KR20030024766A - The manufacturing method of block for sewage-sludge - Google Patents

The manufacturing method of block for sewage-sludge Download PDF

Info

Publication number
KR20030024766A
KR20030024766A KR1020030014184A KR20030014184A KR20030024766A KR 20030024766 A KR20030024766 A KR 20030024766A KR 1020030014184 A KR1020030014184 A KR 1020030014184A KR 20030014184 A KR20030014184 A KR 20030014184A KR 20030024766 A KR20030024766 A KR 20030024766A
Authority
KR
South Korea
Prior art keywords
sludge
cement
manufacturing
wastewater
treatment
Prior art date
Application number
KR1020030014184A
Other languages
Korean (ko)
Inventor
권기홍
임수택
임우성
Original Assignee
권기홍
주식회사 성일산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권기홍, 주식회사 성일산업 filed Critical 권기홍
Priority to KR1020030014184A priority Critical patent/KR20030024766A/en
Publication of KR20030024766A publication Critical patent/KR20030024766A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/54Cards, coupons, or other inserts or accessories
    • B65D75/545Cards, coupons, or other inserts or accessories the inserts or accessories being located within a pouch or envelope attached to the exterior of the packages, e.g. shipping mailers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D33/00Details of, or accessories for, sacks or bags
    • B65D33/16End- or aperture-closing arrangements or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/02Wrappers or flexible covers
    • B65D65/16Wrappers or flexible covers with provision for excluding or admitting light
    • B65D65/18Wrappers or flexible covers with provision for excluding or admitting light with some areas transparent and others opaque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2203/00Decoration means, markings, information elements, contents indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2313/00Connecting or fastening means
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Sludge (AREA)
  • Road Paving Structures (AREA)

Abstract

PURPOSE: Provided is a manufacturing method of pavement blocks excellent in bend strength and water absorption by using wastewater sludge generated from water purification plants. CONSTITUTION: The manufacturing method of pavement blocks comprises the steps of: firing dehydrated sludge, generated from wastewater facilities, at 850deg.C for 1hr, and cooling by blowing air; mixing 3-12kg(2.5-10.0wt.%, based on the mount of cement) of obtained sludge ash, 410kg of stone powder, 200kg of sand, 19kg of water and 120kg of cement.

Description

폐수 슬러지를 이용한 보도 블럭 제조방법{ The manufacturing method of block for sewage-sludge }The manufacturing method of block for sewage-sludge}

본 발명은 각종 산업체에서 배출되는 하수 및 폐수를 정수처리장 등을 통해 처리된 후 필연적으로 발생되어 처리상의 어려움을 가지고 있는 악성 폐기물 중의 하나인 폐수 슬러지를 오히려 인간의 삶에 도움을 주는 보도블럭을 제조하는데 주요 구성원소로 재활용 적용함으로서, 악성폐기물의 처리에 따른 비용절감은 물론 환경파괴 억제와 더불어 불럭 제조원가절감 및 품질향상까지 득할 수 있는 등 2중, 3중의 이점이 제공되는 그 제조방법에 관한 것이다.The present invention manufactures a sidewalk block that helps human life rather than wastewater sludge, which is one of malignant wastes that is inevitably generated after treatment of sewage and wastewater discharged from various industries through a water treatment plant and the like. By applying recycling as a major member, it relates to a manufacturing method that provides double and triple advantages such as not only reducing the costs associated with the treatment of malignant waste, but also reducing production costs and improving quality.

통상의 보도블럭은 다양한 모양과 종류가 있을 뿐만 아니라 사용되는 재료 역시 시멘트, 폐합성수지 등 다양한 재료를 사용한 블럭이 있으나 그 중에서 현재 가장 많이 적용되는 있는 것이 건축용 골재(모래, 자갈 등)로만 제조되는 시멘트 보도 블록이다. 이는 제작원가측면이나 기능, 품질 등을 종합 고려한 결과 현실에 가장 적합한 것이라는 평가에서 비롯된 것이고, 실상 현장에 설치된 보도 블럭이 거의 그것이다.In general, the sidewalk block has various shapes and types, and the materials used are also blocks made of various materials such as cement and waste synthetic resins, but the most widely applied cement is manufactured only from construction aggregates (sand, gravel, etc.). It is a sidewalk block. This is derived from the evaluation that it is the most suitable for reality based on the consideration of manufacturing cost, function, and quality, and in fact, it is almost a sidewalk block installed in the field.

