KR20030018293A - Method for Glycation of Paper-Sludge - Google Patents

Method for Glycation of Paper-Sludge Download PDF

Info

Publication number
KR20030018293A
KR20030018293A KR1020010051936A KR20010051936A KR20030018293A KR 20030018293 A KR20030018293 A KR 20030018293A KR 1020010051936 A KR1020010051936 A KR 1020010051936A KR 20010051936 A KR20010051936 A KR 20010051936A KR 20030018293 A KR20030018293 A KR 20030018293A
Authority
KR
South Korea
Prior art keywords
beta
ratio
sludge
case
glucosidase
Prior art date
Application number
KR1020010051936A
Other languages
Korean (ko)
Other versions
KR100423527B1 (en
Inventor
구윤모
Original Assignee
학교법인 인하학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 인하학원 filed Critical 학교법인 인하학원
Priority to KR10-2001-0051936A priority Critical patent/KR100423527B1/en
Publication of KR20030018293A publication Critical patent/KR20030018293A/en
Application granted granted Critical
Publication of KR100423527B1 publication Critical patent/KR100423527B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/244Endo-1,3(4)-beta-glucanase (3.2.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01006Endo-1,3(4)-beta-glucanase (3.2.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)

Abstract

PURPOSE: Provided is a glycation method of paper-sludge by using cellulase to produce glucose capable of being applied to industry, to reduce cost for disposing of waste, and to recycle wood waste. CONSTITUTION: The glycation method of paper sludge is characterized by adding endo-beta-1,4-glucanase or beta-glucosidase to 5-20%(w/v) of paper sludge which is generated from the manufacture of paper, in a ratio of 10:1 to 3:1; and decomposing the paper sludge effectively.

Description

제지슬러지의 당화방법{Method for Glycation of Paper-Sludge}Method for Glycation of Paper-Sludge}

본 발명은 제지슬러지의 당화방법에 관한 것이다. 좀 더 구체적으로, 본 발명은 셀룰로스 가수분해효소를 이용하여, 제지공정에서 발생되는 제지슬러지를 당화시키는 방법에 관한 것이다.The present invention relates to a saccharification method of papermaking sludge. More specifically, the present invention relates to a method of saccharifying paper sludge generated in the papermaking process using cellulose hydrolase.

종이는 주로 나무에서 얻어지는 펄프를 주원료로 하고, 각종 화학약품을 처리한 다음, 초지, 가공 등의 공정을 거쳐서 생산된다. 종이의 생산에 새용되는 제조방법은 여타의 다른 공산품의 제조방법에 비하여, 상대적으로 화학 오염물질이 적게 발생하고, 제조과정에서 발생되는 부산물 역시 낮은 오염도를 가지고 있어, 이를 재활용하려는 시도가 수차례에 걸쳐 시도되었다. 실제로 동일한 나무를 가공하는 제재산업의 경우, 목재가공시 발생되는 목재 부산물을 재활용하여 각종 산업자재 등으로 사용되고 있는 실정이다. 그러나, 종이생산과정에서 발생되는 부산물의 경우, 수분의 함량이 높고, 목재성분의 함량이 낮아 종래에 사용되던 목재 부산물의 재활용방법에 적용할 수 없기 때문에, 이를 재활용할 수 있는 새로운 방법을 개발하려는 노력이 계속되었다.Paper is mainly produced from pulp obtained from wood, treated with various chemicals, and then processed through papermaking and processing. The manufacturing method used for the production of paper is relatively low in chemical pollutants compared to other industrial products, and the by-products produced during the manufacturing process also have low pollution levels. Tried over. In fact, in the case of the lumber industry that processes the same wood, it is used as various industrial materials by recycling wood by-products generated during wood processing. However, the by-products generated during the paper production process have a high moisture content and a low wood content, so they cannot be applied to the conventional recycling method of wood by-products. Effort continued.

