KR20030019726A - PCL/PVC polymer and biodegradable films and sheets manufactured by using it - Google Patents

PCL/PVC polymer and biodegradable films and sheets manufactured by using it Download PDF

Info

Publication number
KR20030019726A
KR20030019726A KR1020010052997A KR20010052997A KR20030019726A KR 20030019726 A KR20030019726 A KR 20030019726A KR 1020010052997 A KR1020010052997 A KR 1020010052997A KR 20010052997 A KR20010052997 A KR 20010052997A KR 20030019726 A KR20030019726 A KR 20030019726A
Authority
KR
South Korea
Prior art keywords
pcl
pvc
film
polymer
blend
Prior art date
Application number
KR1020010052997A
Other languages
Korean (ko)
Other versions
KR100440742B1 (en
Inventor
강선철
하기룡
김욱수
서해정
태언희
양미옥
오지훈
Original Assignee
강선철
하기룡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강선철, 하기룡 filed Critical 강선철
Priority to KR10-2001-0052997A priority Critical patent/KR100440742B1/en
Publication of KR20030019726A publication Critical patent/KR20030019726A/en
Application granted granted Critical
Publication of KR100440742B1 publication Critical patent/KR100440742B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: Provided are a polycaprolactone(PCL)/polyvinylchloride(PVC) polymer and biodegradable film and sheet using the polymer, which have increased tensile strength than that of polyvinyl chloride and can be used for mulching films for agriculture, vinyl bags for waste food, and PVC films and sheets. CONSTITUTION: The PCL/PVC polymer comprises 87-99.99wt% of the PVC and 0.01-13wt% of the PCL. And the biodegradable film and sheet are produced by a process comprising the steps of: blending PVC, PCL, a lubricant, and a heat-stabilizer in an extruder at 80-250deg.C for 0.5-30 minutes; cooling the blended PCL/PVC at 10-25deg.C; forming pellets having a particle diameter of 2mm; molding the pellets by using a calender, a blow mold, a press mold, and etc. and then cooling at 10-25deg.C.

Description

폴리카프로락톤/폴리염화비닐 고분자 및 이를 이용한 생분해성 필름과 시트{PCL/PVC polymer and biodegradable films and sheets manufactured by using it}Polycaprolactone / polyvinyl chloride polymer and biodegradable films and sheets using the same {PCL / PVC polymer and biodegradable films and sheets manufactured by using it}

본 발명은 폴리카프로락톤(PCL)과 폴리염화비닐(PVC)을 블렌드하여 제조된 생분해성 필름과 시트 및 그 제조방법에 관한 것이다. 더욱 상세하게는 본 발명은 PCL과 PVC를 블렌드하여 제조된 PVC보다 강도가 증가되고 생분해가 가능한 필름과 시트 및 그 제조방법에 관한 것이다.The present invention relates to a biodegradable film and sheet prepared by blending polycaprolactone (PCL) and polyvinyl chloride (PVC) and a method for producing the same. More specifically, the present invention relates to a film and a sheet capable of increasing strength and biodegradation than PVC prepared by blending PCL and PVC, and a method of manufacturing the same.

고분자 블렌드는 경제적으로 새로운 고분자 물질을 제조하는데 아주 중요한 방법으로 간주되고 있다. 또한 고분자 블렌드는 첨가물의 조성, 분자량, 형태학, 상용성 등과 같은 여러 가지 요인에 따라 물성이 변화한다. 따라서 고분자 블렌드의 상용성에 대한 연구 및 최종 생성물의 기계적 물성과 물리적 특성을 제어할 수 있는 규칙을 찾으려는 노력이 활발히 행하여지고 있다.Polymer blends are considered economically a very important way to make new polymer materials. In addition, the polymer blend changes its physical properties depending on various factors such as the composition of the additive, molecular weight, morphology and compatibility. Therefore, research into the compatibility of the polymer blends and efforts to find a rule that can control the mechanical properties and physical properties of the final product is actively made.

많은 고분자들 중에 저렴하고 기계적 물성이 우수한 PVC[poly(vinyl chloride)](W. V. Titow, PVC Plastics, p. 10, Elsevier, London (1990))를 다른 고분자와 블렌드하기 위하여 PVC와 상용성이 좋은 고분자를 찾으려는 연구가 많이 행하여지고 있다.(L. A. Utracki, Polymer Alloys and Blends, p. 64, Hanser, New York (1990); O. Olabisi, L. M. Robeson, and M. T. Shaw, Polymer-Polymer Miscibility, p. 219, Academic Press, New York (1979). 그 중에서 우리는 PVC와 생분해성이 우수한 고분자로 알려져 있는 PCL[poly(ε-caprolactone)](A. Iwamoto and Y. Tokiwa,Polym. Degrad. Stab.,45, 205 (1994))와의 블렌드에 대하여 연구하였다. PCL/PVC 블렌드 계에서 PCL함량 0%에서 100%까지 오직 하나의 유리전이온도(T g )가 나타나며, 전체 조성의 범위에서 상용성이 아주 우수한 것으로 보고되어 있다(F. B. Khambatta, F. Warner, T. Russel, and R. S. Stein,J. Polym. Sci. Polym. Phys. Ed.,14, 1391 (1976); J. V. Koleske and R. D. Lundberg,J. Polym. Sci. Part A-2,7, 795(1969); F. C. Chiu, Basic Studies of Miscibility and Interdiffusion of Vinyl Chloride Polymers and Poly (ε-Caprolactone) Blends, Masters Thesis, University of Akron (1991)).Among other polymers, poly (vinyl chloride) (WV Titow, PVC Plastics, p. 10, Elsevier, London (1990)), which is inexpensive and has excellent mechanical properties, is compatible with other polymers. Much research has been done to find them (LA Utracki, Polymer Alloys and Blends, p. 64, Hanser, New York (1990); O. Olabisi, LM Robeson, and MT Shaw, Polymer-Polymer Miscibility, p. 219). , Academic Press, New York (1979), among which we describe poly (ε-caprolactone) (PCL), known as PVC and a biodegradable polymer (A. Iwamoto and Y. Tokiwa, Polym. Degrad. Stab. , 45 , 205 (1994)), with only one glass transition temperature ( T g ) in the PCL / PVC blend system, ranging from 0% to 100% PCL content, with excellent compatibility across the entire composition range. (FB Khambatta, F. Warner, T. Russel, and RS Stein, J. Polym. Sci. Polym. Phys. Ed. , 14 , 1391). (1976); JV Koleske and RD Lundberg, J. Polym. Sci.Part A-2 , 7 , 795 (1969); FC Chiu, Basic Studies of Miscibility and Interdiffusion of Vinyl Chloride Polymers and Poly (ε-Caprolactone) Blends, Masters Thesis, University of Akron (1991).