그러나 이러한 시멘 보도블럭은 상술된 바와 같이 대부분의 재료가 골재(모래, 자갈, 세멘트 등)만을 이용해 제조됨으로서, 적은 면적이라도 상당량이 소비되는 것을 감안하면 제조원가의 부담이 상당히 크고, 그 강도 및 내구성 등의 품질면에서 그 재료가 가지는 통상적인 성능밖에 기대할 수 없을 뿐만 아니라 현시대에서 절실히 요구하는 환경친화성과도 거리가 먼 보도블럭이라 현시점에서 개선의 필요성이 조심스레 대두되고 있다.However, as described above, since most of the materials are manufactured using only aggregate (sand, gravel, cement, etc.) as described above, the burden of manufacturing cost is considerably high considering that a small amount is consumed, and the strength and durability thereof are increased. In addition to the normal performance of the material can be expected in terms of quality, as well as far from the environmentally-needed eco-friendly requirements in the present day, the need for improvement is emerging at this time.

한편, 폐수 슬러지는 각종 산업현장에서 배출되는 폐수를 일차적으로 정수처리장 혹은 폐수처리장 등을 통해 처리하는 과정에서 걸러낸 찌꺼기에 해당되는 것으로서, 전국적으로 막대한 량이 배출됨은 물론 그 슬러지 처리에 따른 막대한 예산과 환경파괴가 수반되고 있다.On the other hand, wastewater sludge is the waste that is collected during the treatment of wastewater discharged from various industrial sites through a water treatment plant or a wastewater treatment plant, and a large amount of waste is discharged nationwide. It is accompanied by environmental destruction.

즉, 1999년 12월 기준 전국에서 발생하는 슬러지는 년평균 약 330만톤으로서 공단폐수처리 슬러지가 10만톤, 농공단지 폐수처리 슬러지가 7천톤, 하수처리 슬러지가 147만톤, 기타 배출업소에서 180만톤으로 집게되고 있다. 아울러 이들의 처리방법으로는 매립 26.4%, 소각 22.8%, 재활용 12.8%, 해양투기 38.1%로서 해양투기에 의존하는 비율이 가장 높으며, 매립, 소각, 재활용 순으로 처리되고 있다. 이중 소각의 경우에는 실제 하수처리장의 경우에는 0.8%가량이며, 나머지는 배출업소에서 소각되는 양으로 추정되고 있다. 정부에서는 2003년부터 년차적으로 하·폐수처리과정에서 발생하는 슬러지류의 직접매립을 금지할 예정에 있으나 그렇게 되면 해양투기가 증가하게 되겠지만 이 또한 장래에 금지될 계획에 있으므로 새로운 처리방안의 도출이 절실한 시점에 와 있다. 폐기물관리법에서는 슬러지의 처리 및 처분방법으로 소각, 고형화, 퇴비화, 복토제 또는 토지개량제 등의 방법을 제시하고 있다. 일반적인 하·폐수처리공정에서는 그 처리공정에 따라 오니류가 필연적으로 발생하게 되며, 이들 오니류에 포함된 오염물질의 농도도 처리공정의 효율증대에 비례하여 점차 고농도화되어 가고 있다. 양적인 면에서도 정부의 맑은 물 공급대책에 따라 하수처리율은 증가되고 있으며, 또한 각 배출업체에서도 배출허용기준의 강화에 따라 오니류의 양도 증가추세에 있다. 특히 염색폐수 처리과정에서 발생하는 슬러지는 그 양이 많고, 또한 그 처리방법으로는 현재까지 모두 해양투기를 하고 있어서 해양의 오염문제 뿐만 아니라 많은 염색업체로 하여금 슬러지 처리비용을 부담하고 있다. 대표적으로 대구 비산염색공단의 경우 월 슬러지 발생량은 12천톤으로 그 처리비용은 월 약 3억원 이상이 소요되며 공단 입주업체를 제외한 일반업체까지 포함하면 슬러지의 양과 처리비용은 더욱 증가할 것으로 판단된다.In other words, sludge generated nationwide as of December 1999 was about 3.3 million tons, with 100,000 tons of industrial wastewater sludge, 7,000 tons of agricultural wastewater sludge, 1.17 million tons of sewage treatment sludge, and 1.8 million tons from other dischargers. Is being pulled. In addition, their treatment methods include landfilling, incineration and recycling in the order of 26.4% landfilling, 22.8% incineration, 12.8% recycling, and 38.1% offshore dumping. In the case of incineration, it is estimated to be about 0.8% in actual sewage treatment plants, and the rest is incinerated at the discharger. Since 2003, the government has banned the direct landfilling of sludge from sewage and wastewater treatment from 2003, but this will increase ocean dumping, but this is also planned to be banned in the future. I am in desperate need. The Waste Management Act proposes methods of incineration, solidification, composting, land cover or land reform as sludge treatment and disposal methods. In general sewage and wastewater treatment process, sludges are inevitably generated according to the treatment process, and the concentration of pollutants contained in these sludges is gradually increasing in proportion to the increase in efficiency of the treatment process. In terms of quantity, the sewage treatment rate is increasing in accordance with the government's clear water supply measures, and the quantity of sludge is also increasing at each emission company as the emission allowance standard is strengthened. In particular, the amount of sludge generated during the dyeing wastewater treatment process is large, and as a treatment method, all of them have been dumped at sea so that not only the pollution of the ocean but also many dyeing companies bear the sludge treatment cost. For example, Daegu Non-acid Industrial Complex is producing 120,000 tons of sludge per month and its disposal cost is more than W300mn per month. If sludge is included, the sludge volume and treatment costs will increase further.

뿐만 아니라 최근까지도 하·폐수처리장에서 발생하는 슬러지류의 처리는 탈수하여 직접 매립하거나 해양투기에 의존하여 왔으나 매립의 경우는 매립지의 확보가 어려우며, 매립장에서 슬러지의 매립작업시 작업성이 나쁘고 슬러지에 함유되어 있는 각종 유해 중금속이 토양에 잔류하게 되어 지하수 및 지표수를 오염시키며 침출수량의 증가를 초래하게 된다. 해양투기의 경우는 국제적인 차원에서 공유해상을 보호하기 위하여 금지될 단계에 있으므로 새로운 방법을 강구하지 않으면 안되게 되었다. 이러한 추세에 따라 최근에는 정부적의 재활용 차원에서 다양한 용도로의 사용을 시도하고 있다.In addition, until recently, the treatment of sludge from sewage and wastewater treatment plants has been dewatered and reclaimed directly or relying on ocean dumping.However, in the case of landfill, it is difficult to secure landfills. Various harmful heavy metals remain in the soil, contaminating groundwater and surface water and causing increased leachate. In the case of dumping at sea, new measures have to be taken, as the international level is being banned to protect shared seas. In accordance with this trend, recently, the government has attempted to use it for various purposes in terms of governmental recycling.

한편 상기 하·폐수처리장에서 발생하는 슬러지의 주성분은 무기성분과 유기성분으로 이루어져 있으므로 소각시 유기성분이 휘발, 즉 가스화하는 성질이 있으며, 무기성분의 대부분은 토분으로 구성되어 있다. 이러한 슬러지류는 처리시 톤당 일정한 경비를 지불하고 있으므로 다른 경제적인 처리공법이 요구되고 있다. 이미 선진국에서는 슬러지류를 감량화 및 안정화시키는 방법으로써 소각처리가 일반화되어 있으나 그 부산물인 소각재의 처리방법에 대한 연구는 진행중에 있다. 우리나라에서도 장기적으로 보면 하·폐수처리 슬러지는 소각하는 방법으로 전환될 것으로 생각하며 이렇게 될 경우 발생하는 소각재에 대한 활용기술의 개발이 급선무라 할 수 있다.On the other hand, since the main components of the sludge generated in the sewage and wastewater treatment plant consists of inorganic components and organic components, the organic components are volatilized, i.e., gasified during incineration, and most of the inorganic components are composed of soil powder. Since these sludges pay a certain cost per ton of treatment, other economic treatment methods are required. In advanced countries, incineration is generally used as a method of reducing and stabilizing sludge, but research on the treatment of incineration ash, a by-product, is ongoing. In Korea, sewage and wastewater sludge is expected to be converted to incineration in the long term, and development of technology for incineration ash generated in such a case is urgent.

또, 우리나라의 폐기물관리법에서는 각종 하·폐수 처리시설에서 발생되는 슬러지를 시설규모에 따라 한정된 기간을 설정하여 다음과 같이 관리 및 처리하고자 하고 있다. 사업장에서 발생하는 일반폐기물중 유기성 슬러지(유기성물질의 함량이 40%이상)는 소각하거나, 수분함량이 75% 이하로 탈수·건조한 후 관리형 매립시설에 매립하도록 되어 있으나 앞으로는 소각, 고형화, 퇴비화, 매립지복토재, 토지개량제등으로 처리 및 사용하도록 규정하고 있다. 따라서 새로운 방법이 강구되지 않으면 안될 시점에 와 있다.In addition, the Korean Waste Management Act seeks to manage and treat sludge from various sewage and wastewater treatment facilities by setting a limited period of time according to the facility size. Organic sludge (organic substance content of 40% or more) among general wastes generated at the workplace is incinerated or dehydrated and dried to 75% or less of water, and then landfilled in a managed landfill facility, but in the future, incineration, solidification, composting, It is regulated to treat and use landfill cover material and land improvement system. So it's time for a new approach.