일반적으로, 제지슬러지란 종이생산과정에서 발생되는 주성분이 셀룰로스인 각종 부산물을 통칭한다. 순수한 다당류인 셀룰로스는 화학적인 방법에 의하여, 여러가지 단단류, 이당류 등의 유용한 당으로 분해될 수 있지만, 화학적인 셀룰로스의 분해과정은 비용이 많이 소요되고, 오염물질이 다량으로 배출되기 때문에, 현재까지는 제지슬러지를 재활용할 수 있는 기술이 개발되지 않고 있는 실정이다.In general, paper sludge refers to various by-products of which cellulose is a main component generated in paper production. Cellulose, a pure polysaccharide, can be decomposed into useful sugars such as monosaccharides and disaccharides by chemical methods.However, the decomposition of chemical cellulose is expensive and large amounts of pollutants are emitted. The technology for recycling paper sludge has not been developed.

따라서, 제지슬러지를 재활용할 수 있는 기술을 개발하여야 할 필요성이 끊임없이 대두되었다.Therefore, there is a constant need to develop a technology for recycling paper sludge.

이에, 본 발명자들은 제지슬러지를 재활용할 수 있는 기술을 개발하고자 예의 연구노력한 결과, 제지슬러지에 엔도-베타-1,4-글루카나제(endo-β-1,4-glucanase) 및 베타글루코시다제(β-glucosidase)를 적절한 활성비로 조합하여 처리할 경우, 제지슬러지를 효과적으로 분해하여 당화시킬 수 있음을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have intensively researched to develop a technology for recycling paper sludge. As a result, endo-beta-1,4-glucanase and beta glucosidase are produced in paper sludge. When (β-glucosidase) is treated in combination with an appropriate activity ratio, it was confirmed that the papermaking sludge can be effectively degraded and glycosylated, thereby completing the present invention.

결국, 본 발명의 주된 목적은 엔도-베타-1,4-글루카나제(endo-β-1,4-glucanase) 및 베타글루코시다제(β-glucosidase)를 이용하여 제지슬러지의 당화방법을 제공하는 것이다.After all, the main object of the present invention is to provide a method for glycosylation of papermaking sludge using endo-beta-1,4-glucanase and β-glucosidase. It is.

도 1은 여러가지 엔도-베타-1,4-글루카나제와 베타-글루코시데이즈의 혼합비에 의한 5%(w/v) 슬러지의 가수분해 결과를 시간에 따라 도시한 그래프이다.1 is a graph showing the results of hydrolysis of 5% (w / v) sludge over time due to the mixing ratio of various endo-beta-1,4-glucanase and beta-glucosidase.

도 2는 5%(w/v) 슬러지가 각 엔도-베타-1,4-글루카나제와 베타-글루코시데이즈의 혼합비에 의해 24시간 동안 가수분해되어 제조된 포도당의 농도를 도시한 그래프이다.FIG. 2 is a graph showing the concentration of glucose prepared by hydrolyzing 5% (w / v) sludge for 24 hours by the mixing ratio of each endo-beta-1,4-glucanase and beta-glucosidase. .

도 3은 여러가지 엔도-베타-1,4-글루카나제와 베타-글루코시데이즈의 혼합비에 의한 10%(w/v) 슬러지의 가수분해 결과를 시간에 따라 도시한 그래프이다.3 is a graph showing the results of hydrolysis of 10% (w / v) sludge over time by the mixing ratio of various endo-beta-1,4-glucanase and beta-glucosidase.

도 4는 10%(w/v) 슬러지가 각 엔도-베타-1,4-글루카나제와 베타-글루코시데이즈의 혼합비에 의해 20시간 동안 가수분해되어 제조된 포도당의 농도를 도시한 그래프이다.4 is a graph showing the concentration of glucose prepared by hydrolyzing 10% (w / v) sludge for 20 hours by the mixing ratio of each endo-beta-1,4-glucanase and beta-glucosidase. .

도 5는 여러가지 엔도-베타-1,4-글루카나제와 베타-글루코시데이즈의 혼합비에 의한 20%(w/v) 슬러지의 가수분해 결과를 시간에 따라 도시한 그래프이다.FIG. 5 is a graph showing the results of hydrolysis of 20% (w / v) sludge over time due to the mixing ratio of various endo-beta-1,4-glucanase and beta-glucosidase.