PCL/PVC 블렌드처럼 상용성이 우수한 PCL과 PVC의 분자간의 상호작용에 대한 연구는 적외선분광기(Fourier transform infrared spectrometer : FTIR)가 널리 사용되고 있다(M. M. Coleman and J. Zarian,J. Polym. Sci.,17, 837 (1979)). FTIR 분석법은 분자간의 상호작용에 관여하는 기능기들의 스펙트럼 피크의 위치 이동, 폭변화 및 상대적인 피크 높이 변화 등을 관찰함으로써 고분자들의 상용성에 대한 유용한 정보를 얻을 수 있다. 이러한 고분자들 사이의 상호작용은 형태학, 상용성, 기계적 물성 등 여러 가지 성질의 변화에 영향을 미치는 것으로 알려져 있다.As for the study of the interaction between PCL and PVC molecules with high compatibility, such as PCL / PVC blends, Fourier transform infrared spectrometer (FTIR) is widely used (MM Coleman and J. Zarian, J. Polym. Sci ., 17 , 837 (1979). The FTIR method provides useful information on the compatibility of polymers by observing the position shift, width change, and relative peak height change of spectral peaks of functional groups involved in intermolecular interaction. The interaction between these polymers is known to affect various properties such as morphology, compatibility, and mechanical properties.

고분자에 첨가물을 첨가함에 따른 기계적 물성의 변화 중 반가소화 효과는 고분자에 저분자 물질인 가소제 및 희석제를 소량 첨가시 나타나는 현상으로 오직 유리전이온도 아래에서만 관찰되어지고 기계적 강도인 탄성률(modulus), 인장 강도(tensile strength)는 증가하고 충격 강도(impact strength)와신장률(elongation)은 감소하는 것으로 알려져 있다(M. Shuster, M. Narkis, and A. Siegmann,Polym. Eng. Sci.,34(21), 1613 (1994); S. J. Guerrero,Macromolecules,22, 3480 (1989)). 일반 가소제의 경우 약 20% 함량까지가 반가소화 영역이며, 가소제의 함량이 증가함에 따라 인장 탄성률과 인장 강도는 증가하고 충격 강도와 신장률은 감소하게 된다.The semi-plasticization effect among the changes of mechanical properties by adding additives to polymers is a phenomenon that occurs when a small amount of low molecular weight plasticizers and diluents are added to polymers. (tensile strength) increases and impact strength and elongation are known to decrease (M. Shuster, M. Narkis, and A. Siegmann, Polym. Eng. Sci. , 34 (21), 1613 (1994); SJ Guerrero, Macromolecules , 22 , 3480 (1989)). In the case of general plasticizers, up to about 20% of the content is a semiplasticized region. As the amount of the plasticizer increases, tensile modulus and tensile strength increase, and impact strength and elongation decrease.

반가소화 현상의 연구에 있어서 고분자와 가소제 역할을 하는 올리고머 사이의 연구는 많이 발표되어 있으나 고분자-고분자 사이의 반가소화 연구는 현재까지 미미한 실정이다. 특히 0.01∼13%의 낮은 PCL 함량에서의 PCL/PVC 블렌드의 열적거동 및 기계적 성질에 대한 반가소화 효과 연구는 아직까지 보고된 바가 없다. PCL/PVC 블렌드의 반가소화 현상에 대한 연구는 상업적으로 유용한 물성을 지니는 30%이하의 PCL 함량에 대한 최종생산물의 기계적 물성을 제어하기 위하여 아주 중요한 인자이다.In the study of semi-plasticization phenomenon, many studies have been published between the polymer and the oligomer which acts as a plasticizer, but the study of the semi-plasticization between the polymer and the polymer is insignificant. In particular, no studies on the semiplasticization effects on the thermal behavior and mechanical properties of PCL / PVC blends at low PCL contents of 0.01-13% have not been reported. The study of semiplasticization of PCL / PVC blends is a very important factor to control the mechanical properties of the final product for PCL content of less than 30% with commercially available properties.

본 발명자들은 상기와 같은 점을 감안하여 PCL과 PVC를 혼합하여 블렌드하여 펠렛으로 제조하고 상기 펠렛을 필름 및 시트로 제조한 뒤 상기 PCL/PVC 블렌드 필름을 이용하여 시차 주사 열량계로T g 를 측정하고 FTIR 분석을 한 뒤 인장 강도와 신장률을 측정하고 생분해성 시험을 함으로써 본 발명을 완성하였다.In view of the above, the present inventors have prepared a pellet by mixing and blending PCL and PVC, and manufacturing the pellet into a film and a sheet, and then measuring T g using a differential scanning calorimeter using the PCL / PVC blend film. After the FTIR analysis, the present invention was completed by measuring tensile strength and elongation and performing biodegradability test.

따라서, 본 발명의 목적은 PCL과 PVC를 블렌드하여 PVC보다 강도는 증가하면서 생분해가 가능한 PCL/PVC 고분자를 제공함에 있다. 본 발명의 다른 목적은 PCL/PVC 고분자를 이용하여 제조된 PVC보다 강도는 증가하면서 생분해가 가능한 필름과 시트를 제공함에 있다. 본 발명의 또 다른 목적은 PCL과 PVC를 블렌드하여 제조한 생분해성 필름과 시트의 농업용 멀칭 필름, 음식물 비닐봉지, PVC 필름 및 시트로서의 용도를 제공함에 있다.Therefore, an object of the present invention is to blend PCL and PVC to provide a PCL / PVC polymer biodegradable while increasing the strength than PVC. Another object of the present invention is to provide a film and sheet capable of biodegradation while increasing strength than PVC manufactured using PCL / PVC polymer. Still another object of the present invention is to provide a biodegradable film and sheet prepared by blending PCL and PVC as agricultural mulching film, food plastic bag, PVC film and sheet.

본 발명의 상기 목적은 PCL과 PVC를 혼합하여 블렌드하여 펠렛으로 제조하고 상기 펠렛을 필름 및 시트로 제조한 뒤 상기 PCL/PVC 블렌드 필름을 이용하여 시차 주사 열량계로T g 를 측정하고 FTIR 분석을 한 뒤 인장 강도와 신장률을 측정하고 생분해성 시험을 함으로써 달성하였다.The object of the present invention is to prepare a pellet by mixing and blending PCL and PVC, and to produce the pellets into a film and sheet and to measure the T g by using a differential scanning calorimeter using the PCL / PVC blend film and FTIR analysis This was achieved by measuring the tensile strength and elongation afterwards and performing a biodegradability test.

이하 본 발명의 구성을 설명한다.Hereinafter, the configuration of the present invention.

도 1는 PCL과 PVC를 블렌드하여 필름 및 시트를 제조하는 공정을 도시한 블럭도이다.1 is a block diagram illustrating a process of manufacturing a film and a sheet by blending PCL and PVC.

도 2는 PCL 함량에 따른 PCL/PVC 블렌드의T g 를 나타낸 그래프이다.2 is a graph showing the T g of PCL / PVC blend according to PCL content.

도 3은 PCL/PVC 블렌드의T g 실험값과 FOX식에 의한 값을 비교하는 그래프이다.Figure 3 is a graph comparing the T g experimental value of the PCL / PVC blend and the value by the FOX equation.

도 4는 PCL과 PCL/PVC 블렌드의 FTIR 스펙트럼을 나타낸 것이다.4 shows FTIR spectra of PCL and PCL / PVC blends.

도 5는 PCL과 PCL/PVC 블렌드의 응력-변형 곡선을 나타낸 것이다.5 shows the stress-strain curves of PCL and PCL / PVC blends.

도 6은 PCL 함량 변화에 따른 인장강도 변화를 나타낸 그래프이다.6 is a graph showing the change in tensile strength according to the PCL content change.

도 7은 PCL 함량 변화에 따른 탄성률 변화를 나타낸 그래프이다.7 is a graph showing a change in elastic modulus according to the PCL content change.

도 8은 PCL 함량 변화에 따른 항복 강도 변화를 나타낸 그래프이다.8 is a graph showing the change in yield strength according to the PCL content change.

도 9는 PCL 함량 변화에 따른 신장률 변화를 나타낸 그래프이다.9 is a graph showing the change in elongation rate according to the change in PCL content.

도 10a는 PCL/PVC 필름의 배양전 현미경 사진이다.10A is a preculture micrograph of a PCL / PVC film.

도 10b는 PCL/PVC 필름의 8주 배양후의 현미경 사진이다.10B is a micrograph after 8 weeks of culture of PCL / PVC film.

본 발명은 PCL과 PVC를 혼합하여 블렌드하여 펠렛을 제조하는 단계; 상기 펠렛을 성형하여 필름 및 시트를 제조하는 단계; 시차 주사 열분석을 통해 상기 단계에서 얻은 PCL/PVC 블렌드 필름의T g 을 측정하는 단계; 상기 PCL/PVC 블렌드 필름을 FTIR 분광기로 분석하는 단계; 상기 PCL/PVC 블렌드 필름의 인장강도 및 신장률을 측정하는 단계; 상기 PCL/PVC 블렌드 필름의 생분해성을 측정하는 단계로 구성된다.The present invention is to prepare a pellet by mixing and blending PCL and PVC; Molding the pellets to produce films and sheets; Measuring the T g of the PCL / PVC blend film obtained in the step via differential scanning thermal analysis; Analyzing the PCL / PVC blend film with an FTIR spectrometer; Measuring tensile strength and elongation of the PCL / PVC blend film; Measuring biodegradability of the PCL / PVC blend film.

본 발명에서 냉각 공정은 일반적인 공냉식 또는 수냉식 기법으로 행하였으며 공냉식은 팬으로 강제 통풍시킴으로써 가능하고 상기 두 기법에서 온도 범위는 10∼25℃이다.In the present invention, the cooling process is carried out by a general air-cooled or water-cooled technique and the air-cooled is possible by forced ventilation with a fan and the temperature range of the two techniques is 10-25 ℃.

본 발명에 의해 제조된 PCL/PVC 고분자는 반가소화 효과를 나타냄으로써 농업용 멀칭 필름, 음식물 비닐봉지, PVC 필름 또는 시트를 대용하는 용도로 사용할 수 있다. 또한 상기의 반가소화 효과 때문에 일반적인 PVC 필름 및 시트 제조시에 PCL을 가소제로서 대체하여 사용할 수 있게 된다.PCL / PVC polymer produced by the present invention exhibits a semi-plasticizing effect can be used as a substitute for agricultural mulching film, food plastic bags, PVC film or sheet. In addition, because of the semi-plasticizing effect it can be used to replace the PCL as a plasticizer in the general PVC film and sheet production.

이하 본 발명의 구체적인 방법을 실시예를 들어 단계별로 설명하고자 하지만 본 발명의 권리범위는 이들 실시예에만 한정되는 것은 아니다.Hereinafter, the specific method of the present invention will be described step by step with reference to Examples, but the scope of the present invention is not limited only to these Examples.

실시예 1 : PCL/PVC 블렌드에 의한 필름 및 시트 제조Example 1 Film and Sheet Preparation by PCL / PVC Blend

제 1단계: PCL/PVC 펠렛 제조Step 1: manufacture PCL / PVC pellets

PVC [한화종합화학(주)] 및 PCL (Union Carbide Co., USA)은 상온에서 오븐으로 24시간 건조시켜 사용하였다. PVC의 열안정제는 액상의 Sn계열, 납계열, 아연계열 등의 것을 구입하여 사용하였고, 스테아릭산 등의 활제를 사용하였다. PCL/PVC 블렌드는 무게비로 0∼100%로 사출기(extruder)를 사용하여 블렌드하였다.PVC [Hanhwa General Chemical Co., Ltd.] and PCL (Union Carbide Co., USA) were used by drying in an oven at room temperature for 24 hours. The thermal stabilizer of PVC was purchased by using a liquid Sn-based, lead-based, zinc-based, etc., and a lubricant such as stearic acid was used. PCL / PVC blends were blended using an extruder at 0-100% by weight.

0.1∼5%의 활제와 0.5∼5%의 열안정제를 PVC 입자에 충분히 흡수될 수 있도록 5분∼5시간 동안 믹서기(Mixer)에서 혼합한 뒤 상기 PVC 혼합물을 PCL과 사출기를 사용하여 블렌드하였다. PCL의 함량에 따라 사출기의 온도는 80∼250℃로 변화시켰으며, 이때 스크루의 교반속도는 100∼3,000 rpm으로 하였다. 블렌드시 PVC의 열분해를 최소화하기 위하여 전체 혼합시간은 0.5∼30분으로 하였다.0.1-5% of the lubricant and 0.5-5% of the heat stabilizer were mixed in a mixer for 5 minutes to 5 hours so as to be sufficiently absorbed into the PVC particles, and the PVC mixture was blended using a PCL and an injection machine. The temperature of the injection machine was changed to 80-250 ° C. according to the content of PCL, and the stirring speed of the screw was 100-3,000 rpm. In order to minimize the thermal decomposition of the PVC during blending, the total mixing time was 0.5 to 30 minutes.

상기 블렌드된 PCL/PVC를 10∼25℃에서 냉각한 후 펠렛기(pelletizer)를 사용하여 입경 2 mm 크기의 펠렛으로 제조하였다.The blended PCL / PVC was cooled to 10-25 ° C and then prepared into pellets having a particle size of 2 mm using a pelletizer.

제 2단계: PCL/PVC 필름 및 시트 제조Step 2: manufacture PCL / PVC film and sheets

상기 제 1단계의 방법으로 제조한 펠렛을 카렌더링, 블로우 성형기, 압축성형기 등을 사용하여 성형한 뒤 10∼25℃에서 냉각하여 각각 두께가 1㎛∼1mm의 필름 및 1mm∼1cm의 시트를 제조하였다(도 1).The pellets prepared by the method of the first step are molded using a calendering, blow molding machine, compression molding machine, etc., and then cooled at 10 to 25 ° C. to produce films having a thickness of 1 μm to 1 mm and sheets of 1 mm to 1 cm, respectively. (FIG. 1).

실험예 1 : PCL/PVC 블렌드들의 시차 주사 열분석Experimental Example 1: Differential Scanning Thermal Analysis of PCL / PVC Blends

PCL/PVC 블렌드들의T g 를 측정하기 위해서 시차 주사 열량계(TA Instruments, MDSC 2920)를 사용하였으며, 질소 기류하에서 10 ℃/min으로 승온시켰다.Differential scanning calorimetry (TA Instruments, MDSC 2920) was used to measure the T g of the PCL / PVC blends and was raised to 10 ° C./min under a stream of nitrogen.

상기 실시예 1에서 제조한 필름을 24시간 진공오븐에서 말린 후 1∼15 mg을 알루미늄 팬에 넣어 PCL/PVC 블렌드들의T g 값을 측정하였으며 온도 범위는 1차 측정(1st-run)에서는 상온에서 150 ℃로 증가시켰다가 냉각시켰고 2차 측정(2nd-run)에서는 -100℃에서 150 ℃로 증가시켰다.T g 값은 2nd-run에서의 측정값으로 열적 거동을 조사하였다.The film prepared in Example 1 was dried in a vacuum oven for 24 hours, and then 1-15 mg was put in an aluminum pan to measure the T g value of the PCL / PVC blends. The temperature was increased to 150 ° C. and then cooled and increased from −100 ° C. to 150 ° C. in the 2nd-run. The T g value was measured at 2nd-run and the thermal behavior was investigated.

실험 결과, PCL/PVC 블렌드에 대해서 시차 주사 열분석(DSC; Differential scanning calorimeter)을 이용하여 측정한 2nd-run의T g 값은 PCL 함량에 따라 도 2에 나타낸 바와 같았다. 상기 결과를 표 1에 기록하였다.As a result, the T g value of 2nd-run measured using differential scanning calorimeter (DSC) for the PCL / PVC blend was as shown in FIG. 2 according to the PCL content. The results are reported in Table 1.

PCL/PVC 블렌드의T g 2차 측정 결과 T g secondary measurement results for PCL / PVC blends PCL/PVC (wt/wt%)PCL / PVC (wt / wt%) T g (℃) T g (℃) T m (℃) T m (℃) 0/1000/100 75.775.7 -- 5/955/95 61.661.6 -- 9/919/91 50.850.8 -- 13/8713/87 45.645.6 -- 16/8416/84 33.233.2 -- 23/7723/77 22.222.2 -- 100/0100/0 -68.1-68.1 56.256.2

도 2과 표 1의 결과를 보면 PCL 블렌드의 전체함량에서 PCL/PVC 블렌드는 오직 하나의T g 가 나타났으며 PCL 함량이 증가할수록 순수 PVC의T g 보다 점점 낮아지는 것을 관찰할 수 있었다. 그리고 PCL/PVC 블렌드는 오직 하나의T g 와 결정성 피크가 나타나지 않음으로 PCL의 조성이 5∼23%에서는 무정형 상태이면서 PCL과 PVC는 좋은 상용성을 나타낸다는 것을 알 수 있었다. 결과적으로 블렌드된 두 고분자 물질이 분자 수준으로 혼합이 잘 되어 있다는 것을 알 수 있었다.In the results of Figure 2 and Table 1, only one T g of the total PCL / PVC blend in the total content of the PCL blend was observed that as the PCL content increases it becomes lower than the T g of pure PVC. The PCL / PVC blend showed only one T g and no crystalline peak, indicating that PCL and PVC had good compatibility while the composition of PCL was amorphous at 5 ~ 23%. As a result, the two blended polymers were found to be well mixed at the molecular level.

또한 상용성이 우수한 고분자들과 블렌드시 무정형 고분자에 잘 적용되는 아래 (1)의 Fox식을 이용하여 이론적으로 계산한T g 값과 실험적으로 측정된 PCL/PVC 블렌드의T g 값을 도 2에 나타내었다.Also in Figure 2 the T g value of the T g value and the experimentally PCL / PVC blends measured by a theoretically calculated using the Fox under the formula (1) which is well applicable to amorphous polymers during and blend excellent in compatibility polymer Indicated.

1/T g = w1/T g1 + w2/T g2 ---------------------- (1)1 / T g = w 1 / T g1 + w 2 / T g2 ---------------------- (1)

상기 식 (1)에서 1과 2는 각각 PCL과 PVC를 나타내고T g 는 PCL/PVC 블렌드의 유리전이온도를 나타내며 w는 무게분율을 나타낸다. 상기 (1)식인 Fox식을 사용하여 계산된Tg값과 실험에서 측정된Tg값을 도 3에 도시한 결과 상기 두 값들간에약간의 차이는 있지만 실험값이 Fox식에 의한 값을 잘 따름을 알 수 있었다. 상기 결과를 통해 PCL 함량 5∼23%의 PCL/PVC 블렌드는 무정형 고분자이며 두 고분자의 상용성이 우수하다는 것을 알 수 있었다.In Formula (1), 1 and 2 represent PCL and PVC, respectively, T g represents the glass transition temperature of the PCL / PVC blend and w represents the weight fraction. The slight difference between (1) expression, Fox equation was used to calculate the measured at T g values and the experimental T g value of the results of the two values shown in Figure 3, but experimental data to Following this fine obtained from the Fox equation Could know. The results show that PCL / PVC blend with PCL content of 5 ~ 23% is an amorphous polymer and the compatibility of the two polymers is excellent.

실험예 2 : PCL/PVC 블렌드들의 적외선분광기 분석Experimental Example 2 Infrared Spectroscopy Analysis of PCL / PVC Blends

용융 혼합된 PCL/PVC 블렌드에 대하여 분자간 상호작용을 관찰하기 위하여 PVC에 대한 PCL의 조성 변화에 따른 FTIR 스펙트럼을 측정하였다. FTIR 분광기 분석은 적외선이 투과되는 필름의 위치를 고정하기 위하여 일정한 틀에 15 ×15 mm로 절단된 필름을 고정하여 실온에서 측정하였으며 측정범위는 4000∼400 cm-1으로 하였으며 해상도는 2 cm-1이고 scan은 400번 행하였다. FTIR은 자스코(Jasco)사의 FTIR-620을 사용하였으며, DTGS (Deuterated triglycine sulfate) 검출기를 사용하였다.In order to observe the intermolecular interactions for the melt-blended PCL / PVC blends, the FTIR spectra were measured according to the composition change of PCL for PVC. FTIR spectroscopy analysis was carried out at room temperature by fixing a film cut to 15 × 15 mm in a fixed frame to fix the position of the infrared ray transmitting film. The measurement range was 4000 ~ 400 cm-1 and the resolution was 2 cm-1. And scan was performed 400 times. FTIR used Jasco's FTIR-620, and a DTGS (Deuterated triglycine sulfate) detector was used.

실험 결과, C=O 신축진동 피크의 거동을 도 4에 나타내었다. 도 4의 스펙트럼은 용융 혼합된 PCL/PVC 블렌드 필름을 실온에서 측정한 스펙트럼으로서 PVC 스펙트럼의 1330 cm-1에서 나타나는 C-H 굽힘진동 피크(S. Krimm, V. L. Folt, J. J. Shipman, and A. R. Berens,J. Polym. Sci. Part A,1, 2621 (1963))를 기준으로 순수 PVC의 스펙트럼을 C-H 굽힘진동 피크가 완전히 소거될 때까지 감하여 스펙트럼을 얻었으며, PCL/PVC 블렌드의 C=O 영역인 1760∼1700 cm-1의 범위를 확대하여 나타내었다.As a result, the behavior of the C = O stretching vibration peak is shown in FIG. 4. The spectra of FIG. 4 are the CH bending vibration peaks (S. Krimm, VL Folt, JJ Shipman, and AR Berens, J.) that appear at 1330 cm −1 of the PVC spectrum as spectra measured at room temperature for melt mixed PCL / PVC blend films. Based on Polym. Sci.Part A , 1 , 2621 (1963)), the spectrum of pure PVC was subtracted until the CH bending vibration peak was completely canceled, and the spectra were obtained. The C = O region of the PCL / PVC blend was 1760∼ An enlarged range of 1700 cm −1 is shown.

순수 PCL의 C=O 피크는 1760∼1700 cm-1까지의 넓은 영역에 걸쳐서 피크가 나타났으며, 고체상 PCL은 결정영역의 C=O 신축진동 피크가 1724 cm-1에서 무정형영역의 신축진동 피크는 1737 cm-1에서 나타난다고 알려져 있다. 따라서 순수 PCL에서 나타나는 넓은 영역의 C=O 신축진동 피크는 결정영역과 무정형영역이 공존하는 C=O 피크이다. 도 4에서 보면 PVC에 PCL의 첨가량이 증가함에 따라 C=O 신축진동 피크 위치는 1730.9 cm-1(5%), 1731.1 cm-1(9%), 1731.3 cm-1(13%), 1731.4 cm-1(16%), 1732.0 cm-1(23%)로 파수가 높은 쪽으로 ∼1 cm-1정도 이동하였으며, 순수 PCL의 무정형 피크는 1734.2 cm-1에서 관찰되었다.C = O peak of pure PCL showed peak over a wide range from 1760 to 1700 cm-1, and solid-phase PCL had a C = O stretching vibration peak of amorphous region at 1724 cm-1. Is known to appear at 1737 cm −1. Therefore, the wide C = O stretching vibration peak in pure PCL is the C = O peak where the crystal region and the amorphous region coexist. 4, as the amount of PCL added to PVC increases, the C = O stretching vibration peak positions are 1730.9 cm-1 (5%), 1731.1 cm-1 (9%), 1731.3 cm-1 (13%), and 1731.4 cm -1 (16%) and 1732.0 cm -1 (23%) shifted by ~ 1 cm-1 toward the higher wave, and amorphous peaks of pure PCL were observed at 1734.2 cm-1.

결과적으로 PCL/PVC 블렌드의 C=O 신축진동 피크가 순수 PCL의 C=O 피크보다 낮은 파수 영역에서 관찰되었으며, PCL 함량이 증가함에 따라 파수가 높은 쪽으로 이동하였다. 이러한 C=O 피크의 거동은 순수 PCL의 C=O 그룹과 PVC의 α-하이드로겐(α-hydrogen) 사이의 수소결합과 같은 특정한 상호작용에 기인한 결과이며 용액혼합으로 블렌드한 결과와 비교했을 때 용융혼합된 블렌드도 PCL 함량이 5∼23%에서 두 고분자간에 강한 상호작용이 존재함을 알 수 있었다.As a result, the C = O stretching vibration peak of the PCL / PVC blend was observed in the low frequency region lower than the C = O peak of the pure PCL, and shifted to the higher frequency as the PCL content increased. The behavior of these C = O peaks is due to certain interactions, such as hydrogen bonding between the C = O group of pure PCL and the α-hydrogen of PVC, compared with the results of blending by solution mixing. The melt-blended blends also showed strong interactions between the two polymers at PCL content of 5-23%.

실험예 3 : PCL/PVC 블렌드들의 기계적 성질 조사Experimental Example 3 Investigation of Mechanical Properties of PCL / PVC Blends

PCL/PVC 블렌드 시스템에서 PCL 함량이 23%까지의 낮은 조성에서 분자간의 상호작용이 기계적 물성에 끼치는 영향을 알아보기 위하여 인장 강도 및 신장률을 인스트론(Instron)사의 만능재료시험기(Universal Test Machine, Model 4465)를 사용하여 조사하였다. 상기 인장 강도 및 신장률은 ASTM 638 (type Ⅳ)의 아령형 시편으로 측정하였다. 측정치는 7회 측정하여 상한 및 하한치를 버리고 5회 평균치로 구하였다. 측정조건은 크로스 헤드 스피드(cross head speed) 50 mm/min, 가우게 렝스(gauge length) 2.5 cm로 하였다.In order to investigate the effect of intermolecular interaction on the mechanical properties at low PCL content up to 23% in PCL / PVC blend system, Instron's Universal Test Machine, Model 4465). The tensile strength and elongation were measured with a dumbbell type specimen of ASTM 638 (type IV). The measured value was measured 7 times, and the upper limit and the lower limit were discarded, and 5 average values were obtained. The measurement conditions were 50 mm / min cross head speed and 2.5 cm gauge length.

순수 PVC, 순수 PCL 및 PCL/PVC 블렌드의 응력-변형 곡선을 도 5에 나타내었으며, 측정된 여러 가지 인장 물성 값들은 표 2에 나타내었다. PVC에 PCL 함량을 23%까지 증가시킴에 따른 인장 강도, 탄성률, 항복 강도, 신장률의 그래프를 도 6∼9에 각각 나타내었다.The stress-strain curves of pure PVC, pure PCL and PCL / PVC blends are shown in FIG. 5, and the measured tensile properties are shown in Table 2. 6 to 9 show graphs of tensile strength, elastic modulus, yield strength, and elongation rate as the PCL content is increased to 23% in PVC.

PCL/PVC 블렌드의 여러 가지 인장 물성 값들Tensile Properties of PCL / PVC Blends PCL/PVC(wt/wt%)PCL / PVC (wt / wt%) 인장 강도(MPa)Tensile Strength (MPa) 탄성률(MPa)Modulus of elasticity (MPa) 항복 강도(MPa)Yield strength (MPa) 신장률(%)Elongation (%) 0/1000/100 39.939.9 12791279 67.067.0 436.436. 5/955/95 42.542.5 13251325 70.670.6 16.016.0 9/919/91 45.245.2 12131213 67.167.1 15.615.6 13/8713/87 41.041.0 11861186 64.764.7 28.528.5 16/8416/84 27.327.3 961961 49.149.1 135.7135.7 23/7723/77 27.427.4 263263 6.36.3 397.3397.3 100/0100/0 21.821.8 162.4162.4 17.317.3 13001300

도 6의 PCL 함량 변화에 따른 인장 강도 변화는 PCL함량 약 11%에서 인장 강도 값이 가장 높게 나타났으며 PCL 함량이 0.01∼13%까지 순수 PVC보다 인장 강도 값이 높다는 것을 관찰할 수 있었다. 상기와 같은 결과를 통해 약 13% PCL 함량까지 PCL/PVC 블렌드 필름이 순수 PVC보다 강도가 증가한다는 것을 알 수 있었다.The tensile strength change according to the PCL content of FIG. 6 showed the highest tensile strength at about 11% PCL content, and it was observed that the PCL content was higher than that of pure PVC at 0.01-13%. Through the above results, it can be seen that the PCL / PVC blend film has a higher strength than pure PVC to about 13% PCL content.

PCL 함량 변화에 따른 탄성률 변화를 도 7에 PCL 함량 변화에 따른 항복 강도 변화를 도 8에 나타내었다. 최대 탄성률과 최대 항복 강도 값은 PCL 함량이 약 5%에서 관찰되었으며 PCL 함량이 5%이상 증가하면 탄성률과 최대 항복 강도 값이 감소하기 시작하는 것을 알 수 있었다. 도 9의 PCL 함량 변화에 따른 신장률 변화를 보면 PCL 함량이 약 9%에서 최소 신장률이 나타나며 13%이상에서 순수 PVC보다신장률이 더 증가하는 것을 알 수 있었다.The change in elastic modulus according to the change in PCL content is shown in FIG. 8. The maximum modulus and yield strength were observed at about 5% of PCL content, and it was found that the elastic modulus and maximum yield strength value began to decrease as PCL content increased by more than 5%. In the change in elongation according to the PCL content of FIG. 9, the minimum elongation is shown at about 9% and the elongation is increased more than pure PVC at 13% or more.

일반적으로 기계적 물성이 좋은 PVC와 기계적 물성이 PVC보다 낮은 PCL을 블렌드하면 PCL의 함량이 증가함에 따라 50%정도의 함량까지는 기계적 물성이 낮아지는 것이 보편적이다. 하지만 도 6∼9의 실험 결과에서 보면 PCL/PVC 블렌드에서는 0.01∼13%의 PCL 조성에서 기계적 물성이 오히려 증가하는 현상을 관찰할 수 있었다. 따라서 PCL/PVC 블렌드 시스템에서는 0.01∼13%의 PCL 함량까지 반가소화 효과가 나타나는 것을 알 수 있었다.In general, when blending PVC with good mechanical properties and PCL with lower mechanical properties than PVC, it is common that the mechanical properties decrease to about 50% as the PCL content increases. However, in the experimental results of FIGS. 6 to 9, in the PCL / PVC blend, the mechanical properties were increased in the PCL composition of 0.01-13%. Therefore, it was found that the PCL / PVC blend system exhibits a semiplasticization effect up to 0.01-13% of the PCL content.

실험예 4 : PCL/PVC 블렌드들의 생분해성 조사Experimental Example 4 Investigation of Biodegradability of PCL / PVC Blends

PCL/PVC 필름의 생분해성 시험을 위하여 기본배지로 Na2HPO4·7H2O 12.8g, KH2PO43.0g, NaCl 0.5g, NH4Cl 1.0g을 증류수에 녹여 1 리터로 맞춘 후 121℃에서 15분간 멸균하여 배지를 제조하였다. 이때 유일한 탄소원으로서는 200㎛ 두께의 PCL/PVC 필름을 0.5×0.5cm로 절단하여 70% 알콜로 따로 소독하여 2%(W/V)의 양으로 첨가하였다. 상기와 같이 준비한 배지 30ml을 100ml 삼각플라스크에 넣고 토양미생물을 100㎕ 접종하였다. 토양미생물은 노지의 토양표면을 긁어서 이 중에서 1g을 10ml 멸균증류수에 현탁하여 10분간 방치한 후 위의 맑은물 부분을 취하여 사용하였다. 상기의 방법으로 균체를 접종하여 30℃에서 150rpm의 속도로 교반하면서 8주간 균체를 배양하면서 8주후에 PCL/PVC을 수집하여 배양전의 필름과 배양후의 필름을 주사형 탐침현미경(SPM: Scanning Probe Microscopy)으로 비교 관찰하였다.현미경의 배율은 약 50,000배로 조정하여 촬영하였다.For biodegradability test of PCL / PVC film, 12.8g Na 2 HPO 4 · 7H 2 O, 3.0g KH 2 PO 4 , Nag 0.5g, NH 4 Cl 1.0g were dissolved in distilled water and adjusted to 1 liter as the basic medium. The medium was prepared by sterilization for 15 minutes at ℃. At this time, the only carbon source was a 200 μm thick PCL / PVC film cut into 0.5 × 0.5 cm and sterilized separately with 70% alcohol and added in an amount of 2% (W / V). 30 ml of the medium prepared as described above was placed in a 100 ml Erlenmeyer flask, and 100 µl of the soil microorganism was inoculated. Soil microorganisms were used to scrape the surface of the soil, suspended 1g of this in 10ml sterile distilled water and left for 10 minutes to take the clear water above. Inoculate the cells by the above method, and incubate the cells for 8 weeks while stirring at 30 rpm at 150 rpm, and collect the PCL / PVC after 8 weeks, and examine the film before the culture and the film after the incubation with a scanning probe microscope (SPM: Scanning Probe Microscopy). The magnification of the microscope was adjusted to about 50,000 times and photographed.

시험결과 8주후에 토양미생물이 성장했음을 관찰할 수 있었고 상기 균은 3종의 세균과 2종의 곰팡이로 확인되었다. 또한 주사형 탐침현미경으로 50,000배로 관찰했을 때 배양전의 PCL/PVC 필름(도 10a)은 표면이 깨끗하였으나 8주후에는 필름(도 10b)은 토양미생물에 의하여 생분해되어 구멍이 많이 나 있음을 관찰할 수 있었다. As a result of the test, soil microorganisms were grown after 8 weeks, and the bacteria were identified as three bacteria and two fungi. In addition, when observed 50,000 times with a scanning probe microscope, the surface of the PCL / PVC film before incubation (FIG. 10a) was clean, but after 8 weeks, the film (FIG. 10b) was biodegraded by soil microorganisms, and thus many holes were observed. there was.

이상, 상기 실시예를 통하여 설명한 바와 같이 본 발명의 PCL/PVC 블렌드 필름 및 시트는 PVC보다 강도는 증가되면서 생분해가 가능한 뛰어난 효과가 있으므로 농업 및 가정용 필름과 비닐산업상뿐만 아니라 생활쓰레기 처리산업상 매우 유용한 발명인 것이다.As described above, the PCL / PVC blend film and sheet of the present invention has an excellent effect capable of biodegradation while increasing strength than PVC, so it is very useful in agricultural and household film and vinyl industries as well as in household waste processing industry. It is a useful invention.

Claims (3)

폴리염화비닐(PVC) 87∼99.99 wt%와 폴리카프로락톤(PCL) 0.01∼13wt%를 혼합함을 특징으로 하는 PCL/PVC 고분자.A PCL / PVC polymer characterized by mixing 87-99.99 wt% of polyvinyl chloride (PVC) and 0.01-13 wt% of polycaprolactone (PCL). 제 1항에 있어서, 농업용 멀칭 필름, 음식물 비닐봉지, PVC 필름 또는 시트용임을 특징으로 하는 PCL/PVC 고분자.The PCL / PVC polymer according to claim 1, which is for agricultural mulching films, food plastic bags, PVC films or sheets. PCL을 가소제로서 사용함을 특징으로 하는 PVC 필름 또는 시트 제조방법.PVC film or sheet production method characterized by using PCL as a plasticizer.
KR10-2001-0052997A 2001-08-30 2001-08-30 PCL/PVC polymer and biodegradable films and sheets manufactured by using it KR100440742B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0052997A KR100440742B1 (en) 2001-08-30 2001-08-30 PCL/PVC polymer and biodegradable films and sheets manufactured by using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0052997A KR100440742B1 (en) 2001-08-30 2001-08-30 PCL/PVC polymer and biodegradable films and sheets manufactured by using it

Publications (2)

Publication Number Publication Date
KR20030019726A true KR20030019726A (en) 2003-03-07
KR100440742B1 KR100440742B1 (en) 2004-07-15

Family

ID=27721690

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0052997A KR100440742B1 (en) 2001-08-30 2001-08-30 PCL/PVC polymer and biodegradable films and sheets manufactured by using it

Country Status (1)

Country Link
KR (1) KR100440742B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080955A1 (en) * 2005-01-24 2006-08-03 Ultraflex Systems, Inc. Compostable vinyl halide polymer compositions and composite sheets
WO2014070355A1 (en) * 2012-10-31 2014-05-08 Polyone Corporation Use of polycaprolactone plasticizers in poly(vinyl chloride) compounds
CN110819040A (en) * 2019-11-27 2020-02-21 吴超雄 Degradable and disintegrable PVC plastic and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101184750B1 (en) 2010-12-09 2012-09-21 주식회사 에코팩 Control of biodegradability of polyvinyl alchol and cellulose polymer mixed polymer films and the preparation thereof
KR102324143B1 (en) 2020-12-21 2021-11-11 주식회사 그린바이오 Container production system using biodegradable integrated film sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721732A (en) * 1984-05-18 1988-01-26 Raychem Corporation Polymeric articles and methods of manufacture thereof
FR2618441B1 (en) * 1987-07-24 1989-10-27 Solvay FLEXIBLE COMPOSITIONS BASED ON VINYL CHLORIDE POLYMERS COMPRISING POLY-EPSILON-CAPROLACTONE
JPH0372553A (en) * 1989-05-30 1991-03-27 Sekisui Chem Co Ltd Chlorinated vinyl chloride resin composition
US5254607A (en) * 1991-06-26 1993-10-19 Tredegar Industries, Inc. Biodegradable, liquid impervious films
GB2344595A (en) * 1998-12-11 2000-06-14 Solvay Poly epsilon-caprolactone plasticizers and vinylic polymer compositions plastified therewith

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080955A1 (en) * 2005-01-24 2006-08-03 Ultraflex Systems, Inc. Compostable vinyl halide polymer compositions and composite sheets
WO2014070355A1 (en) * 2012-10-31 2014-05-08 Polyone Corporation Use of polycaprolactone plasticizers in poly(vinyl chloride) compounds
CN110819040A (en) * 2019-11-27 2020-02-21 吴超雄 Degradable and disintegrable PVC plastic and application thereof
CN110819040B (en) * 2019-11-27 2021-08-17 深圳市百奥降解材料科技有限公司 Degradable and disintegrable PVC plastic and application thereof

Also Published As

Publication number Publication date
KR100440742B1 (en) 2004-07-15

Similar Documents

Publication Publication Date Title
EP0826737B2 (en) Organic polymers modified with silicone materials
Urayama et al. Properties and biodegradability of polymer blends of poly (l‐lactide) s with different optical purity of the lactate units
Labrecque et al. Citrate esters as plasticizers for poly (lactic acid)
JP6334410B2 (en) Method for producing polymer / biological element alloy
DE69831009T2 (en) POLYMYDROXYALKANOATE-CONTAINING POLYMER MIXTURES AND COMPOSITIONS WITH GOOD STABILITY OF STRETCHING
AU2002231290B2 (en) Method for making biodegradable polyhydroxyalkanoate copolymers having improved crystallization properties
EP3046964B1 (en) Polymer processing additive, compositions, and methods
EP2050785A1 (en) Use of organic phosphonic or phosphinic acids, or of oxides, hydroxides or carboxylic acid salts of metals as thermal stabilizers for plasticized polyhydroxyalcanoates
EP1343833B1 (en) Biodegradable polyhydroxyalkanoate copolymers having improved crystallization properties
CN115627057B (en) Straw and preparation method thereof
KR100440742B1 (en) PCL/PVC polymer and biodegradable films and sheets manufactured by using it
Krishnan et al. Statistical augmentation of polyhydroxybutyrate production by Isoptericola variabilis: Characterization, moulding, in vitro cytocompatibility and biodegradability evaluation
CN112813530A (en) Hydrophilic soft polylactic acid spinning composite material and preparation method thereof
US20080200637A1 (en) Biodegradable resin sheet
CN113773624A (en) Polylactic acid blending modified material and preparation method thereof
CN113845698A (en) Polymer composite nucleating agent and polymer composition
Veang-in et al. Characterization of Polymer Composites between Stereocomplex Polylactide Blends with Poly (methyl methacrylate)
JP6717657B2 (en) Biodegradable film
CN113801459B (en) Nano polyethylene terephthalate/polycarbonate composite material and preparation method thereof
Wen et al. Effect of MgO whiskers on thermal behavior and mechanical properties of injection molded poly (L‐lactide)
CN117209980B (en) Polyhydroxyalkanoate composition, polyhydroxyalkanoate molded body and preparation method of polyhydroxyalkanoate molded body
JP2011116954A (en) Polylactic acid resin composition and molded body
JP5170359B2 (en) Resin composition and molded body
JPH1160917A (en) Biodegradable resin composition and its production
Qasem et al. Mechanical, thermal, and morphological properties of poly (lactic acid)(PLA)/recycled tyre rubber waste compatibilised with chain extender

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130620

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140708

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150708

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160708

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170704

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180709

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20200108

Year of fee payment: 16