이에 본 발명에서 환경파괴와 처리에 따른 막대한 비용낭비를 초래하는 하는 악성폐기물 중의 하나인 폐수 슬러지를 보도블럭 제조시 주요한 구성 원료로 사용함으로서, 악성 폐기물인 폐수 슬러지의 재활용 발판을 도모함은 물론 보도 블럭의 품질향상(강도, 내구성 등), 제조원가절감 등의 부대효과까지 제공되는 그 제조방법을 제공함에 주안점을 두고 그 기술적 과제로서 완성한 것이다.Therefore, by using wastewater sludge, which is one of the malignant wastes that causes enormous cost waste due to environmental destruction and treatment in the present invention, as a major constituent raw material in the manufacture of the sidewalk block, it is also possible to promote scaffolding of wastewater sludge, which is a malignant waste, as well as sidewalk blocks. It is a technical task that focuses on providing the manufacturing method that provides the side effects such as quality improvement (strength, durability, etc.) and manufacturing cost reduction.

위 기술적 과제를 달성하기 위하여 본원에서는 하기와 같은 구체적인 제조방법과 실험 등을 제시하고 있다.In order to achieve the above technical problem, the present application suggests the following specific manufacturing methods and experiments.

즉, 본 발명의 폐수 슬러지 보도블럭의 제작과정은 크게 슬러지의 소성과정과 골재, 시멘트 및 슬러지의 혼합과정, 성형과정, 양생과정 등의 보도블럭제작공정을 제시하고 있으며, 이와 더불어 상기 과정에서 제조된 슬러지 보도블럭의 시편에 대한 휨강도 측정, 흡수율측정, SEM분석, 용출정도평가 등의 품질평가단계를 개시하고 있다. 이하, 하기의 내용과 같다.That is, the manufacturing process of the wastewater sludge press block of the present invention largely proposes the press block manufacturing process of the sludge firing process and the mixing process of aggregate, cement and sludge, forming process, curing process, etc. The quality evaluation stages such as bending strength measurement, water absorption rate measurement, SEM analysis, and elution degree evaluation of the sludge press block were analyzed. Hereinafter, it is as follows.

1. 보도블럭을 제작하기에 앞서 먼저 폐수 처리장 내지 정수처리장 등에서 발생하는 탈수 슬러지를 채취한 후 소성로를 통해 약 1시간 동안 소성시키되, 그 소성조건은 일반적인 슬러지 소각조건인 850℃에서 실시하고, 그 사용된 열원은 액화석유가스(LPG)를 이용함과 동시에 850℃까지 2시간에 걸쳐 승온한 후 그 내용물에 공기를 송입하여 2시간 30분에 걸쳐서 냉각해 최종 소성된 슬러지 재를 얻는다.1. Before producing the press block, first, dewatered sludge from wastewater treatment plant or water treatment plant is collected and calcined for about 1 hour through a sintering furnace.The firing condition is performed at 850 ℃, which is a general sludge incineration condition. The heat source used is liquefied petroleum gas (LPG) and at the same time heated up to 850 ° C. over 2 hours, then air is introduced into the contents to cool over 2 hours 30 minutes to obtain the final calcined sludge ash.

이렇게 얻은 슬러지재는 석분, 모래, 시멘트, 물과 함께 3가지 방법으로 혼합하여 제조한 바 이하, 각 실시예과 같다The sludge material thus obtained was manufactured by mixing it with stone powder, sand, cement, and water in three ways, as follows.

실시예 1)Example 1

석분 410kg, 모래 200kg, 물 19kg, 시멘트 120kg와 함께 슬러지 재 3kg(시멘트 투입량 대비 2.5 중량%)을 혼합하여 성형 제조하였으며,410 kg of stone powder, 200 kg of sand, 19 kg of water, and 120 kg of cement were mixed together with 3 kg of sludge ash (2.5% by weight of cement input).

실시예 2)Example 2)

석분 410kg, 모래 200kg, 물 19kg, 시멘트 120kg, 슬러지 6kg(시멘트 투입량대비 5.0중량%)을 혼합하여 성형 제조하였으며,Stone powder 410kg, sand 200kg, water 19kg, cement 120kg, sludge 6kg (5.0% by weight of the cement input) was molded and manufactured,

실시예 3)Example 3

석분 410kg, 모래 200kg, 물 19kg, 시멘트 120kg, 슬러지 12kg(시멘트 투입량 대비 10.0중량%)을 혼합하여 성형 제조하였다.Stone powder 410kg, sand 200kg, water 19kg, cement 120kg, sludge 12kg (10.0% by weight compared to the cement input) was prepared by molding.

상기 성형과정은 연속식 진동압축성형기로서, 성형조건은 〈표 1〉에서 나타낸 바와 같이 압축강도를 높이기 위하여 진동과 압축을 동시에 주었으며, 혼합물은 1, 2차로 나누어 공급하였다.The molding process is a continuous vibratory compression molding machine, and the molding conditions were simultaneously supplied with vibration and compression to increase the compressive strength as shown in <Table 1>, and the mixture was supplied in the first and second parts.

이렇게 성형 완료된 보도블럭은 압축강도의 발현에 있어서 중요한 공정이 되는 양생과정을 거친다.The molded press block is subjected to curing, which is an important process in the development of compressive strength.

상기 양생과정은 양생실 온도가 10℃로 외기와 비슷하며 기류의 흐름을 차단한 환경에서 양생하였으며 양생일수는 3일, 7일, 14일, 28일로 하였다.The curing process is similar to the outside air at the curing room temperature is 10 ℃ and cured in an environment that blocks the flow of air and the curing days were 3 days, 7 days, 14 days, 28 days.

〈표 1〉 진동압축 성형조건〈Table 1〉 Vibration compression molding condition

2. 보도블럭제작 결과평가2. Evaluation of Press Block Production Results

제작된 보도블럭은 한국공업규격에서 정하는 보도블럭의 기준을 충족하여야 한다. 한국공업규격(KSF4419)에서 정하는 보도블럭의 기준은 <표 2>과 같다. 즉 치수는 가로, 세로의 편차가 각각 ±2mm이하이고, 두께는 ±3mm여야하며, 휨강도는 50kg/cm2이상, 흡수율은 평균 7% 이내가 되어야 한다.The produced sidewalk blocks shall meet the standards of the sidewalk blocks set by the Korean Industrial Standards. The standards of the press block set by the Korean Industrial Standard (KSF4419) are shown in <Table 2>. In other words, the width and length of the deviation should be ± 2mm or less, the thickness should be ± 3mm, the flexural strength should be 50kg / cm 2 or more and the absorption rate should be within 7% on average.

〈표 2〉 한국공업규격에서 정하고 있는 보도블럭의 규격기준<Table 2> Standards of the sidewalk blocks specified by the Korean Industrial Standards

(1) 휨강도(1) flexural strength

일반적으로 제작된 보도블럭의 품질평가 항목중에서 가장 중요한 요소로는 휨강도와 흡수율을 주로 활용하고 있다. 이들 지표는 시편에 대한 건축 및 토목재료로서 재활용의 가능여부를 평가하는데 중요한 인자이다. 한국공업규격에서 정하고 있는 휨강도의 측정방법은 식 (1)과 같이 나타낼 수 있다.In general, the most important factor in the evaluation of the quality of the manufactured sidewalk blocks is the use of bending strength and water absorption. These indicators are an important factor in evaluating the recyclability of building and civil engineering materials on specimens. The method of measuring flexural strength specified in Korean Industrial Standards can be expressed as Equation (1).

여기서, P : 시험기가 나타낸 최대 파괴하중(N)Where P is the maximum fracture load (N) indicated by the tester.

ℓ : 지점간 거리(mm)ℓ: Distance between points (mm)

b : 지점간의 직각방향의 평균나비(mm)b: Average width of the points perpendicular to each other (mm)

d : 블럭의 평균두께(mm)d: average thickness of blocks (mm)

위 식에 의거하여 제작된 보도블럭의 휨강도를 측정한 결과를 〈그림 1〉에나타내었으며 양생 일경과에 따른 시편의 휨강도 측정은 한국공업규격의 규정에 따랐다.The result of measuring the bending strength of the sidewalk block manufactured according to the above equation is shown in <Figure 1>, and the bending strength of the specimen according to the curing time was in accordance with the Korean Industrial Standard.

슬러지/시멘트비에 따른 휨강도 측정결과는 3일째 시편 중 2.5%에서 34kg/cm2, 5.0%에서 30kg/cm2, 10.0%에서 25kg/cm2로 한국공업규격 50kg/cm2에 미달하고 있으나 7일째 시편 중 2.5%에서 55kg/cm2, 5.0%에서 50kg/cm2, 10.0%에서 46kg/cm2로 2.5%시편과 5.0%시편은 한국공업규격 50kg/cm2을 충족하고 있는 것으로 나타났다. 양생기간이 경과함에 따라 조금씩 강도가 일부 증가하는 시편도 있으나 그 정도는 거의 미미한 수준이었다. 따라서 염색슬러지를 소성하여 보도블럭을 제조할 경우 슬러지/시멘트비가 각각 2.5%와 5.0%를 혼합할 경우 양생기간 7일이 지나면 건축 및 토목재료로 재활용할 수 있는 휨강도를 얻을 수 있음을 알 수 있었다.Bending strength in accordance with the sludge / cement ratio measurement results. However to 25kg / cm 2 at 30kg / cm 2, 10.0% at 34kg / cm 2, 5.0% from 2.5% in the third day the specimen below the Korea Industrial Standard 50kg / cm 2 7 day Among the specimens, 2.5% to 55kg / cm 2 , 5.0% to 50kg / cm 2 , and 10.0% to 46kg / cm 2 , 2.5% and 5.0% met Korean Industrial Standard 50kg / cm 2 . Some of the specimens increased slightly in strength as the curing period progressed, but the degree was almost insignificant. Therefore, in the case of manufacturing the press block by firing the dyed sludge, it can be seen that if the sludge / cement ratio is mixed with 2.5% and 5.0%, respectively, after 7 days of curing period, the flexural strength that can be recycled into construction and civil engineering materials can be obtained. .

(2)흡수율(2) Absorption rate

한국공업규격에서 정하는 흡수율의 경우는 보도블럭 개개로는 10%이내여야하고 평균 7%이내가 되어야 하며, 측정방법은 (2)식과 같이 나타낼 수 있다.In the case of absorption rate defined by the Korean Industrial Standards, the individual sidewalk blocks should be less than 10% and less than 7% on average, and the measurement method can be expressed as shown in (2).

여기서, m1: 시료의 건조무게(g)Where m 1 : dry weight of the sample (g)

m2: 시료의 포화무게(g)m 2 : Saturation weight of the sample (g)

흡수율의 측정은 보도블럭을 건조기에서 온도 100 ∼ 110℃에서 24시간 이상 건조시키고, 이때 2시간사이에 측정한 무게 차가 미리 측정해 둔 시료의 0.2%를 초과하지 않을 때까지 건조시킨 후 실온에서 4시간 이상 냉각시켜 무게를 측정하였다. 그 후 시료를 15.5 ∼ 30℃의 물속에서 24시간이상 침수시킨 후 시료를 꺼내어 헝겁으로 표면수를 닦은 다음 무게를 측정하였다.The absorption rate was measured by drying the sidewalk block at a temperature of 100 to 110 ° C for at least 24 hours in a drier and drying it until the weight difference measured between two hours did not exceed 0.2% of the sample measured beforehand. The weight was measured by cooling over time. Thereafter, the sample was immersed in water at 15.5 to 30 ° C. for at least 24 hours, and then the sample was taken out, and the surface water was wiped with a cloth and then weighed.

측정방법에 의하여 슬러지/시멘트비에 따른 흡수율의 측정결과는 〈표 3〉와 〈그림 2〉에서 나타낸 바와 같이 1일째 시편 중 2.5%에서 6.8%, 5.0%에서 6.5%, 10.0%에서 6.3%로 나타나 한국공업규격에서 정하는 평균 7%(개개 10%)를 충족하고 있는 것으로 나타났다. 그리고 양생기간이 경과함에 따라 흡수율의 변화는 있으나 그 변화정도는 완만하였다.According to the measurement method, the measurement result of absorption ratio according to sludge / cement ratio is shown as 6.8%, 5.0%, 6.5%, 10.0%, and 6.3% in 2.5% of specimens on the first day as shown in <Table 3> and <Figure 2>. The average rate was 7% (10% each) set by Korean Industrial Standards. As the curing period elapsed, there was a change in absorption rate but the change was moderate.

〈표 3〉 보도블럭의 흡수율<Table 3> Absorption rate of sidewalk blocks

따라서 염색폐수처리 슬러지를 소성하여 보도블럭을 제조할 경우 슬러지/시멘트비가 각각 2.5%, 5.0% 및 10.0%를 혼합할 경우 건축 및 토목재료로 재활용할 수 있는 흡수율을 얻을 수 있음을 알 수 있었다.Therefore, it was found that when the press block was manufactured by calcining the wastewater treatment sludge, the absorption rate which can be recycled as a construction and civil engineering material was obtained when the sludge / cement ratio was mixed with 2.5%, 5.0% and 10.0%, respectively.

(3) 용출실험(3) Dissolution test

제작된 보도블럭에 대하여 중금속류의 용출정도를 평가하기 위하여 용출실험을 실시하였다. 또한 여기서 용출실험의 의의는 보도블럭을 토목 및 건축자재로 활용할 경우 주변에 중금속 및 유해물질의 용출정도를 평가하여 유해성 물질이 보도블럭으로부터 얼마나 많은 양이, 어느 정도 기간에 걸쳐 빠져나오는가를 예측하는데 이용될 수 있다. 용출실험은 폐기물관리법에 의거하여 실시하였으며 실험과정은 〈그림 3〉과 같다.In order to evaluate the dissolution degree of heavy metals, the dissolution test was performed. In addition, the significance of the dissolution test is to estimate the dissolution of heavy metals and harmful substances in the surrounding area when using the sidewalk block as a civil engineering and building material, and to predict how much and how long the hazardous substance is released from the sidewalk block. Can be used. The dissolution test was conducted in accordance with the Waste Management Act, and the experimental process is shown in <Figure 3>.

분석시료로는 휨강도를 측정한 시편을 2 ∼ 9.5mm 로 파쇄한 후 시편 100g에 pH 5.8 - 6.3인 용출용매 1000ml에 침적하여 6시간 동안 왕복진탕기를 사용하여 용출한 용출액에 대하여 여과 후 중금속을 분석하였다. 중금속류의 분석기기로는 SHIMADZU社 AA- 6401F 의 원자흡광광도계를 사용하였다.As an analytical sample, crushed specimens measured at flexural strength to 2 to 9.5 mm, and then immersed in 1000 ml of eluting solvent with pH 5.8-6.3 in 100 g of the specimen. It was. As an analyzer for heavy metals, the atomic absorption photometer of SHIMADZU company AA-6401F was used.

보도블럭에 대하여 Cu를 비롯한 11개 항목에 대하여 용출실험을 실시한 결과를 〈표 8〉에 나타내었다. 각각의 혼합비에 따른 용출결과를 보면 전반적으로 Si, Al 및 Cr이 일부 검출되었으며 특히 Si와 Al이 많은 이유로는 슬러지를 850℃에서 1시간 소각하였기 때문에 잔류물중에는 Al과 Si가 대부분임을 알 수 있다. 전체적으로는 슬러지와 시멘트의 혼합비에 따른 특별한 경향을 찾기는 곤란하였다.Table 8 shows the results of the dissolution test on 11 items including Cu on the coverage block. The results of the dissolution according to the mixing ratio showed that some of Si, Al, and Cr were generally detected, and in particular, Al and Si were most of the residues because the sludge was incinerated at 850 ° C for 1 hour for many reasons. . On the whole, it was difficult to find a special trend according to the mixing ratio of sludge and cement.

〈표 4〉보도블럭시편에 대한 용출실험 결과<Table 4> Dissolution test results for sidewalk block specimens

이상에서 상세히 설명한 바와 같이 본 발명의 폐수 슬러지를 이용한 보도블럭제조방법은 위 실시예를 통해 제조된 시편의 실험결과에서 알 수 있듯이 시멘트 투입량 대비 각각 2.5%와 5.0%를 혼합할 경우 양생기간 7일이 지나면 보도블럭으로서의 충분한 휨강도를 얻었음은 물론 시멘트 투입량 대비 슬러지의 함량이 각각 2.5%, 5.0% 및 10.0%의 경우 모두 보도 블럭이 가져야하는 충분한 흡수율을 얻을 수 있는 등 폐수 슬러지를 소성하여 보도블럭으로 제조할 경우 충분히 재활용할 수 있음을 알 수 있다.As described in detail above, the press block manufacturing method using the wastewater sludge of the present invention has a curing period of 7 days when mixing 2.5% and 5.0% of the cement input amount, respectively, as can be seen from the test results of the specimen prepared through the above examples. After this, not only the sufficient flexural strength as a sidewalk block was obtained, but also the amount of sludge to 2.5%, 5.0%, and 10.0% of cement input, respectively, was enough to burn the wastewater sludge. It can be seen that if manufactured, it can be recycled sufficiently.

Claims (1)

보도블럭을 제조함에 있어서,In manufacturing the sidewalk block, 석분 410kg, 모래 200kg, 물 19kg, 시멘트 120kg와 더불어 폐수 처리장 내지 정수처리장 등에서 발생하는 탈수 슬러지를 소성하여 얻은 슬러지재를 3~12kg(시멘트 투입량 대비 2.5% ~ 10.0중량%) 더 투입하여 함께 혼합하여 성형제조하는 것을 특징으로 한 폐수 슬러지를 이용한 보도블럭제조방법.3 ~ 12kg (2.5% ~ 10.0% by weight of cement input) of sludge obtained by firing dehydrated sludge from wastewater treatment plant or water treatment plant together with 410kg of stone powder, 200kg of sand, 19kg of water and 120kg of cement are mixed together. Press block manufacturing method using wastewater sludge, characterized in that the molding production.
KR1020030014184A 2003-03-04 2003-03-04 The manufacturing method of block for sewage-sludge KR20030024766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030014184A KR20030024766A (en) 2003-03-04 2003-03-04 The manufacturing method of block for sewage-sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030014184A KR20030024766A (en) 2003-03-04 2003-03-04 The manufacturing method of block for sewage-sludge

Publications (1)

Publication Number Publication Date
KR20030024766A true KR20030024766A (en) 2003-03-26

Family

ID=27730892

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030014184A KR20030024766A (en) 2003-03-04 2003-03-04 The manufacturing method of block for sewage-sludge

Country Status (1)

Country Link
KR (1) KR20030024766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338712B1 (en) * 2013-03-28 2013-12-06 고광식 Preparation method of pavement block using wasted water sludge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338712B1 (en) * 2013-03-28 2013-12-06 고광식 Preparation method of pavement block using wasted water sludge

Similar Documents

Publication Publication Date Title
Nakic Environmental evaluation of concrete with sewage sludge ash based on LCA
Liaw et al. A novel method to reuse paper sludge and co-generation ashes from paper mill
Kaur et al. Influence of incinerated biomedical waste ash on the properties of concrete
US5358760A (en) Process for producing solid bricks from fly ash, bottom ash, lime, gypsum, and calcium carbonate
Mostavi et al. Feasibility study of the potential use of drill cuttings in concrete
Zhan et al. Study on feasibility of reutilizing textile effluent sludge for producing concrete blocks
Akyıldız et al. Compressive strength and heavy metal leaching of concrete containing medical waste incineration ash
Tay Sludge ash as filler for Portland cement concrete
Parsa et al. Stabilization/solidification of hazardous wastes using fly ash
Tay et al. Reuse of industrial sludge as pelletized aggregate for concrete
Kirkelund et al. Electrodialytically treated MSWI fly ash use in clay bricks
Li et al. Approach to the management of magnesium slag via the production of Portland cement clinker
Cheng et al. Biorefining waste sludge from water and sewage treatment plants into eco-construction material
Soltaninejad et al. Environmental-friendly mortar produced with treated and untreated coal wastes as cement replacement materials
Mahdikhani et al. RETRACTED: Utilization of industrial waste residue containing heavy metals as a substitute for fine aggregates
Xiong et al. Particular pollutants, physical properties, and environmental performance of porous ceramsite materials containing oil-based drilling cuttings residues
Shukla et al. Constructing a greener future: A comprehensive review on the sustainable use of fly ash in the construction industry and beyond
Guo et al. Life-cycle assessment of concrete building blocks incorporating recycled concrete aggregates—A case study in China
Murugesan et al. Multi-criteria decision analysis for optimum selection of different construction bricks
Cheng et al. A comprehensive assessment of green concrete incorporated with municipal solid waste incineration bottom: Experiments and life cycle assessment (LCA)
Collivignarelli et al. Evaluation of concrete production with solid residues obtained from fluidized-bed incineration of MSW-derived solid recovered fuel (SRF)
Hamood et al. Sustainability of sewage sludge in construction
Yeganeh et al. The feasibility study of stabilizing the automotive paint sludge by recycling, to produce green concrete blocks, considering environmental and mechanical factors
KR20030024766A (en) The manufacturing method of block for sewage-sludge
Tay et al. Thermal stabilization of iron-rich sludge for high strength aggregates

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application