본 발명의 제지슬러지의 당화방법은 제지슬러지에 엔도-베타-1,4-글루카나제(endo-β-1,4-glucanase) 및 베타-글루코시다제(β-glucosidase)를 10:1 내지 3:1의 활성비로 첨가하여 당화시키는 공정을 포함한다: 이때, 효소의 활성도는 1분 동안 포도당 1μM을 만드는데 필요한 효소의 양으로 정의하며, 일반적인 효소역사를 표시하는 유닛(U)과 동일한 개념으로 취급한다.The glycosylation method of the papermaking sludge of the present invention is endo-beta-1,4-glucanase (beta-glucosidase) and beta-glucosidase (beta-glucosidase) in the papermaking sludge 10: 1 to A process of saccharifying by adding an activity ratio of 3: 1, wherein the activity of the enzyme is defined as the amount of enzyme required to make 1 μM of glucose for 1 minute, in the same concept as the unit (U) indicating general enzyme history. Handle

셀룰로스는 화학적인 방법과 효소적인 방법으로 가수분해되어 포도당으로 전환될 수 있으며, 효소적인 방법은 화학적인 방법에 비하여, 오염물질이 거의 발생하지 않으므로 환경친화적인 방법으로 알려져 있는데, 이때 사용되는 효소로는 셀룰로스 사슬을 무작위적으로 가수분해하여 셀로비오스와 포도당을 생성하는 엔도-베타-1,4-글루카나제, 셀룰로스 사슬의 비환원성 말단기에 작용하여 셀로비오스를 생성하는 셀로비오하이드롤라제(cellobiohydrolase), 셀로비오스를 분해하여 포도당을 생성하는 베타-글루코시다제가 있음이 알려져 있다. 그러나, 효소를 사용할 경우, 화학적인 가수분해 방법보다 수율이 낮고, 시간이 많이 소요되어, 화학적인 방법을 대치하지 못하고 있는 실정이다. 그러나, 오염물질의 발생량을 조절할 수 없는 화학적인 방법에 비하여, 효소적인 방법은 수율을 향상시키고 처리시간을 단축시킬 수 있음을 인지하여, 종래에 알려진 효소적인 방법을 개량시키고자 하였는 바, 엔도-베타-1,4-글루카나제와 베타-글루코시다제를 동시에 사용할 경우, 이들의 상승효과에 의하여 제지슬러지의 당화수율을 획기적으로 증진시킬 수 있음을 확인하게 되었다. 이에, 엔도-베타-1,4-글루카나제와 베타-글루코시다제의 조성비를 각기 달리하여 당화수율을 측정한 결과, 엔도-베타-1,4-글루카나제와 베타-글루코시다제를 10:1 내지 3:1의 활성도를 나타내는 비율로 혼합하여 처리할 경우, 전기 두 효소간의 상승효과를 얻을 수 있었고, 5:1의 비율로 혼합하여 처리할 경우, 최대당화수율을 얻을 수 있었다.Cellulose can be converted into glucose by hydrolysis by chemical and enzymatic methods, and enzymatic methods are known as environmentally friendly methods because little contaminants are generated compared to chemical methods. Endo-beta-1,4-glucanase, which hydrolyzes cellulose chains randomly to produce cellobiose and glucose, and cellobiose hydrolase, which acts on the non-reducing end groups of cellulose chains to produce cellobiose. (cellobiohydrolase), beta-glucosidase is known to break down cellobiose to produce glucose. However, when the enzyme is used, the yield is lower than that of the chemical hydrolysis method, it takes a lot of time, and the situation does not replace the chemical method. However, in recognition of the fact that the enzymatic method can improve the yield and shorten the treatment time, compared to the chemical method that cannot control the generation of contaminants, the endo-enzyme method was improved. When beta-1,4-glucanase and beta-glucosidase are used at the same time, the synergistic effect of the beta-sludge can be significantly improved. Thus, as a result of measuring the glycosylation yield by varying the composition ratio of endo-beta-1,4-glucanase and beta-glucosidase, endo-beta-1,4-glucanase and beta-glucosidase were determined. When the mixture was treated at a ratio of 10: 1 to 3: 1, the synergistic effect between the two enzymes was obtained. When the mixture was treated at a ratio of 5: 1, the maximum glycation yield was obtained.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .

실시예 1: 5%(w/v) 슬러지의 가수분해 Example 1 Hydrolysis of 5% (w / v) Sludge

엔도-베타-1,4-글루카나제와 베타-글루코시데이즈를 200/20, 200/10, 200/1, 200/0.25, 100/20, 100/10, 100/1, 100/0.25, 10/20, 10/10, 10/1, 10/0.25, 5/20, 5/10, 5/1, 5/0.25, 3/20, 3/10, 3/1, 3/0.25, 1/20, 1/10, 1/1 및 1/0.25U/ml 비율의 활성을 가지는 양으로 각각 혼합한 다음, 최종농도가 5%(w/v)가 되도록 슬러지를 첨가하여 가수분해시키고, 시간의 경과에 따른 포도당의 생성량을 측정하였다(참조: 도 1, 도 2). 도 1은 여러가지 엔도-베타-1,4-글루카나제와 베타-글루코시데이즈의 혼합비에 의한 5%(w/v) 슬러지의 가수분해 결과를 시간에 따라 도시한 그래프로서, 1은 200/20U/ml 비율인 경우를 나타내고, 2는 200/10U/ml 비율인 경우를 나타내며, 3은 200/1U/ml 비율인 경우를 나타내고, 4는 200/0.25U/ml 비율인 경우를 나타내며, 5는 100/20U/ml 비율인 경우를 나타내고, 6은 100/10U/ml 비율인 경우를 나타내며, 7은 100/1U/ml 비율인 경우를 나타내고, 8은 100/0.25U/ml 비율인 경우를 나타내며, 9는 10/20U/ml 비율인 경우를 나타내고, 10은 10/10U/ml 비율인 경우를 나타내며, 11은 10/1U/ml 비율인 경우를 나타내고, 12는 10/0.25U/ml 비율인 경우를 나타내며, 13은 5/20U/ml 비율인 경우를 나타내고, 14는 5/10U/ml 비율인 경우를 나타내며, 15는 5/1U/ml 비율인 경우를 나타내고, 16은 5/0.25U/ml 비율인 경우를 나타내며, 17은 3/20U/ml 비율인 경우를 나타내고, 18은 3/10U/ml 비율인 경우를 나타내며, 19는 3/1U/ml 비율인 경우를 나타내고, 20은 3/0.25U/ml 비율인 경우를 나타내며, 21은 1/20U/ml 비율인 경우를 나타내고, 22는 1/10U/ml 비율인 경우를 나타내며, 23은 1/1U/ml 비율인 경우를 나타내고, 24는 1/0.25U/ml 비율인 경우를 나타낸다. 도 1에서 보듯이, 포도당 농도는 가수분해 후, 6시간 정도에서 가장 높음을 알 수 있었다. 또한, 도 2는 5%(w/v) 슬러지가 각 엔도-베타-1,4-글루카나제와 베타-글루코시데이즈의 혼합비에 의해 24시간 동안 가수분해되어 제조된 포도당의 농도를 도시한 그래프로서, 1 내지 24번은 도 1의 경우와 동일하다. 도 2에서 보듯이, 포도당 생성은 20u/ml 베타-글루코시데이즈와 100u/ml의 활성을 가진 엔도-베타-1,4-글루카나제를 함께 처리한 5번의 경우가 가장 많았다.Endo-beta-1,4-glucanase and beta-glucosidase were added to 200/20, 200/10, 200/1, 200 / 0.25, 100/20, 100/10, 100/1, 100 / 0.25, 10/20, 10/10, 10/1, 10 / 0.25, 5/20, 5/10, 5/1, 5 / 0.25, 3/20, 3/10, 3/1, 3 / 0.25, 1 / 20, 1/10, 1/1 and 1 / 0.25 U / ml were mixed in amounts having the activity, respectively, and then hydrolyzed by adding sludge to a final concentration of 5% (w / v), The amount of glucose produced over time was measured (see FIGS. 1 and 2). 1 is a graph showing the hydrolysis results of 5% (w / v) sludge over time according to the mixing ratio of various endo-beta-1,4-glucanase and beta-glucosidase, 1 being 200 / It shows the case of 20U / ml ratio, 2 shows the case of 200 / 10U / ml ratio, 3 shows the case of 200 / 1U / ml ratio, 4 shows the case of 200 / 0.25U / ml ratio, 5 Indicates the case of 100 / 20U / ml ratio, 6 indicates the case of 100 / 10U / ml ratio, 7 indicates the case of 100 / 1U / ml ratio, and 8 indicates the case of 100 / 0.25U / ml ratio. 9 represents the case of 10 / 20U / ml ratio, 10 represents the case of 10 / 10U / ml ratio, 11 represents the case of 10 / 1U / ml ratio, and 12 represents 10 / 0.25U / ml ratio. Represents the case of 5 / 20U / ml ratio, 14 represents the case of 5 / 10U / ml ratio, 15 represents the case of 5 / 1U / ml ratio, and 16 represents 5 / 0.25U. / ml ratio, 1 7 represents the case of 3 / 20U / ml ratio, 18 represents the case of 3 / 10U / ml ratio, 19 represents the case of 3 / 1U / ml ratio, and 20 represents 3 / 0.25U / ml ratio. 21 represents a case of 1 / 20U / ml ratio, 22 represents a case of 1 / 10U / ml ratio, 23 represents a case of 1 / 1U / ml ratio, and 24 represents 1 / 0.25U / ml. The ratio is shown. As shown in Figure 1, the glucose concentration was found to be the highest at about 6 hours after hydrolysis. In addition, FIG. 2 shows the concentration of glucose prepared by hydrolyzing 5% (w / v) sludge for 24 hours by the mixing ratio of each endo-beta-1,4-glucanase and beta-glucosidase. As a graph, numbers 1 to 24 are the same as those in FIG. As shown in FIG. 2, glucose production was most frequently performed in combination with 20 u / ml beta-glucosidase and endo-beta-1,4-glucanase having an activity of 100 u / ml.

일반적으로 효소의 활성이 크면 클수록 포도당의 수율이 높아지지만, 20u/ml 활성을 가진 베타-글루코시데이즈에 200u/ml 활성을 가진 엔도-베타-1,4-글루카나제를 처리할 때 보다, 100u/ml의 활성을 가진 것을 처리할 경우, 포도당 생산 수율이 더 높음을 알 수 있었는데, 이는 셀룰로스의 과다한 분해로 인하여 셀로비오스가 과다한 양으로 존재하면, 이에 의하여 엔도-베타-1,4-글루카나제의 활성이 억제되는 현상 때문인 것으로 추측되었다.In general, the greater the activity of the enzyme, the higher the yield of glucose, but when treated with endo-beta-1,4-glucanase with 200u / ml activity to beta-glucosidase with 20u / ml activity, When treated with 100u / ml of activity, it was found that the yield of glucose production was higher, which was caused by endo-beta-1,4-glu when excessive amounts of cellobiose were present due to excessive decomposition of cellulose. It is assumed that this is due to a phenomenon in which the activity of kanase is inhibited.

실시예 2: 10%(w/v) 슬러지의 가수분해 Example 2 Hydrolysis of 10% (w / v) Sludge

엔도-베타-1,4-글루카나제와 베타-글루코시데이즈를 200/20, 200/10, 100/20, 100/10, 10/20, 10/10, 5/20 및 5/10U/ml 비율의 활성을 가지는 양으로 각각 혼합한 다음, 슬러지를 최종농도 10%(w/v)가 되도록 첨가하여 가수분해시키고, 시간의 경과에 따른 포도당의 생성량을 측정하였다(참조: 도 3, 도 4). 도 3은 여러 가지 엔도-베타-1,4-글루카나제와 베타-글루코시데이즈의 혼합비에 의한 10%(w/v) 슬러지의 가수분해 결과를 시간에 따라 도시한 그래프로서, (■)은 200/20U/ml 비율인 경우를 나타내고, (▲)는 200/10U/ml 비율인 경우를 나타내며, (×)는 100/20U/ml 비율인 경우를 나타내고, (*)는 100/10U/ml 비율인 경우를 나타내며, (●)는 10/20U/ml 비율인 경우를 나타내고, (+)는 10/10U/ml 비율인 경우를 나타내며, (◆)는 5/20U/ml 비율인 경우를 나타내고, (-)는 5/10U/ml 비율인 경우를 나타낸다. 도 3에서 보듯이, 포도당은 반응시작 1시간 후에 충분히 생성되고, 10시간 후에 가장 많이 생성되었다. 또한, 도 4는 10%(w/v) 슬러지가 각 엔도-베타-1,4-글루카나제와 베타-글루코시데이즈의 혼합비에 의해 20시간 동안 가수분해되어 제조된 포도당의 농도를 도시한 그래프로서, 1번은 200/20U/ml 비율인 경우를 나타내고, 2번은 200/10U/ml 비율인 경우를 나타내며, 3번은 100/20U/ml 비율인 경우를 나타내고, 4번은 100/10U/ml 비율인 경우를 나타내며, 5번은 10/20U/ml 비율인 경우를 나타내고, 6번은 10/10U/ml 비율인 경우를 나타내며, 7번은 5/20U/ml 비율인 경우를 나타내고, 8번은 5/10U/ml 비율인 경우를 나타낸다. 도 4에서 보듯이, 실시예 1에서와 동일하게, 포도당 생성은 20u/ml 베타-글루코시데이즈와 100u/ml의 활성을 가진 엔도-베타-1,4-글루카나제를 함께 처리한 경우가가장 많았다.Endo-beta-1,4-glucanase and beta-glucosidase were added to 200/20, 200/10, 100/20, 100/10, 10/20, 10/10, 5/20 and 5 / 10U /. Each mixture was mixed in an amount having an activity of ml ratio, and then hydrolyzed by adding sludge to a final concentration of 10% (w / v) and measuring the amount of glucose produced over time (see FIG. 3, FIG. 4). 3 is a graph showing the hydrolysis results of 10% (w / v) sludge over time by the mixing ratio of various endo-beta-1,4-glucanase and beta-glucosidase, (■) Denotes a case of 200 / 20U / ml ratio, (▲) denotes a case of 200 / 10U / ml ratio, (x) denotes a case of 100 / 20U / ml ratio, and (*) denotes 100 / 10U / represents the case of ml ratio, (●) represents the case of 10 / 20U / ml ratio, (+) represents the case of 10 / 10U / ml ratio, and (◆) represents the case of 5 / 20U / ml ratio (-) Shows the case of 5 / 10U / ml ratio. As shown in FIG. 3, glucose was sufficiently produced 1 hour after the start of the reaction, and most produced after 10 hours. 4 shows the concentration of glucose prepared by hydrolyzing 10% (w / v) sludge for 20 hours by the mixing ratio of each endo-beta-1,4-glucanase and beta-glucosidase. As a graph, the first shows the case of 200 / 20U / ml ratio, the second shows the case of 200 / 10U / ml ratio, the third shows the case of 100 / 20U / ml ratio, and the fourth shows the 100 / 10U / ml ratio Indicates the case where the ratio is 10 / 20U / ml, number 6 indicates the case of the 10 / 10U / ml ratio, number 7 indicates the case of the 5 / 20U / ml ratio, and number 8 indicates the case of 5 / 10U / ml ratio. The case of ml ratio is shown. As shown in Figure 4, the same as in Example 1, glucose production was treated with 20u / ml beta-glucosidase and endo-beta-1,4-glucanase having an activity of 100u / ml together The most.

또한, 5%(w/v) 슬러지를 가수분해할 때와 마찬가지로 20u/ml 활성을 가진 베타-글루코시데이즈에 200u/ml 활성을 가진 엔도-베타-1,4-글루카나제를 첨가했을 경우, 100u/ml 인 것을 첨가했을 때보다 포도당생성이 작았으나, 최종 포도당의 생성량은 모든 효소조합에서 거의 유사함을 알 수 있었다.In addition, when endo-beta-1,4-glucanase with 200 u / ml activity was added to beta-glucosidase with 20 u / ml activity as in hydrolysis of 5% (w / v) sludge The production of glucose was lower than that of 100 u / ml, but the final glucose production was almost similar in all enzyme combinations.

실시예 3: 20%(w/v) 슬러지의 가수분해 Example 3 Hydrolysis of 20% (w / v) Sludge

20%(w/v) 슬러지를 사용하는 것을 제외하고는, 실시예 2와 동일한 방법으로 시간의 경과에 따른 포도당의 생성량을 측정하였다(참조: 도 5). 도 5는 여러 가지 엔도-베타-1,4-글루카나제와 베타-글루코시데이즈의 혼합비에 의한 20%(w/v) 슬러지의 가수분해 결과를 시간에 따라 도시한 그래프로서, (◆)는 200/20U/ml 비율인 경우를 나타내고, (■)는 200/10U/ml 비율인 경우를 나타내며, (▲)는 100/20U/ml 비율인 경우를 나타내고, (△)는 100/10U/ml 비율인 경우를 나타내며, (*)는 10/20U/ml 비율인 경우를 나타내고, (●)는 10/10U/ml 비율인 경우를 나타내며, (◇)는 5/20U/ml 비율인 경우를 나타내고, (□)는 5/10U/ml 비율인 경우를 나타낸다. 도 5에서 보듯이, 활성이 200, 100u/ml인 엔도-베타-1,4-글루카나제를 사용하는 경우에는, 10시간 후에 포도당 생성이 최고가 되었다. 그러나, 10, 5u/ml인 엔도-베타-1,4-글루카나제를 사용하는 경우에는, 가수분해 20시간 후에 가장 높은 포도당 수율을 나타내었다. 가장 높은 포도당 수득률을 보인 조건은100u/ml 엔도-베타-1,4-글루카나제와 20u/ml 베타-글루코시데이즈를 사용한 경우로서, 5%(w/v) 또는 10%(w/v) 슬러지를 가수분해 했을 때와 똑같은 최적의 조건이다.Except for using 20% (w / v) sludge, the amount of glucose produced over time was measured in the same manner as in Example 2 (see Fig. 5). FIG. 5 is a graph showing the hydrolysis results of 20% (w / v) sludge over time due to the mixing ratio of various endo-beta-1,4-glucanases and beta-glucosidases. Denotes a case of 200 / 20U / ml ratio, (■) denotes a case of 200 / 10U / ml ratio, (▲) denotes a case of 100 / 20U / ml ratio, and (△) denotes 100 / 10U / represents the case of ml ratio, (*) represents the case of 10 / 20U / ml ratio, (●) represents the case of 10 / 10U / ml ratio, and (◇) represents the case of 5 / 20U / ml ratio (*) Shows the case of 5 / 10U / ml ratio. As shown in FIG. 5, when endo-beta-1,4-glucanase having an activity of 200 and 100 u / ml was used, glucose production was the highest after 10 hours. However, when using endo-beta-1,4-glucanase of 10, 5 u / ml, the highest glucose yield was shown after 20 hours of hydrolysis. The highest glucose yield was obtained with 100 u / ml endo-beta-1,4-glucanase and 20 u / ml beta-glucosidase, 5% (w / v) or 10% (w / v). ) It is the same optimum condition when hydrolyzing sludge.

이상에서 상세히 설명하고 입증하였듯이, 본 발명은 셀룰로스 가수분해효소를 이용하여, 제지공정에서 부산물로 발생되는 제지슬러지를 당화시키는 방법을 제공한다. 본 발명의 제지슬러지의 당화방법은 제지슬러지에 엔도-베타-1,4-글루카나제(endo-β-1,4-glucanase) 및 베타-글루코시다제(β-glucosidase)를 10:1 내지 3:1의 활성비로 첨가하여 당화시키는 공정을 포함한다. 본 발명에 의하면, 폐기물인 제지슬러지를 이용하여 포도당을 생산함으로써, 폐기물 처리비용을 절감할 수 있고, 저렴한 가격으로 생산된 포도당을 각종 산업에 활용할 수 있으므로, 목재성 폐기물의 재활용에 널리 이용될 수 있을 것이다.As described and demonstrated in detail above, the present invention provides a method of saccharifying paper sludge generated as a by-product in the papermaking process using cellulose hydrolase. The glycosylation method of the papermaking sludge of the present invention is endo-beta-1,4-glucanase (beta-glucosidase) and beta-glucosidase (beta-glucosidase) in the papermaking sludge 10: 1 to And a step of saccharification by addition at an activity ratio of 3: 1. According to the present invention, by producing glucose using waste paper paper sludge, it is possible to reduce the waste disposal cost, and because the produced glucose can be used in various industries at low prices, it can be widely used for recycling wood waste. There will be.

Claims (1)

5 내지 20%(w/v)의 제지슬러지에 엔도-베타-1,4-글루카나제(endo-β-1,4-glucanase) 및 베타-글루코시다제(β-glucosidase)를 10:1 내지 3:1의 활성도를 나타내는 비율로 첨가하여 당화시키는 공정을 포함하는 제지슬러지의 당화방법.Endo-beta-1,4-glucanase and beta-glucosidase were added in 5-20% (w / v) papermaking sludge. A method for saccharification of paper sludge, comprising the step of saccharifying by adding at a ratio showing an activity of 3 to 3: 1.
KR10-2001-0051936A 2001-08-28 2001-08-28 Method for Glycation of Paper-Sludge KR100423527B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0051936A KR100423527B1 (en) 2001-08-28 2001-08-28 Method for Glycation of Paper-Sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0051936A KR100423527B1 (en) 2001-08-28 2001-08-28 Method for Glycation of Paper-Sludge

Publications (2)

Publication Number Publication Date
KR20030018293A true KR20030018293A (en) 2003-03-06
KR100423527B1 KR100423527B1 (en) 2004-03-18

Family

ID=27721090

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0051936A KR100423527B1 (en) 2001-08-28 2001-08-28 Method for Glycation of Paper-Sludge

Country Status (1)

Country Link
KR (1) KR100423527B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030035636A (en) * 2001-11-01 2003-05-09 한국화학연구원 Production method of saccharides from cellulose wastes in paper industry
KR100482192B1 (en) * 2002-09-03 2005-04-13 학교법인 인하학원 Method for producing lactic acid from paper sludge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030035636A (en) * 2001-11-01 2003-05-09 한국화학연구원 Production method of saccharides from cellulose wastes in paper industry
KR100482192B1 (en) * 2002-09-03 2005-04-13 학교법인 인하학원 Method for producing lactic acid from paper sludge

Also Published As

Publication number Publication date
KR100423527B1 (en) 2004-03-18

Similar Documents

Publication Publication Date Title
Wu et al. Lignocellulose biomass bioconversion during composting: Mechanism of action of lignocellulase, pretreatment methods and future perspectives
Tokin et al. The synergy between LPMOs and cellulases in enzymatic saccharification of cellulose is both enzyme-and substrate-dependent
Chylenski et al. Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass
Zhou et al. Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments
Müller et al. Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions
Mansfield et al. Substrate and enzyme characteristics that limit cellulose hydrolysis
Paramjeet et al. Biofuels: Production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues
CA2785944C (en) Method for treating cellulosic material and cbhii/cel6a enzymes useful therein
Alam et al. Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge
Yang et al. The composition of accessory enzymes of Penicillium chrysogenum P33 revealed by secretome and synergistic effects with commercial cellulase on lignocellulose hydrolysis
Keller et al. Promoting and impeding effects of lytic polysaccharide monooxygenases on glycoside hydrolase activity
Ye et al. Production and characteristics of a novel xylose-and alkali-tolerant GH 43 β-xylosidase from Penicillium oxalicum for promoting hemicellulose degradation
Sharma et al. Enzyme cocktail: An opportunity for greener agro-pulp biobleaching in paper industry
Naicker et al. Transformation of pulp and paper mill sludge (PPMS) into a glucose-rich hydrolysate using green chemistry: Assessing pretreatment methods for enhanced hydrolysis
US20080171370A1 (en) Detoxifying pre-treated lignocellulose-containing materials
WO2009059234A2 (en) Methods of reducing the inhibitory effect of a redox active metal ion on the enzymatic hydrolysis of cellulosic material
Velasco et al. Comparative analysis of two recombinant LPMOs from Aspergillus fumigatus and their effects on sugarcane bagasse saccharification
Sahay Deconstruction of lignocelluloses: Potential biological approaches
Anu et al. A greener, mild, and efficient bioprocess for the pretreatment and saccharification of rice straw
KR100423527B1 (en) Method for Glycation of Paper-Sludge
US9840726B2 (en) Method for improving the fermentable sugar yield from lignocellulosic
EP2373787B1 (en) Process for production of an enzymatic preparation for hydrolysis of cellulose from lignocellulosic residues
EP3390650A1 (en) Method for producing reducing sugar from lignocellulosic substrates
Liu et al. Exploring the cellulolytic and hemicellulolytic activities of manganese peroxidase for lignocellulose deconstruction
Boltovsky Enzymatic hydrolysis of plant raw materials: state and prospects

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130131

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131220

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150116

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160211

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20161220

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee