 ℃인 롤밀에서 EVA 기재 100 중량부에 대하여 가교제로 디큐밀퍼옥사이드 0.6 중량부, 발포제로 아조디카본아미드(ACDA)계인 (주)금양의 CELLCOM-JTR 3 중량부를 사용하여 혼련물을 제조하였다. 이렇게 제조된 혼련물을 크기가 작은 창모양의 금형에 투입하고 170 ℃, 150 kg/cm2의 조건에서 3분간 압축성형하여 1차 프리폼을 제조한 후, 이를 요구되어지는 창과 동일한 크기의 금형에 투입하고 170 ℃, 150 kg/cm2의 조건에서 10분간 압축성형을 한 후 냉각성형을 통해 창을 제조하였다. 이렇게 2차 압축성형에 의해 전체적인 물성이 균일하고 무광효과도 뛰어나고, 또한 접착특성도 우수한 신발용 중창을 제조하였다.3 parts by weight of zinc oxide and 1 part by weight of stearic acid were mixed in a kneader at 95 ° C. for about 10 minutes based on 100 parts by weight of EVA 360 alone, and then 100 parts by weight of the EVA substrate in a roll mill having a surface temperature of 85 ° C. The kneaded material was manufactured using 0.6 weight part of dicumyl peroxide as a crosslinking agent, and 3 weight part of CELLCOM-JTR of Kumyang Co., Ltd. which is an azodicarbonamide (ACDA) system as a foaming agent. The kneaded material thus prepared is put into a small window-shaped mold and compression molded at 170 ° C. and 150 kg / cm 2 for 3 minutes to prepare a primary preform, and then to a mold having the same size as the required window. After the compression molding for 10 minutes at 170 ℃, 150 kg / cm 2 conditions to prepare a window through the cooling molding. Thus, the second compression molding to produce a shoe midsole with a uniform overall physical properties, excellent matting effect, and excellent adhesive properties.
실시예 2Example 2
EVA 360 단독의 100 중량부에 대하여 산화아연 3 중량부, 스테아린산 1 중량부를 사용하여 95 ℃의 니이더에서 약 10분 동안 정도 혼합한 후, 표면 온도가 85 ℃인 롤밀에서 EVA 기재 100 중량부에 대해서 가교제로 비스-(t-부틸퍼옥시이소프로필)벤젠 0.7 중량부, 발포제로 술포닐히드라지드계인 (주)금양의 CELLCOM-OHSH 3.2 중량부를 사용하여 혼련물을 제조하였다. 이렇게 제조된 혼련물을 크기가 작은 창모양의 금형에 170 ℃의 조건에서 3분간 사출성형하여 프리폼을 제조한 후 이를 요구되어지는 창과 동일한 크기의 금형에 투입하고 170 ℃, 150 kg/cm2의 조건에서 8분간 압축성형을 한 후 냉각성형을 통해 창을 제조하였다. 이렇게 2차 압축성형에 의해 전체적인 물성이 균일하고 무광효과도 뛰어나고 또한 접착특성도 우수한 신발용 중창을 제조하였다.3 parts by weight of zinc oxide and 1 part by weight of stearic acid were mixed in a kneader at 95 ° C. for about 10 minutes with respect to 100 parts by weight of EVA 360 alone, and then 100 parts by weight of the EVA substrate in a roll mill having a surface temperature of 85 ° C. The kneaded material was manufactured using 0.7 weight part of bis- (t-butylperoxy isopropyl) benzene as a crosslinking agent, and 3.2 weight part of CELLCOM-OHSH of Geumyang Co., Ltd. which is sulfonyl hydrazide type as a foaming agent. The kneaded product thus prepared is injection molded into a small window-shaped mold at 170 ° C. for 3 minutes to prepare a preform, and then it is put into a mold having the same size as the required window, and the temperature is 170 ° C. and 150 kg / cm 2 . After compression molding for 8 minutes under the conditions, the window was manufactured by cooling. Thus, the second compression molding to produce a shoe midsole with a uniform overall physical properties, excellent matting effect and excellent adhesive properties.
실시예 3Example 3
EVA 460과 에틸렌-알파-올레핀 공중합체의 혼련물 기재 100 중량부에 대하여 산화아연 3 중량부, 스테아린산 1 중량부를 사용하여 105 ℃의 니이더에서 약 10분 동안 정도 혼합한 후, 표면 온도가 95 ℃인 롤밀에서 EVA 460과 에틸렌-알파-올레핀 공중합체의 혼련물 기재 100 중량부에 대하여 가교제로 t-부틸큐밀퍼옥사이드 0.8 중량부, 발포제로 이조디카본아미드계(ADCA)인 (주)금양의 CELLCOM-AC3000 2.8 중량부를 사용하여 혼련물을 제조하였다. 이렇게 제조된 혼련물을 크기가 작은 창모양의 금형에 170 ℃의 조건에서 3분간 압축성형하여 프리폼을 제조한 후 이를 요구되어지는 창과 동일한 크기의 금형에 투입하고 170 ℃, 150 kg/cm2의 조건에서 9분간 압축성형한 후 냉각성형을 통해 창을 제조하였다. 이렇게 2차 압축성형에 의해 영구압축줄임율이 우수하고 무광효과도 뛰어나고, 또한 접착특성도 우수한신발용 겉창을 제조하였다.After mixing about 3 minutes by weight of zinc oxide and 1 part by weight of stearic acid with respect to 100 parts by weight of the mixture substrate of EVA 460 and the ethylene-alpha-olefin copolymer, the surface temperature was 95 Geumyang Co., Ltd. is an isodicarbonamide-based (ADCA) 0.8% by weight of a crosslinking agent and a blowing agent, based on 100 parts by weight of the substrate mixture of EVA 460 and an ethylene-alpha-olefin copolymer in a roll mill at 0 ° C. A kneaded material was prepared using 2.8 parts by weight of CELLCOM-AC3000. The kneaded product thus prepared is compression molded into a small window-shaped mold at 170 ° C. for 3 minutes to prepare a preform, and then it is put in a mold having the same size as the required window, and the temperature is 170 ° C. and 150 kg / cm 2 . After compression molding for 9 minutes under the conditions, a window was manufactured by cooling. Thus, the secondary compression molding produced a shoe outsole for excellent permanent compression reduction rate, excellent matting effect, and excellent adhesive properties.
비교예 1Comparative Example 1
현재 통상적으로 사용되고 있는 Phylon법으로 제조된 신발용 겉창(또는 중창)을 상기 실시예들과 물성 비교를 하였다.The shoe outsole (or midsole) manufactured by the Phylon method currently commonly used was compared with the above examples.
시험예Test Example
1. 경도(Hardness) : 발포체의 중간부분을 절단하여 Asker C 타입의 경도계로 ASTM D-2240에 준하여 측정하였다.1. Hardness: The middle part of the foam was cut and measured in accordance with ASTM D-2240 with an Asker C type hardness tester.
2. 영구압축줄음율(Compression set) : 발포체를 두께가 10 mm 되도록 커내어 지름이 30 ±0.05 mm인 원기둥 형태로 제조하여 측정하였다. 2장의 평행금속판 사이에 시험편을 넣고, 시험편 두께의 50%에 해당하는 스페이서(spacer)를 끼운 후 압축시켜 50 ±0.1 ℃가 유지되는 공기순환식 오븐에서 6시간 열처리한 후 압축장치에서 시험편을 꺼내어 실온에서 30분간 냉각시킨 후 두께를 측정하였다. 동일 시험에 사용된 시험편은 3개로 하였고, 압축영구줄음율(Cs)은 다음 수학식 1에 의해 계산하였다.2. Compression set: Compression set: The foam was made to be 10 mm thick and manufactured into a cylindrical shape having a diameter of 30 ± 0.05 mm. Place the specimen between two parallel metal plates, insert a spacer equal to 50% of the specimen thickness, compress it, heat it in an air-circulating oven maintained at 50 ± 0.1 ° C for 6 hours, and remove the specimen from the compression device. After cooling for 30 minutes at room temperature the thickness was measured. Three specimens were used in the same test, and the compression set (Cs) was calculated by the following equation (1).
t0: 시험편의 초기두께t 0 : Initial thickness of the test piece
tf: 열처리 후 냉각되었을 때의 시험편의 두께t f : thickness of specimen when cooled after heat treatment
ts: 스페이서의 두께t s : thickness of spacer
3. 무광효과 : 반사광 측정기를 사용하여 발포체 표면의 광택을 측정하였다.3. Matte effect: The gloss of the surface of the foam was measured using a reflectometer.
4. 파열인열강도(Split tear strength) : 10 ×20 ×120 mm크기로 제조한 후 길이방향으로 25 mm로 절단하여 시편을 제조하였고, 측정속도는 50 mm/분으로 5회 측정하여 평균값을 취하였다.4. Split tear strength: The specimen was manufactured by cutting 10 mm × 20 mm × 120 mm and cutting it to 25 mm in the longitudinal direction. The measuring speed was measured 5 times at 50 mm / min. Was taken.
비교예의 경우 원료의 손실이 많고 부위별 경도 차이가 크게 나타나며 EVA를 많이 사용하지 않는 경우 접착성의 문제가 나타나고 제품의 광택이 크게 나타나서 제품의 고급화가 불가능한 상태였다. 반면, 실시예의 경우 원료의 손실이 적고 접착특성이 우수하고 창의 부위에 따른 물성의 편차가 크지 않고 제품의 고급화를 가능케 하며 무광특성이 우수하였다.In the case of the comparative example, the loss of raw materials, the hardness difference between parts was large, and when the EVA was not used a lot, the adhesive problem appeared and the gloss of the product appeared so that the quality of the product was impossible. On the other hand, in the case of the embodiment, the loss of the raw material is excellent, the adhesive property is excellent, the variation of the physical properties according to the part of the window is not large, enabling the quality of the product and the matte properties were excellent.
이상에서 설명한 바와 같이, 본 발명은 다양한 특성을 나타내는 발포체용 혼련물을 사출성형 또는 압축성형에 의해 원하는 창의 크기보다 작은 1차 프리폼으로제조한 후, 제조되어진 프리폼을 요구되는 크기의 금형에 투입한 후 재차 가열함으로서 금형내에서 가교와 발포를 다시 한번 진행시키고 냉각고정하는 2차 성형을 통해 창의 외관을 완성하여 원료의 손실이 적고 접착특성이 우수하고 창의 부위에 따른 물성의 편차가 크지 않고 제품의 고급화를 가능케 하며 무광특성이 우수한 신발용 겉창 또는 중창의 제조방법에 관한 것이다.As described above, according to the present invention, a foamed kneaded product having various characteristics is manufactured into a primary preform smaller than a desired window size by injection molding or compression molding, and then the prepared preform is introduced into a mold having a required size. After heating again, cross-linking and foaming in the mold is progressed once again, and the appearance of the window is completed through the secondary molding to fix and cool. There is little loss of raw materials, excellent adhesive properties, and no significant variation in physical properties according to the part of the window. The present invention relates to a manufacturing method of a shoe outsole or midsole that enables high-quality and excellent matte properties.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0065946A KR100468431B1 (en) | 2001-10-25 | 2001-10-25 | Manufacturing method of outsole or midsole for sports shoes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0065946A KR100468431B1 (en) | 2001-10-25 | 2001-10-25 | Manufacturing method of outsole or midsole for sports shoes |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030033806A true KR20030033806A (en) | 2003-05-01 |
KR100468431B1 KR100468431B1 (en) | 2005-01-27 |
Family
ID=29566321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0065946A KR100468431B1 (en) | 2001-10-25 | 2001-10-25 | Manufacturing method of outsole or midsole for sports shoes |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100468431B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100720162B1 (en) * | 2005-01-07 | 2007-05-18 | 최능호 | Manufacturing method of fishing float using resin compound |
KR101104252B1 (en) * | 2009-11-24 | 2012-01-11 | 한국신발피혁연구소 | Composition of foam midsole compound can adhere with Non-UV and preparing method of foam midsole using it |
CN111421869A (en) * | 2020-03-26 | 2020-07-17 | 美瑞新材料股份有限公司 | Production process of foamed thermoplastic polyurethane shoe midsole |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103817964B (en) * | 2014-01-18 | 2016-09-07 | 黄文鹏 | A kind of preparation method of EVA polychrome sole |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02114903A (en) * | 1988-10-22 | 1990-04-27 | Asahi Corp | Forming method of foamed rubber sole |
KR0139144B1 (en) * | 1994-03-30 | 1998-05-01 | 강박광 | Method of manufacturing blowing preform for midsole |
KR100358778B1 (en) * | 2000-03-14 | 2002-10-25 | 태광실업 주식회사 | Molding method for footwear |
KR20020088727A (en) * | 2001-05-21 | 2002-11-29 | 임권택 | Simple Method for Midsole |
-
2001
- 2001-10-25 KR KR10-2001-0065946A patent/KR100468431B1/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100720162B1 (en) * | 2005-01-07 | 2007-05-18 | 최능호 | Manufacturing method of fishing float using resin compound |
KR101104252B1 (en) * | 2009-11-24 | 2012-01-11 | 한국신발피혁연구소 | Composition of foam midsole compound can adhere with Non-UV and preparing method of foam midsole using it |
CN111421869A (en) * | 2020-03-26 | 2020-07-17 | 美瑞新材料股份有限公司 | Production process of foamed thermoplastic polyurethane shoe midsole |
Also Published As
Publication number | Publication date |
---|---|
KR100468431B1 (en) | 2005-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112533506B (en) | Two-part sole structure and use thereof | |
CN1898337B (en) | Crosslinkable, expandable polymeric compositions | |
EP2892952B1 (en) | Eva recycling method | |
KR101104252B1 (en) | Composition of foam midsole compound can adhere with Non-UV and preparing method of foam midsole using it | |
KR101232846B1 (en) | Sponge composition for shoe sole | |
KR101232849B1 (en) | Sponge composition for shoe sole | |
KR20020016874A (en) | Crosslinked Foam of Ethylene Vinyl Acetate Copolymer and Acid Copolymer | |
KR100468431B1 (en) | Manufacturing method of outsole or midsole for sports shoes | |
KR101075070B1 (en) | Method preparing of the foam using composition using foam composition contain ethylene vinyl acetate resin and sillicone rubber | |
CN110591215A (en) | Ultralight EVA (ethylene-vinyl acetate) midsole material for sneakers and manufacturing method thereof | |
KR101206348B1 (en) | Foam composition with excellent thermal-shrinkage property and preparing method | |
JPS6230028A (en) | Manufacture of crosslinking polyethylene foam | |
JP4886523B2 (en) | Cross-linked foamable polymer composition | |
US20210146661A1 (en) | Composite with direct bonding between rubber and foam | |
KR101078354B1 (en) | Composite of sponge foam for midsole having excellent adhesionproperties and Menufacturing method thereof and Method for bonding sponge foam with plasma treatment | |
KR101165803B1 (en) | Composition of foam compound can adhere without UV and buffing for the sole of shoes and preparing method of foam using it | |
KR100695401B1 (en) | Ethylene vinyl Acetate CopolymerEVA compounds for a footwear sole, Method for producing a sponge by using thereof and a sponge | |
JP5199556B2 (en) | Method for producing ionomer resin foam | |
KR100419849B1 (en) | Expanded material for wiper blade and preparation method of thereof | |
KR100840080B1 (en) | Crosslinked Foam of Ethylene Vinyl Acetate Copolymer and Acid Copolymer | |
CN114702718A (en) | Foaming sole formula capable of shortening secondary forming time and preparation method thereof | |
KR0139146B1 (en) | A method for manufacutring high-performance midsoles | |
KR100354425B1 (en) | Method for shock absorptive foaming for footwear | |
KR20040092974A (en) | A preparation method of expanded material for shoe-sole | |
KR100523563B1 (en) | A manufacturing method for mid-sole and unit-sole of shoe with improving traction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20090114 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |