KR20030022594A - Ceramic-polymer composite material for tissue engineering using toothapatite and polymer, its manufacturing method, and its application - Google Patents

Ceramic-polymer composite material for tissue engineering using toothapatite and polymer, its manufacturing method, and its application Download PDF

Info

Publication number
KR20030022594A
KR20030022594A KR1020010055931A KR20010055931A KR20030022594A KR 20030022594 A KR20030022594 A KR 20030022594A KR 1020010055931 A KR1020010055931 A KR 1020010055931A KR 20010055931 A KR20010055931 A KR 20010055931A KR 20030022594 A KR20030022594 A KR 20030022594A
Authority
KR
South Korea
Prior art keywords
polymer
ceramic
composite material
apatite
tissue engineering
Prior art date
Application number
KR1020010055931A
Other languages
Korean (ko)
Other versions
KR100450145B1 (en
Inventor
정필훈
정한울
정한솔
정종훈
정연훈
김은석
홍동련
Original Assignee
정필훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정필훈 filed Critical 정필훈
Priority to KR10-2001-0055931A priority Critical patent/KR100450145B1/en
Publication of KR20030022594A publication Critical patent/KR20030022594A/en
Application granted granted Critical
Publication of KR100450145B1 publication Critical patent/KR100450145B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Dispersion Chemistry (AREA)
  • Dental Preparations (AREA)

Abstract

PURPOSE: Provided is a bioabsorptive ceramic-polymer complex material for tissue engineering with teeth apatite and polymer used which mixes teeth apatite, polymer for tissue engineering and solvent to keep porosity on the surface and section so that it improves humidity absorption rate. CONSTITUTION: The production process of the bioabsorptive ceramic-polymer complex material for tissue engineering with teeth apatite and polymer used comprises the steps of: (i) extracting an inorganic material from teeth of human or animals and crushing them to prepare teeth apatite; (ii) selecting one material from PGA, PLA, PLLA, PLGA, chitosan and PHBV as bioabsorptive polymer; (iii) selecting one solvent from methylene chloride, chloroform, DMSO and week acid; and (iv) mixing 60-90wt% of bioabsorptive polymer and 10-40wt% of teeth apatite under the selected solvent to produce a ceramic-polymer complex material.

Description

치아인회석과 고분자를 이용한, 조직공학용 생체흡수성 세라믹-고분자 복합물질, 제조방법 및 이의 용도{Ceramic-polymer composite material for tissue engineering using toothapatite and polymer, its manufacturing method, and its application}[Ceramic-polymer composite material for tissue engineering using toothapatite and polymer, its manufacturing method, and its application}

본 발명은 생체 흡수성 세라믹인 치아인회석에 관한 것으로, 상세하게는 사람 또는 동물의 치아에서 얻어진 무기물의 미쇄분말을 골 대체물질로 혹은 생체재료로 사용하는 치아인회석에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to dental apatite, which is a bioabsorbable ceramic, and more particularly, to dental apatite using a fine chain powder of an inorganic material obtained from a tooth of a human or an animal as a bone substitute material or a biomaterial.

또한 본 발명은 생체적합한 고분자와 치아인회석을 혼합하여 표면과 단면에서 균일한 다공성을 유지하면서 수분 흡수도가 우수하고, 무독성이면서 일정시간이 경과하면 자연 분해되지만 장기간 그 형태와 물성을 유지할 수 있는 조직공학용 세라믹-고분자 복합 물질에 관한 것이다.In addition, the present invention mixes biocompatible polymer and dental apatite to maintain uniform porosity on the surface and cross-section while maintaining excellent porosity, non-toxic and naturally decomposed after a certain time, but tissue that can maintain its shape and physical properties for a long time An engineering ceramic-polymer composite material is disclosed.

또한 본 발명은 치아인회석과, 치아인회석-고분자 복합물질을 조직공학적 담체 및 골 재생물질로서 사용하는 용도에 관한 것이다.The present invention also relates to the use of dental apatite and dental apatite-polymer composites as tissue engineering carriers and bone regeneration materials.

일반적으로, 합성 고분자는 조직공학 분야에서 매우 유용한 재료로서 합성이 손쉽게 가능하고, 여러 가지 크기나 모양으로 제작이 가능하며, 화학적, 물리적 성질을 사용 용도에 맞게 조절할 수 있다. 이론적으로는 비독성 분해산물을 방출하는 어떠한 생분해성 고분자들이 조직공학에 사용될 수 있으며, 이러한 용도의 고분자들 중 폴리에스터 계통의 고분자들이 담체(matrix 혹은 scaffold)제작에 적합한 것으로 알려져 있다. 현재 조직공학에서 가장 많이 사용되는 합성 고분자는 폴리글리콜산(PGA)과 폴리락트산(PLA) 그리고 이들의 공중합체인 폴리락트-글리콜산(PLGA)이다. 그러나, PGA와 PLGA들은 너무 빨리 분해되고 작은 다수의 분해산물을 만들기 때문에 염증반응 및 낭종을 일으키는 것과, 분해기간 동안 주변 조직을 산성화시키며, 이러한 성질은 특히 골 조직의 재생에 불리한 영향을 미치는 문제점이 있다.In general, synthetic polymers are very useful materials in the field of tissue engineering, and can be easily synthesized, manufactured in various sizes and shapes, and chemical and physical properties can be adjusted according to the intended use. Theoretically, any biodegradable polymers that release non-toxic degradation products can be used for tissue engineering, and polymers of this type are known to be suitable for preparing a matrix (matrix or scaffold). Synthetic polymers most commonly used in tissue engineering are polyglycolic acid (PGA) and polylactic acid (PLA) and their copolymers, polylactic-glycolic acid (PLGA). However, PGAs and PLGAs break down too quickly and produce many small products, causing inflammatory reactions and cysts, and acidifying surrounding tissues during the breakdown, which is particularly disadvantageous for bone tissue regeneration. have.

이러한 고분자 중의 하나인 폴리히드록시부틸레이트(PHB) 고분자는 많은 종류의 박테리아에서 에너지 저장원으로서 합성되며 한쪽 말단에는 산기가 부착되어 있고, 다른 말단기에서는 수산화기가 부착되어 있다. 이 고분자의 단점은 매우 부서지기 쉽고, 열 분해가 잘 되며, 가공성이 떨어지기 때문에 그 사용에 제한되어져 왔다. 그러나 특별한 첨가제를 박테리아의 배양시 넣어주면, 하이드록시발레릭산(hydroxyvaleric acid)과 공중합체가 형성하여 PHBV(polyhydroxybutyrate-co- hydroxyvalerate)의 열가소성 폴리에스터를 생성하여 용융온도의 감소, 결정도의 감소, 탄성율의 증가, 인성의 증가 등 물성의 개선이 이루어진다. 이러한 PHBV는 약물 전달 시스템, 봉합사 그리고 인공피부 등 인공 생체 재료로 사용될 수 있다.One of these polymers, polyhydroxybutylate (PHB) polymer, is synthesized as an energy storage source in many kinds of bacteria and has an acid group attached to one end and a hydroxyl group attached to the other end group. Disadvantages of this polymer have been limited to its use because it is very brittle, thermally decomposed and poor in processability. However, when special additives are added during the cultivation of bacteria, copolymers with hydroxyvaleric acid form a thermoplastic polyester of PHBV (polyhydroxybutyrate-co-hydroxyvalerate) to reduce melting temperature, decrease crystallinity, and modulus of elasticity. The improvement of physical properties such as the increase of the toughness and the increase of toughness are achieved. Such PHBV can be used as artificial biomaterials such as drug delivery systems, sutures and artificial skin.

또한 치아는 결정도가 높은 경조직이며 골 보다 무기질 함량이 높다. 치아의 무기질 부분은 인회석(apatite) 결정으로 존재하지만, 인산이온은 다른 이온(예를 들면 HPO4 -, OH-)으로 대체되거나 Na+나 Mg2+같은 금속이온들이 사이에 개재된다. 따라서 더 정확하게 표현하면 치아의 무기질은 주성분이 수산화인회석와 화이트라키트(whitelockite)로서 구조적으로 다른 치아인회석이라고 표현해야하며, 기타의 골 조직 또는 합성 수산화인회석 등의 세라믹과는 다른 생물학적인 특성 그리고 반응성들을 나타낸다. 이러한 치아인회석은 골 대체재로서 유용한 재료이나 분말의 형태이기 때문에 형태를 만들기 어렵다는 단점이 있다. 이러한 단점을 극복하기 위해서 일부 학자들은 석고나 도재 등과 섞어서 사용하였지만, 이는 조직공학에는 적합하지 않다.In addition, teeth are hard tissues with high crystallinity and higher mineral content than bone. The mineral part of the tooth is present as apatite crystals, but phosphate ions are replaced by other ions (for example HPO 4 , OH ) or interposed between metal ions such as Na + or Mg 2+ . Therefore, to be more precise, the mineral of tooth should be expressed as the main component of hydroxyapatite and whitelockite structurally different tooth apatite, and biological properties and reactivity different from ceramics such as other bone tissue or synthetic hydroxyapatite Indicates. Such dental apatite is disadvantageous in that it is difficult to form because it is in the form of a material or powder useful as a bone substitute. To overcome these shortcomings, some scholars used a mixture of plaster and ceramics, but this is not suitable for tissue engineering.

골 조직공학에서 골 결손부의 재건은 매우 어려운 분야 중 하나로서 자가골(autogenous)을 이식하는 방법이 가장 좋은 방법이나 그 양이 한정되어 있고, 다른 이차적인 결손부를 만들기 때문에 완전한 방법이라고 볼 수 없다. 그리고, 동종골(allogenic) 이식은 면역학적인 문제들을 완전하게 해결하지 못하였으며, 인공합성 물질은 감염의 우려가 높고 아직까지, 장기간의 결과들이 보고되지 않고 있다.In bone tissue engineering, reconstruction of bone defects is one of the most difficult areas, and the method of autogenous transplantation is the best method, but the amount is limited, and it is not a complete method because it makes other secondary defects. And allogenic grafts have not completely solved immunological problems, and synthetic materials are highly susceptible to infection and long-term results have not been reported.

이와는 별도로, 고분자-세포 구조물에 의한 재건법은 조직 공학에서 매우 희망적인 시도로 생각되어지고 있다. 이러한 합성고분자들은 담체로 제작되어 세포가 자라고 조직화하는데 도움을 준다. 세포가 그들의 기질들을 분비함에 따라, 고분자가 분해되고 인체로부터 제거되어 결국 완전한 생체조직만 남게되는 것이 조직공학의 목표이다. 이러한 담체로 사용되는 재료의 조건으로는 지나치게 오랜 기간동안 높은 강도를 유지하거나 너무 빨리 흡수가 되어 버리는 것을 방지하여 필요한 기간동안 물리적 성질을 유지하는 것이다.Apart from this, reconstruction by polymer-cell constructs is considered a very promising attempt in tissue engineering. These synthetic polymers are made of carriers to help cells grow and organize. As cells secrete their substrates, the goal of tissue engineering is to break down the polymer and remove it from the body, leaving only complete biological tissue. The conditions for the material used as such a carrier are to maintain high strength for an excessively long period of time or to prevent absorption so quickly to maintain physical properties for a necessary period.

그러나, 이에 세라믹의 장점을 지니면서 생체흡수가 가능한 세라믹을 개발할 필요가 있었다.However, there is a need to develop a ceramic that can absorb the bio-absorption.

본 발명의 제 1 목적은 사람 또는 동물의 치아에서 생체흡수성 세라믹인 치아인회석을 추출하는 방법과 추출한 치아인회석을 골 대체 물질로서 사용하는 방법을 제공함에 있다.It is a first object of the present invention to provide a method of extracting dental apatite, which is a bioabsorbable ceramic, from a human or animal tooth, and a method of using the extracted dental apatite as a bone substitute material.

본 발명의 제 2 목적은 세라믹이 생체에서 흡수가 안되는 단점과 고분자가 소수성인 단점을 개선하여 세라믹의 장점과 고분자의 장점을 동시에 지니면서 인체의 조직 대체물이나 조직공학용 담체로 이용 가능한 생체 흡수성이면서 친수성인 세라믹-고분자 복합 물질과 세라믹-고분자 복합 물질을 골 대체 물질, 골 재생물질 및 인체 장기나 조직 재생의 조직공학(tissue engineering)용 담체(scaffold)로 사용하는 용도를 제공함에 있다.The second object of the present invention is to improve the disadvantage that the ceramic is not absorbed in the living body and the disadvantage that the polymer is hydrophobic, while having both the advantages of the ceramic and the advantages of the polymer while being bioabsorbable and hydrophilic that can be used as a tissue replacement or tissue engineering carrier of the human body The present invention provides a use of a phosphorus ceramic-polymer composite material and a ceramic-polymer composite material as a bone substitute material, a bone regeneration material, and a scaffold for tissue engineering of human organ or tissue regeneration.

본 발명의 제 3 목적은 생체흡수성 고분자 물질을 크기와 모양이 쉽게 형성되면서 친수성을 갖도록 치아인회석을 혼합하여 전처리 없이도 우수한 수분 흡수도 및 높은 다공성을 유지하며, 무독성인 조직공학용 세라믹-고분자 복합 물질을 제공함에 있다.The third object of the present invention is to form a bioabsorbable polymer material and easily form the size and shape, while mixing the dental apatite to have hydrophilicity to maintain excellent moisture absorption and high porosity without pretreatment, and to produce a non-toxic ceramic engineering polymer-polymer composite material In providing.

본 발명의 제 4 목적은 치아에서 얻어진 치아인회석과 고분자인 PHBV(polyhydroxybutyrate-co-hydroxyvalerate)를 사용하여 표면과 단면에서 균일한 다공성을 유지하면서 높은 결정도를 갖으며, 일정시간이 경과하면 자연 분해되는 조직공학용 세라믹-고분자 복합 물질을 제공함에 있고 이를 담체(scaffold)로 이용함에 있다.The fourth object of the present invention is to have a high crystallinity while maintaining uniform porosity on the surface and cross-section using dental apatite and polymer polyhydroxybutyrate-co-hydroxyvalerate (PHBV) obtained from the teeth, and decomposes naturally after a certain time To provide a ceramic-polymer composite material for tissue engineering and to use it as a scaffold.

도 1 및 도 2는 본 발명에 따른 PHBV-치아인회석 복합 물질의 표면과 단면의 형태를 나타내는 주사전자 현미경 사진이다.1 and 2 are scanning electron micrographs showing the shape of the surface and the cross section of the PHBV-to-apatite composite material according to the present invention.

도 3은 본 발명에 따른 PHBV-치아인회석 복합 물질의 물 접촉각을 도시한 그래프이다.3 is a graph showing the water contact angle of the PHBV-cheapatite composite material according to the present invention.

도 4는 본 발명에 따른 PHBV-치아인회석 복합 물질의 친수화도를 나타내기 위한 사진이다.Figure 4 is a photograph for showing the degree of hydrophilicity of the PHBV-chiapatite composite material according to the present invention.

도 5는 본 발명에 따른 PHBV-치아인회석 복합 물질의 X-선 회절 분석 그래프이다.5 is an X-ray diffraction graph of the PHBV-cheapatite composite material according to the present invention.

도 6은 본 발명에 따른 PHBV-치아인회석 복합 물질의 인장강도를 측정한 그래프이다.Figure 6 is a graph measuring the tensile strength of the PHBV-cheapatite composite material according to the present invention.

도 7은 본 발명에 따른 PHBV-치아인회석 복합 물질의 이축인장강도를 측정한 그래프이다.Figure 7 is a graph measuring the biaxial tensile strength of the PHBV-toothite lime composite material according to the present invention.

상기와 같은 목적을 달성하기 위한 본 발명은 사람 또는 동물의 발치한 치아에서 추출한 무기질만을 미분쇄하여 골 대체 물질로서 사용하는 것을 특징으로 한다.The present invention for achieving the above object is characterized in that it is used as a bone substitute material by pulverizing only the mineral extracted from extracted tooth of human or animal.

또한, 본 발명은 조직공학용 복합 물질을 제조함에 있어서, 생체흡수성 고분자 물질에 치아인회석을 혼합하는 것을 특징으로 한다.In addition, the present invention is characterized in that the dental apatite is mixed with the bioabsorbable polymer material in preparing a composite material for tissue engineering.

바람직하게, 생체흡수성 고분자 물질은 폴리글리콜산(PGA), 폴리락트산(PLA), 폴리락트-글리콜산(PLGA), PLLA, 키토산(chitosan) 및 PHBV(polyhydroxybut yrate-co-hydroxyvalerate) 중에서 선택한 어느 하나인 것을 특징으로 한다.Preferably, the bioabsorbable polymer material is any one selected from polyglycolic acid (PGA), polylactic acid (PLA), polylactic-glycolic acid (PLGA), PLLA, chitosan and polyhydroxybutyrate-co-hydroxyvalerate (PHBV). It is characterized by that.

바람직하게, 치아인회석은 발치된 치아를 과산화수소수 용액으로 혈흔 및 조직 잔사들을 제거하고 약 500 내지 1300℃의 온도에서 열처리하여 유기질을 제거한 후에 약 400㎛ 이하의 크기로 미분쇄한 것을 특징으로 한다.Preferably, the dental apatite is characterized by pulverizing the extracted tooth to a size of about 400 ㎛ or less after removing the organic material by removing the blood and tissue residue with a hydrogen peroxide solution and heat treatment at a temperature of about 500 to 1300 ℃.

또한 조직공학용 복합 물질은 생체흡수성 고분자, 치아인회석 및 용매를 혼합하여 세라믹-고분자 복합 물질로서 제조한 것을 특징으로 한다.In addition, the composite material for tissue engineering is characterized in that it is prepared as a ceramic-polymer composite material by mixing the bioabsorbable polymer, dental apatite and solvent.

바람직하게, 상기 세라믹-고분자 복합 물질은 고분자 10 내지 30중량%, 용매 90 내지 70 중량%으로 혼합하고, 상기 치아인회석은 고분자 중량에 대하여 10 내지 40중량% 혼합한 것을 특징으로 한다.Preferably, the ceramic-polymer composite material is mixed with the polymer 10 to 30% by weight, the solvent 90 to 70% by weight, the dental apatite is characterized in that 10 to 40% by weight based on the polymer weight.

바람직하게, 상기 용매는 메틸렌클로라이드(methylene chloride), 클로로포름, 디메틸설폭사이드(DMSO), 약산(week acid) 중에서 선택한 어느 하나인 것을 특징으로 한다.Preferably, the solvent is any one selected from methylene chloride (methylene chloride), chloroform, dimethyl sulfoxide (DMSO), weak acid (week acid).

또한 바람직하게, 세라믹-고분자 복합 물질은 기공형성 수지와 용출담체로서 200 내지 300㎛로 소결된 염화나트륨(NaCl)이 PHBV-치아인회석의 혼합용액에 대하여 80 내지 90중량%로서 더 혼합된 것을 특징으로 한다.Also preferably, the ceramic-polymer composite material is characterized in that the pore-forming resin and sodium chloride (NaCl) sintered at 200 to 300 μm as the eluent carrier are further mixed as 80 to 90% by weight relative to the mixed solution of PHBV-cheapatite. do.

이와 같은 치아인회석, 세라믹-고분자 복합 물질을 골 대체 물질, 골 재생물질 및 인체 장기나 조직 재생의 조직공학(tissue engineering)용 담체(scaffold)로 사용하는 것을 특징으로 한다.Such apatite, ceramic-polymer composite material is used as a bone substitute material, bone regeneration material and scaffold for tissue engineering (tissue engineering) of human organs or tissue regeneration.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다. 우선 본 발명을 설명함에 있어서, 생체흡수성 고분자 중의 하나인 PHBV에 대하여 설명하고 있으나 PHBV만이 생체흡수성 고분자로 한정되는 것은 아니다.Referring to the present invention in more detail as follows. First, in describing the present invention, one of the bioabsorbable polymers is described as PHBV, but PHBV is not limited to the bioabsorbable polymer.

먼저, 생체흡수성 고분자, 바람직하게 몰중량이 690,000-720,000인 PHBV 고분자(알드리치사 제품)와, 치아인회석(TA)을 용매에 혼합하여 용매-주입/입자-침출(solvent-casting/particulate-leaching)방법으로 고분자-치아인회석(TA) 복합 물질을 생성한다.First, a bioabsorbable polymer, preferably a PHBV polymer (moulded by Aldrich) having a molar weight of 690,000-720,000, and dental apatite (TA) is mixed with a solvent, and then solvent-casting / particulate-leaching. The method produces a polymer-to-apatite (TA) composite.

본 발명에 사용되는 생체흡수성 고분자는 고분자-치아인회석 혼합 중량에 대하여 60 내지 90중량%를 사용한다. 이때, 생체흡수성 고분자 중의 하나인 PHBV 고분자는 열가소성 폴리에스터로서 히드록시부틸레이트와 히드록시발레레이트(HV)를 혼합하여 제조한 것이고, 하이드록시발레레이트의 함유량은 12 내지 30 mol%이다.The bioabsorbable polymer used in the present invention is used 60 to 90% by weight based on the polymer-cheapatite mixed weight. At this time, the PHBV polymer, which is one of the bioabsorbable polymers, is prepared by mixing hydroxybutylate and hydroxy valerate (HV) as thermoplastic polyester, and the content of hydroxy valerate is 12 to 30 mol%.

또한 치아인회석은 발치된 치아(사람, 동물)를 과산화수소수(히드로퍼옥시드) 용액으로 처리하여 혈흔 및 조직 잔사들을 완전히 제거하여 약 -72℃에서 보관한다. 모아진 치아를 500 내지 1300℃의 온도에서 1시간 동안 열처리하여 모든 유기질을 제거하고 무기질만 남긴다. 그 후 400㎛ 이하, 바람직하게는 100㎛ 이하로 분쇄한 것으로 고분자-치아인회석 혼합 중량에 대하여 10 내지 50중량%를 사용한다.Dental apatite is also stored at about -72 ° C by treating extracted tooth (human, animal) with hydrogen peroxide solution (hydroperoxide) to completely remove blood and tissue residues. The collected teeth are heat treated at a temperature of 500 to 1300 ° C. for 1 hour to remove all organic matter and leave only minerals. After that, it is pulverized to 400 µm or less, preferably 100 µm or less, and 10 to 50% by weight based on the polymer-cheapatite mixed weight is used.

그리고, 고분자와 치아인회석의 용매는 메틸렌클로라이드(methylene chloride), 클로로포름, 디메틸설폭사이드(DMSO), 약산 중에서 선택한 어느 하나를 사용한다.The solvent of the polymer and the apatite is methylene chloride, chloroform, dimethyl sulfoxide (DMSO), or any one selected from weak acids.

이와 같이 고분자, 치아인회석 및 용매가 혼합된 혼합물은 열 가압 과정이 첨가된 용매-주입/입자-침출(solvent-casting/particulate-leaching)방법으로 세라믹-고분자 복합 물질로서 제조된다.The mixture of the polymer, the dental apatite and the solvent is prepared as a ceramic-polymer composite material by a solvent-casting / particulate-leaching method to which a thermal pressurization process is added.

이때, 200 내지 300㎛의 지름을 갖도록 소결된 염화나트륨(NaCl)은 기공형성수지와 용출담체로서 고분자-치아인회석의 혼합용액에 대하여 80 내지 90중량%를 혼합하며, 혼합기에서 균일하게 혼합된다.At this time, sodium chloride (NaCl) sintered to have a diameter of 200 to 300㎛ is mixed 80 to 90% by weight with respect to the mixed solution of the polymer-cheapatite as the pore-forming resin and the eluent carrier, it is mixed uniformly in the mixer.

이와 같은 본 발명을 다음의 실시예에 의거하여 더욱 상세히 설명한다.This invention will be described in more detail based on the following examples.

<실시예><Example>

1. PHBV-치아인회석 복합 물질의 제조1. Preparation of PHBV-Chiapatite Composites

먼저 PHBV 10-30 중량%를 메틸렌클로라이드 등의 용매에 첨가하고 용해시켜 1시간동안 실온에서 혼합하고 균일한 폴리머 용액을 생성한 후, 생성된 혼합물에 0, 10, 20, 30, 40중량%의 치아인회석(TA)을 각각 첨가하여 5종류의 PHBV-치아인회석 혼합물을 제조하였다.First, 10-30% by weight of PHBV is added to a solvent such as methylene chloride and dissolved to mix for 1 hour at room temperature to produce a homogeneous polymer solution, and then to 0, 10, 20, 30, 40% by weight of the resulting mixture. Tooth apatite (TA) was added, respectively, to prepare five kinds of PHBV-chiapatite mixtures.

2. PHBV-TA(치아인회석) 복합 담체의 제조2. Preparation of PHBV-TA (Tooth Apatite) Composite Carrier

이와 같이 제조된 PHBV, 치아인회석 및 용매의 5종류의 혼합물에 다공제로서 200 내지 300㎛의 크기를 갖도록 망체를 이용하여 분리한 NaCl을 전체 중량의 90%로 첨가하여 일정한 크기의 세공을 갖는 다공성 담체를 생성하였다. 생성된 담체를 실리콘 재질로 제작한 틀에 붓고 NaCl 0.27g를 함유하는 0.15gm/l 폴리머 용액의 0.2ml으로 약 대략 2.5㎜의 두께, 20㎜의 직경을 갖도록 증발 건조하였다. 건조 후에 모든 샘플을 실온에서 24시간동안 진공상태에서 건조하여 남아 있는 용매를 제거하여 디스크 형태로 제작하였다. 이와 같이 제작된 디스크 형태의 견본을 NaCl이 내부에 채워져 있는 황동 재질로 제작한 틀에 놓고 상판을 덮었다. 이 틀을 20 내지 30MPa의 압력과 160℃의 온도로 1분간 예열한 후에 50 내지 60MPa의 압력으로 30초동안 압착하였다. 그 후 황동재질의 틀에서 NaCl이 과량 함유된 디스크형 시편을 얻었다. 이 시편을 순수로 25시간 동안 세척하여 NaCl을 완전히 제거한 후 다공성의 PHBV-치아인회석 복합 담체를 제조하였다.The porous pore having a uniform pore size was added to 90% of the total weight of NaCl separated using a mesh to have a size of 200 to 300 μm as a porous agent to the mixture of PHBV, dental apatite and solvent prepared as described above. The carrier was produced. The resulting carrier was poured into a mold made of silicone material and evaporated to dry with 0.2 ml of 0.15 gm / l polymer solution containing 0.27 g of NaCl to a thickness of approximately 2.5 mm and a diameter of 20 mm. After drying, all samples were dried in a vacuum at room temperature for 24 hours to remove the remaining solvent to form a disk. The disk-shaped specimens thus prepared were placed in a frame made of brass filled with NaCl and covered with a top plate. The mold was preheated to a pressure of 20 to 30 MPa and a temperature of 160 ° C. for 1 minute and then pressed for 30 seconds at a pressure of 50 to 60 MPa. After that, a disk-shaped specimen containing excessive NaCl in a brass frame was obtained. The specimen was washed with pure water for 25 hours to completely remove NaCl, thereby preparing a porous PHBV-cheapatite composite carrier.

이와 같이 제조된 PHBV-TA 복합 담체에 대한 특성으로 다공성, 친수도, 결정도, 강도 및 독성을 측정하였다.The porosity, hydrophilicity, crystallinity, strength and toxicity were measured as properties for the PHBV-TA composite carrier thus prepared.

3. PHBV-PTA 복합 담체의 특성분석3. Characterization of PHBV-PTA Composite Carrier

1) 표면 및 다공성 측정1) Surface and porosity measurement

제조된 PHBV-치아인회석 복합 담체의 표본을 액체질소에서 냉각후 파절시켜 금으로 코딩하고 SEM(SN550)을 이용하여 20kV하에서 측정하고, 표면과 단면의 형태를 분석하기 위해 주사전자 현미경을 사용하여 도 1과 도 2에 나타내었다. 이때, 도 1a, 2a는 PHBV-치아인회석의 혼합 중량에 대하여 치아인회석을 0중량%, 도 1b, 2b는 10중량%, 도 1c, 2c는 20중량%, 도 1d, 2d는 30중량%, 도 1e, 2e는 40중량%을 각각 함유한다.Samples of the prepared PHBV-chiapatite composite carrier were cooled in fractured liquid nitrogen, fractured, encoded with gold, measured under 20 kV using SEM (SN550), and analyzed using a scanning electron microscope to analyze the shape of the surface and the cross section. 1 and FIG. 2. At this time, Figure 1a, 2a is 0% by weight of the dental apatite, 10% by weight 1b, 2b, 20% by weight of Fig. 1c, 2c, 30% by weight, based on the mixed weight of PHBV- tooth apatite, 1E and 2E each contain 40% by weight.

도시한 바와 같이, 분석결과 세공들은 TA의 함량과는 관계없이 세공의 크기는 유사하였으며, 크기는 약 200 내지 250㎛로서 모두 균일하고 서로 연결되어 있는 열린 세공 형태이고, 외부 표면에도 세공들이 잘 형성되어 있다.As shown, the pore size was similar to the pore size regardless of the content of TA, the size was about 200 to 250㎛ all are uniformly connected open pores form, the pores are well formed on the outer surface It is.

또한, 최소 주입 압력은 0.5 psi, 최대 주입 압력은 27.95 psi로 설정하고, 수은 함입 다공도 측정기(Autopore III 9420)를 이용하여 담체의 다공도 분석하여 부피당 다공도를 총 주입 수은 양을 통해 계산하여 표 1에 나타내었다.In addition, the minimum injection pressure is set to 0.5 psi, the maximum injection pressure is set to 27.95 psi, the porosity analysis of the carrier using a mercury-containing porosity meter (Autopore III 9420) to calculate the porosity per volume through the total amount of mercury injected in Table 1 Indicated.

폴리머 농도Polymer concentration 조성 (wt%)Composition (wt%) 총 다공 면적 (m2/g)Total porosity area (m 2 / g) 밀도(g/mL)Density (g / mL) 다공도(%)Porosity (%) 10 wt%10 wt% PHBV/TA: 100/0PHBV / TA: 100/0 0.260.26 0.130.13 84.07 ± 2.3584.07 ± 2.35 10 wt%10 wt% PHBV/TA: 90/10PHBV / TA: 90/10 0.290.29 0.160.16 85.37 ± 1.6585.37 ± 1.65 10 wt%10 wt% PHBV/TA: 80/20PHBV / TA: 80/20 0.240.24 0.190.19 84.04 ± 3.2384.04 ± 3.23 10 wt%10 wt% PHBV/TA: 70/30PHBV / TA: 70/30 0.200.20 0.210.21 83.49 ± 2.6183.49 ± 2.61 10 wt%10 wt% PHBV/TA: 60/40PHBV / TA: 60/40 0.190.19 0.250.25 81.18 ± 3.1281.18 ± 3.12

도시한 바와 같이 TA의 함량이 증가함에 따라 밀도가 증가하고, 다공도는 약간씩 감속하였으나, 전체적으로 80 내지 88%의 높은 다공도를 유지하였다.As shown in the figure, the density increased with increasing TA content, and the porosity decreased slightly, but maintained a high porosity of 80 to 88% as a whole.

2) 친수화도 측정2) Hydrophilicity Measurement

PHBV-치아인회석 복합 담체에서 치아인회석의 함량이 0, 10, 20, 30,40중량%에 따른 친수화 정도를 비교하기 위해 PHBV-치아인회석 복합 담체의 시편에 물방울을 점적한 후 goniometer-microscope을 이용하여 물 접촉각을 분석하였다. 분석결과, 도 3에 도시한 바와 같이, 물 접촉각은 치아인회석의 함량이 증가함에 따라 점차 감소하였다.To compare the degree of hydrophilization according to the content of dental apatite at 0, 10, 20, 30, and 40% by weight in the PHBV-to-apatite composite carrier, a drop of water was applied to the specimen of the PHBV-to-apatite composite carrier, followed by a goniometer-microscope. Water contact angle was analyzed. As a result, as shown in FIG. 3, the water contact angle gradually decreased as the content of dental apatite increased.

또한 담체의 친수화도를 평가하기 위해 수성잉크를 40중량%의 치아인회석을 함유하는 PHBV-치아인회석 담체위에 점적한 후 이의 흡수정도를 측정하였다. 이때, 대조군으로 PLLA 담체와, PHBV 담체를 사용하였다. 측정결과, 도 4에 나타난 바와 같이, 대조군으로 사용된 PLLA 담체는 전혀 수성잉크를 흡수할 수 없었으며, PHBV-치아인회석 복합 담체는 PHBV 담체에 비하여 높은 수분 흡수도를 보였다.In addition, in order to evaluate the degree of hydrophilicity of the carrier, an aqueous ink was deposited on a PHBV-chiapatite carrier containing 40% by weight of dental apatite, and then its absorption was measured. At this time, a PLLA carrier and a PHBV carrier were used as controls. As a result, as shown in Figure 4, the PLLA carrier used as a control was not able to absorb the aqueous ink at all, PHBV-chiapatite composite carrier showed a higher water absorption than the PHBV carrier.

3) 결정도 측정3) Crystallinity Measurement

치아인회석이 PHBV 고분자에 미치는 영향을 평가하기 위해 X-선 회절 분석을 시행하였다. 0, 10, 20, 30, 40중량%의 치아인회석을 혼합한 복합 담체를 X-선 회절 분석하였다. 그 결과 도 5에 나타난 바와 같이 치아인회석의 함량이 증가할수록 PHBV의 결정도는 감소하였다.X-ray diffraction analysis was performed to evaluate the effect of dental apatite on PHBV polymer. X-ray diffraction analysis was performed on a composite carrier mixed with 0, 10, 20, 30 and 40 wt% of dental apatite. As a result, as shown in FIG. 5, the crystallinity of PHBV decreased as the content of dental apatite increased.

4) 강도 측정4) strength measurement

각각의 PHBV-치아인회석 복합 담체를 가압사출 방법을 통해 ASTM 규격(D638-90, type V)에 맞는 3.18×9.53×3.2mm의 시편으로 제작하였다. 이때, 분자량의 감소를 최소화하기 위해 치아인회석을 시행하여 틀(mould)의 온도를 약 170℃, 용기의 온도를 약 100℃로 설정하였으며, 다이나모미터(dynamometer)을 이용하여 인장강도를 측정하였다. 시편을 span length 13.5mm cross-head speed 1mm/min로 ASTM규격에 따라 측정한 힘 대 인장(elongation)의 변화는 도 6에 도시한 바와 같이, 치아인회석의 함량에 따른 Young's modulus와 최대장력은 치아인회석의 함량이 증가할수록 modulus가 증가하고 최대장력은 감소하였다.Each PHBV-chiapatite composite carrier was fabricated into a specimen of 3.18 × 9.53 × 3.2mm conforming to the ASTM standard (D638-90, type V) by a pressure injection method. At this time, in order to minimize the decrease in molecular weight, dental apatite was performed to set a mold temperature of about 170 ° C. and a container temperature of about 100 ° C., and tensile strength was measured using a dynamometer. The change in force versus elongation measured according to ASTM standard at span length 13.5mm cross-head speed 1mm / min is shown in FIG. 6, Young's modulus and maximum tension according to the content of dental apatite are As the apatite content increased, the modulus increased and the maximum tension decreased.

또한 복합담체 자체의 물리적 성질을 비교하기 위해 이축인장강도 실험(UTM tensile test machine, AG-5000G)에서는 도 7에 도시한 바와 같이, 거리별 하중의 관계에서 30중량%의 치이인회석을 함유하는 복합 담체에서는 평균 장력이 증가하였으나, 40중량%를 함유하는 복합 담체에서는 오히려 감소함을 알 수 있다.In addition, in order to compare the physical properties of the composite carrier itself, a biaxial tensile test machine (UTM tensile test machine, AG-5000G), as shown in Figure 7, the composite containing 30% by weight of ichpatite in the relationship of the load by distance The average tension was increased in the carrier, but decreased in the composite carrier containing 40% by weight.

5) 독성 검사5) Toxicity Test

L-929 포유류 섬유세포를 60mm 크기의 판에 배양하였다. 배양액을 제거한 후 5ml의 0.7% agarose overlay medium을 도포하였다. 아가가 굳은 후 음성 대조군 표본과 실험군 표본을 각각 준비된 배양판에 위치시킨후 37℃의 온도로 24 시간 동안 배양기에서 배양하였다. 표본을 제거한 후 3ml의 0.01% neutral red로 염색(viTPAl sTPAining)한 후 30분 동안 추가로 배양하였다. 배양 medium을 제거하고 독성정도를 표본 주위의 염색약의 탈색정도와 살아있는 세포와 죽은 세포의 경계에서 현미경 하의 세포 형태를 측정함으로써 평가하였다. 측정결과 모든 표본에서 0/0으로 거의 무독성인 세포독성평가 결과를 나타내었다.L-929 mammalian fibroblasts were cultured in a 60 mm plate. After removing the culture solution, 5ml of 0.7% agarose overlay medium was applied. After the agar solidified, the negative control sample and the experimental group were placed on the prepared culture plates, respectively, and incubated in the incubator for 24 hours at a temperature of 37 ℃. After removing the sample, 3 ml of 0.01% neutral red stained (viTPAl sTPAining) and further incubated for 30 minutes. The culture medium was removed and the toxicity was assessed by measuring the discoloration of the dye around the specimen and the cell morphology under the microscope at the boundary between living and dead cells. As a result, all samples showed 0/0 almost nontoxic cytotoxicity test.

상기와 같이, 본 발명의 세라믹-고분자 복합 물질은 인체의 조직인 치아를 이용하고 역시 생체흡수성 고분자를 이용하여 생체에 무독성이며 생체흡수성이고,조직공학용 담체에 적합한 다공성을 유지하며, 전처리 없이도 수분 흡수도가 우수하고, 정밀한 형태를 만들 수 있는 세라믹 장점과 고분자 장점을 지닌 물질적 특성을 갖는다.As described above, the ceramic-polymer composite material of the present invention uses the tooth which is the tissue of the human body and is also non-toxic to the living body by using the bio-absorbing polymer, bio-absorbing, maintains the porosity suitable for the tissue engineering carrier, water absorption degree without pretreatment It has excellent physical properties, with the advantages of ceramics and polymers to create precise forms.

또한 본 발명의 세라믹-고분자 복합 물질은, 종래의 고분자 담체들이 갖고있는 단점인 외부표면과 내부의 다공성이 다른점을 개선한 특징, 즉 본 복합물질은 물질의 외부나 내부의 다공성이 균일하고 그 다공성의 크기와 정도를 조절할 수 있다는 점과 담체의 크기와 모양을 쉽게 만들 수 있는 즉 형상을 용이하게 제작할 수 있는 물질적 특성이 있어, 조직공학적 담체 제작에 용이한 특성을 지니고 있다.In addition, the ceramic-polymer composite material of the present invention is characterized by improving the difference between the porosity of the outer surface and the inner surface, which is a disadvantage of the conventional polymer carriers, that is, the composite material has a uniform porosity outside or inside the material The porosity and size of the porosity can be controlled, and the size and shape of the carrier can be easily made, that is, the physical properties can be easily manufactured, and thus have easy characteristics for the preparation of tissue engineering carriers.

또한 본 발명의 세라믹-고분자 복합 담체는 인체의 일부 성분인 치아에서 얻어진 치아인회석을 사용하기 때문에 골 대체물이나 재생물질로서 이용할 수 있고 조직공학용 골 재생 담체로서도 이용가능하며, 인체 조직에서의 부작용을 최소화할 수 있는 이점이 있다.In addition, the ceramic-polymer composite carrier of the present invention can be used as a bone substitute or regeneration material because it uses dental apatite obtained from a tooth which is a part of the human body, and can also be used as a bone regeneration carrier for tissue engineering and minimizes side effects in human tissue. There is an advantage to this.

Claims (11)

사람 또는 동물의 발치한 치아에서 무기질만을 추출하여 이를 미분쇄하여 골 대체 물질 혹은 생체재료로서 사용하는 것을 특징으로 하는 치아인회석.Dental apatite, characterized in that the extraction of only the mineral extracted from the extracted tooth of a human or animal and use it as a bone substitute material or biomaterial. 제 1 항에 있어서, 상기 치아인회석은 발치된 치아를 과산화수소수 용액으로 처리하여 주위조직의 혈흔, 조직 잔사 및 이물질들을 완전히 제거하고 약 500 내지 1300℃의 온도에서 열처리하여 유기질을 제거한 후에 미분쇄한 것을 특징으로 하는 골 대체물질 혹은 조직공학용 세라믹 물질.The method of claim 1, wherein the tooth apatite is treated with a hydrogen peroxide solution to completely remove blood stains, tissue residues and foreign matter of the surrounding tissue and heat treated at a temperature of about 500 to 1300 ℃ to remove the organic matter and then pulverized Bone substitute or tissue engineering ceramic material, characterized in that. 생체흡수성 고분자, 치아인회석 및 용매를 혼합한 것을 특징으로 하는 조직공학용(tissue engineering) 세라믹-고분자( Ceramic-polymer) 복합(composite) 물질(material).Tissue engineering ceramic-polymer composite material characterized by mixing a bioabsorbable polymer, dental apatite and a solvent. 제 3 항에 있어서, 상기 치아인회석은 400㎛ 이하의 크기를 갖는 것을 특징으로 하는 조직공학용 세라믹-고분자 복합 물질.4. The ceramic-polymer composite material of claim 3, wherein the dental apatite has a size of 400 µm or less. 제 3 항에 있어서, 상기 생체흡수성 고분자 물질은 폴리글리콜산(PGA), 폴리락트산(PLA) , PLLA, 폴리락트-글리콜산(PLGA), 키토산(chitosan) 및 PHBV 중에서 선택한 어느 하나인 것을 특징으로 하는 조직공학용 세라믹-고분자 복합 물질.The method of claim 3, wherein the bioabsorbable polymer material is any one selected from polyglycolic acid (PGA), polylactic acid (PLA), PLLA, polylactic-glycolic acid (PLGA), chitosan and PHBV. Ceramic-polymer composite material for tissue engineering. 제 3 항에 있어서, 치아인회석-고분자 복합 물질의 중량에 대하여 상기 고분자는 60 내지 90중량%, 상기 치아인회석은 10 내지 40중량%로 혼합하는 것을 특징으로 하는 조직공학용 세라믹-고분자 복합 물질.The ceramic-polymer composite material for tissue engineering according to claim 3, wherein the polymer is mixed with 60 to 90% by weight and the dental apatite is 10 to 40% by weight based on the weight of the dental apatite-polymer composite material. 제 3 항에 있어서, 상기 용매는 메틸렌클로라이드(methylene chloride), 클로로포름, 디메틸설폭사이드(DMSO), 약산(week acid) 중에서 선택한 어느 하나인 것을 특징으로 하는 조직공학용 세라믹-고분자 복합 물질.The ceramic-polymer composite material of claim 3, wherein the solvent is any one selected from methylene chloride, chloroform, dimethyl sulfoxide (DMSO), and weak acid. 제 3 항에 있어서, 기공형성 수지와 용출담체로서 200 내지 300㎛로 소결된 염화나트륨(NaCl)이 치아인회석-고분자의 혼합용액에 대하여 80 내지 90중량%로서 더 혼합하는 것을 특징으로 하는 조직공학용 세라믹-고분자 복합 물질.The ceramic for tissue engineering according to claim 3, wherein the pore-forming resin and sodium chloride (NaCl) sintered at 200 to 300 µm as the eluent are further mixed as 80 to 90% by weight with respect to the mixed solution of dental apatite-polymer. Polymer composite materials. 제 3 항에 따른 조직공학용 세라믹-고분자 복합 물질은 고분자, 치아인회석 및 용매가 혼합된 혼합물을 열 가압 과정이 첨가된 용매-주입/입자-침출(solvent-casting/ particulate-leaching) 방법으로 제조하는 것을 특징으로 하는 조직공학용 세라믹-고분자 복합 물질의 제조방법.The ceramic-polymer composite material for tissue engineering according to claim 3 is used to prepare a mixture of a polymer, dental apatite and a solvent by a solvent-casting / particulate-leaching method to which a heat press process is added. Method for producing a ceramic-polymer composite material for tissue engineering, characterized in that. 제 3 항에 따른 조직공학용 세라믹-고분자 복합 물질을 골 대체 물질이나 골 재생물질로 사용하는 것을 특징으로 하는 방법.The method of claim 3, wherein the ceramic-polymer composite material according to claim 3 is used as a bone substitute material or bone regeneration material. 제 3 항에 따른 세라믹-고분자 복합 물질을 인체 장기나 조직 재생의 조직공학(tissue engineering)용 담체(scaffold)로 사용하는 것을 특징으로 하는 방법.The method according to claim 3, wherein the ceramic-polymer composite material according to claim 3 is used as a scaffold for tissue engineering of human organs or tissue regeneration.
KR10-2001-0055931A 2001-09-11 2001-09-11 Ceramic-polymer composite material for tissue engineering using toothapatite and polymer, its manufacturing method, and its application KR100450145B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0055931A KR100450145B1 (en) 2001-09-11 2001-09-11 Ceramic-polymer composite material for tissue engineering using toothapatite and polymer, its manufacturing method, and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0055931A KR100450145B1 (en) 2001-09-11 2001-09-11 Ceramic-polymer composite material for tissue engineering using toothapatite and polymer, its manufacturing method, and its application

Publications (2)

Publication Number Publication Date
KR20030022594A true KR20030022594A (en) 2003-03-17
KR100450145B1 KR100450145B1 (en) 2004-09-30

Family

ID=27723557

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0055931A KR100450145B1 (en) 2001-09-11 2001-09-11 Ceramic-polymer composite material for tissue engineering using toothapatite and polymer, its manufacturing method, and its application

Country Status (1)

Country Link
KR (1) KR100450145B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488405B1 (en) * 2002-05-07 2005-05-11 정필훈 Bio-resorbable nerve conduit and method for preparing the same
WO2013077669A1 (en) * 2011-11-23 2013-05-30 충북대학교 산학협력단 Production method for biomedical and industrial material using ceramic derived from birds' beaks
CN114848910A (en) * 2022-04-12 2022-08-05 中怡(深圳)医疗科技集团有限公司 Preparation method of piezoelectric polymer material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100261034B1 (en) * 1998-03-17 2001-09-22 김영균 Gypsum for teeth and method for producing the same
KR100393469B1 (en) * 1999-01-02 2003-08-06 정필훈 Bone Substitutes using animal bones and their reinforcement technique
KR100331608B1 (en) * 1999-11-25 2002-04-09 김정근 Process for manufacturing of bone graft materials using animal bones
KR100356905B1 (en) * 2001-05-14 2002-10-19 주식회사 태산솔루젼스 Method of providing calcium phosphate bioactive material from the porcine or bovine bone for bone defects treatment and fusions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488405B1 (en) * 2002-05-07 2005-05-11 정필훈 Bio-resorbable nerve conduit and method for preparing the same
WO2013077669A1 (en) * 2011-11-23 2013-05-30 충북대학교 산학협력단 Production method for biomedical and industrial material using ceramic derived from birds' beaks
KR101295686B1 (en) * 2011-11-23 2013-08-14 충북대학교 산학협력단 Method of Preparing Biomedical and Industrial Materials Using Ceramics Deriving from Birds Beaks
CN114848910A (en) * 2022-04-12 2022-08-05 中怡(深圳)医疗科技集团有限公司 Preparation method of piezoelectric polymer material

Also Published As

Publication number Publication date
KR100450145B1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
Zhang et al. Poly (α‐hydroxyl acids)/hydroxyapatite porous composites for bone‐tissue engineering. I. Preparation and morphology
Wang et al. Manufacture and evaluation of bioactive and biodegradable materials and scaffolds for tissue engineering
Kim et al. Production and potential of bioactive glass nanofibers as a next‐generation biomaterial
Roohani-Esfahani et al. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds
US6281257B1 (en) Porous composite materials
Ma et al. Synthetic nano‐scale fibrous extracellular matrix
KR20090008208A (en) Plga/hydroxyapatite composite biomaterial and method of making the same
KR100791512B1 (en) Bioactive glass nanofiber-collagen nanocomposite as a novel bone regeneration matrix
US10046088B2 (en) Nanoscale collagen particles and membranes
Zhang et al. Preparation of chitosan/hydroxyapatite guided membrane used for periodontal tissue regeneration
Zhu et al. Fabrication and characterization of bioactive silk fibroin/wollastonite composite scaffolds
Van Ho et al. Novel TOCNF reinforced injectable alginate/β-tricalcium phosphate microspheres for bone regeneration
Chen et al. Nanohydroxyapatite/cellulose nanocrystals/silk fibroin ternary scaffolds for rat calvarial defect regeneration
Rama et al. Influence of silk fibroin on the preparation of nanofibrous scaffolds for the effective use in osteoregenerative applications
US20110065890A1 (en) Calcium phosphate/biodegradable polymer hybrid material, method for producing same and implant using the hybrid material
CN101979103A (en) Method for preparing porous tissue engineering scaffold
Souza et al. Chitosan/Xanthan membrane containing hydroxyapatite/Graphene oxide nanocomposite for guided bone regeneration
KR100450145B1 (en) Ceramic-polymer composite material for tissue engineering using toothapatite and polymer, its manufacturing method, and its application
Xu et al. Preparation of porous nanocomposite scaffolds with honeycomb monolith structure by one phase solution freezedrying method
KR101517295B1 (en) Polymer Nanofiber scaffold for osteochondral regeneration
Cerrai et al. Periodontal membranes from composites of hydroxyapatite and bioresorbable block copolymers
Cui et al. Preparation and characterization of chitosan/β-GP membranes for guided bone regeneration
Li et al. Cell responses and hemocompatibility of g-HA/PLA composites
Qi et al. Preparation and properties of a biodegradable poly (lactide-co-glycolide)/poly (trimethylene carbonate) porous composite scaffold for bone tissue engineering
Kim et al. Fabrication of electropsun PLGA and small intestine submucosa-blended nanofibrous membranes and their biocompatibility for wound healing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120913

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130903

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140822

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee