KR20030012202A - A Standard Voltage Circuit For Temperature Compensation - Google Patents

A Standard Voltage Circuit For Temperature Compensation Download PDF

Info

Publication number
KR20030012202A
KR20030012202A KR1020010046130A KR20010046130A KR20030012202A KR 20030012202 A KR20030012202 A KR 20030012202A KR 1020010046130 A KR1020010046130 A KR 1020010046130A KR 20010046130 A KR20010046130 A KR 20010046130A KR 20030012202 A KR20030012202 A KR 20030012202A
Authority
KR
South Korea
Prior art keywords
temperature
temperature compensation
resistor
reference voltage
transistor
Prior art date
Application number
KR1020010046130A
Other languages
Korean (ko)
Inventor
조성권
정봉만
정학근
Original Assignee
(주)엠아이티엔터프라이스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엠아이티엔터프라이스 filed Critical (주)엠아이티엔터프라이스
Priority to KR1020010046130A priority Critical patent/KR20030012202A/en
Publication of KR20030012202A publication Critical patent/KR20030012202A/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/22Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only
    • G05F3/222Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/225Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage producing a current or voltage as a predetermined function of the temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/205Substrate bias-voltage generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops

Abstract

PURPOSE: A reference voltage generation circuit for compensating temperature is provided to allow a light emitting diode(LED) to radiate optical power in response to the variation of the temperature by continuously maintaining the change of width of the reference voltage applied to a plurality of LEDs. CONSTITUTION: A reference voltage generation circuit for compensating a temperature includes a full-wave rectifier(100) for outputting rectified direct voltage inputted from a bridge circuit(160) after alternating current power of the power supply(120) is controlled through a transformer(140), a plurality of temperature compensation blocks(200) provided with the first resistor(230) connected to a collector of the transistor(220), the first temperature compensation resistor(240) connected in parallel, the second resistor(250) connected to a base and the second temperature compensation resistor(260) connected in serial, and a light emission block(300) connected thereto a plurality of LEDs(320) in serial between the emitter of the transistor(220) and a cathode line(280).

Description

온도보상을 위한 기준전압 발생회로{A Standard Voltage Circuit For Temperature Compensation}A Standard Voltage Circuit For Temperature Compensation

본 발명은 온도보상을 위한 기준전압 발생회로에 관한 것으로, 보다 상세하게는 온도 변화에 따라 다수의 LED에 인가되는 기준전압의 변화폭을 일정하게 유지되도록 적용함으로서, 상기 LED에 의한 회로내의 온도변화를 온도보상저항이 감지하여 온도가 상승하면 저항을 감소시켜 전압이 증가되도록 하고, 온도가 낮아지면 저항을 증가시켜 전압이 낮아지도록 하여 상기 LED의 광 출력을 일정하게 유지시키는 온도보상을 위한 기준전압 발생회로에 관한 것이다.The present invention relates to a reference voltage generating circuit for temperature compensation, and more particularly, by applying a change in the reference voltage applied to a plurality of LEDs to be kept constant according to the temperature change, thereby changing the temperature change in the circuit by the LED When the temperature compensation resistance is detected and the temperature rises, the resistance is decreased to increase the voltage, and when the temperature is lowered, the resistance is increased so that the voltage is lowered so that the reference voltage for temperature compensation is maintained to keep the light output of the LED constant. It is about a circuit.

일반적으로 LED(Light Emitting Diode)는 반도체의 p-n 접합구조를 이용하여 주입된 소수캐리어(전자 또는 양공)를 만들어내고 이들의 재결합(再結合)에 의하여 발광시키는 것으로써, 파장대역이 좁고 효율이 높으며 수명이 길어 계속 그 사용 범위가 확대되고 있으며 최근 고출력 LED의 출현으로 일반 범용 조명용으로 이용된다.In general, light emitting diodes (LEDs) generate a small number of carriers (electrons or holes) injected using a pn junction structure of a semiconductor and emit light by recombination thereof. Its long life span continues to expand its range of applications, and with the advent of high power LEDs, it is used for general purpose lighting.

그러나, 상기 LED는 온도변화에 민감하여 온도가 상승하면 반도체 PN 접합(Junction)에서 광 출력이 감소되고 반대로 열 출력이 증가하는 현상이 있어서, 상기 LED의 일정한 광 출력 유지와 상기 LED를 보호할 수 있는 대책 방안이 어려웠다.However, since the LED is sensitive to temperature change and the temperature rises, the light output is decreased at the semiconductor PN junction and the heat output is increased, thereby maintaining the constant light output of the LED and protecting the LED. The countermeasures were difficult.

도 1은 종래의 온도변화에 의한 광 출력의 변화를 나타내는 파형도이다. 도 1에 도시된 바와 같이, LED(Light Emitting Diode)의 온도변화(X축)에 따른 상대광도(Y축)의 출력를 나타낸 것으로, 온도[℃]가 증가되면 상기 LED의 상대광도[Lux]가 낮아지고 온도[℃]가 낮아지면 상대광도[Lux]가 높아진다.1 is a waveform diagram showing a change in light output due to a conventional temperature change. As shown in FIG. 1, the output of the relative luminance (Y-axis) according to the temperature change (X axis) of the LED (Light Emitting Diode) is shown. When the temperature [° C.] is increased, the relative luminance [Lux] of the LED is increased. The lower the temperature [° C], the higher the relative luminance [Lux].

다시 말하면, 영하 25℃일때 광도는 50% 증가하고 영상 75℃ 일때 상대광도가 45% 감소하는 반비례 관계임을 알 수 있다.In other words, the luminance increases by 50% at minus 25 ° C, and the inverse relationship decreases by 45% at 75 ° C.

이는, 상기 LED가 온도의 변화와 상대광도는 서로 반비례적인 관계로 온도변화에 대한 상대광도의 출력을 제한 받는다. 이러한, 상기 온도변화에 대한 상대광도의 문제점은 상기 LED가 일정한 광 출력이 되지않아, 초기의 상대광도가 일정온도가 상승한 후의 상대광도와는 현격한 차이의 변화를 갖는다.That is, the LED is limited in the output of the relative brightness with respect to the temperature change because the change in temperature and the relative brightness is inversely proportional to each other. The problem of the relative brightness with respect to the temperature change is that the LED does not have a constant light output, and thus the initial relative brightness has a significant difference from the relative brightness after the constant temperature rises.

또한, 상기 LED의 온도가 지속적으로 상승을 하게 되면 광 출력이 낮아져 신호등이나, 기타 적용될 수 있는 범위에서 안전사고가 발생되는 문제점이 초래될 수 있는 것이다.In addition, when the temperature of the LED is continuously raised, the light output is lowered, which may cause a problem that a safety accident occurs in a signal lamp or other applicable range.

본 발명은 상기와 같은 문제점을 해결코자 하는 것으로, 본 발명의 목적은, 온도 변화에 따라 다수의 LED에 인가되는 기준전압의 변화폭을 일정하게 유지되도록 적용함으로서, 상기 LED에 의한 회로내의 온도변화를 온도보상저항이 감지하여 온도가 상승하면 저항을 감소시켜 전압이 증가되도록 하고, 온도가 낮아지면 저항을 증가시켜 전압이 낮아지도록 하여 상기 LED의 광 출력을 일정하게 유지시키는 온도보상을 위한 기준전압 발생회로를 제공하는 것이다.The present invention is to solve the above problems, an object of the present invention is to apply a change in the reference voltage applied to a plurality of LEDs to maintain a constant change in temperature, thereby changing the temperature change in the circuit by the LED When the temperature compensation resistance is detected and the temperature rises, the resistance is decreased to increase the voltage, and when the temperature is lowered, the resistance is increased so that the voltage is lowered so that the reference voltage for temperature compensation is maintained to keep the light output of the LED constant. To provide a circuit.

상기 목적을 달성하기 위한 구성으로, 전원단(120)의 교류전원이 변압기(140)를 통해 필요한 전원전압 만큼 조절된 후, 브릿지 회로(160)에 입력되어 전파정류된 직류전압이 출력되는 전파 정류부(100)와; 상기 전파 정류부(100)의 양극선(280)에 결선된 트랜지스터(220)의 컬렉터는 제 1 저항(230)과 제 1 온도보상저항(240)이 병렬로 연결되고, 베이스는 제 2 저항(250)과 제 2온도보상저항(260)이 직렬로 연결되며, 상기 베이스에 연결된 제 3 저항(270)은 음극선(290)에 접지되는 다수의 온도 보상부(200)와; 상기 트랜지스터(220)의 이미터와 음극선(280) 사이에 다수개의 LED(320)가 직렬로 연결되어 발광되는 발광부(300)를 포함하는 것을 특징으로 하는 온도보상을 위한 기준전압 발생회로에 의하여 달성된다.In order to achieve the above object, after the AC power of the power supply terminal 120 is adjusted by the required power supply voltage through the transformer 140, the full-wave rectifying unit outputs the DC voltage inputted to the bridge circuit 160, the full-wave rectified 100; In the collector of the transistor 220 connected to the anode line 280 of the full-wave rectifying unit 100, a first resistor 230 and a first temperature compensation resistor 240 are connected in parallel, and a base of the second resistor 250 is connected. And a second temperature compensation resistor 260 are connected in series, and the third resistor 270 connected to the base includes a plurality of temperature compensators 200 grounded to the cathode line 290; By the reference voltage generation circuit for temperature compensation, characterized in that it comprises a light emitting unit 300 is connected between the emitter and the cathode ray 280 of the transistor 220 and a plurality of LEDs 320 are connected in series Is achieved.

여기서, 상기 제 1 온도보상저항(240) 및 상기 제 2 온도보상저항(260)은 NTC(Negative Temperature Coefficient Thermistor)인 것이 바람직하다.Here, the first temperature compensation resistor 240 and the second temperature compensation resistor 260 are preferably NTC (Negative Temperature Coefficient Thermistor).

아울러, 상기 트랜지스터(220)는 NPN형인 것이 가장 바람직하다.In addition, the transistor 220 is most preferably of the NPN type.

본 발명의 그 밖의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로 부터 더욱 분명해질 것이다.Other objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments in conjunction with the accompanying drawings.

도 1은 종래의 온도변화에 의한 광 출력의 변화를 나타내는 파형도,1 is a waveform diagram showing a change in light output due to a conventional temperature change;

도 2는 본 발명에 따른 온도보상을 위한 기준전압 발생회로를 나타내는 회로도이다.2 is a circuit diagram illustrating a reference voltage generation circuit for temperature compensation according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

100: 전파 정류부 120: 전원단100: full-wave rectifier 120: power stage

140: 변압기 160: 브릿지 회로140: transformer 160: bridge circuit

180: 다이오드 200: 온도 보상부180: diode 200: temperature compensation unit

220: 트랜지스터 230: 제 1 저항220: transistor 230: first resistor

240: 제 1 온도보상저항 250: 제 2 저항240: first temperature compensation resistance 250: second resistance

260: 제 2 온도보상저항 270: 제 3 저항260: second temperature compensation resistance 270: third resistance

280: 양극선 290: 음극선280: anode wire 290: cathode ray

300: 발광부 320: LED300: light emitting unit 320: LED

이하에서 본 발명의 바람직한 실시예를 첨부된 도면에 의거 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 온도보상을 위한 기준전압 발생회로를 나타내는 회로도이다. 도 2에 도시된 바와 같이, 온도 변화에 따라 발광부(300)에 인가되는 기준전압의 변화폭을 일정하게 유지되도록, 제 1 온도보상저항(240)과 제 2 온도보상저항(260)이 온도의 변화를 감지하여 온도가 상승되면 저항을 감소시켜 전압이 증가되도록 하고, 온도가 낮아지면 저항을 증가시켜 전압이 낮아지도록 한다.2 is a circuit diagram illustrating a reference voltage generation circuit for temperature compensation according to the present invention. As shown in FIG. 2, the first temperature compensation resistor 240 and the second temperature compensation resistor 260 may be configured to maintain the change in the reference voltage applied to the light emitting unit 300 according to the temperature change. Detects the change and decreases the resistance to increase the voltage when the temperature rises, and increases the resistance to decrease the voltage when the temperature decreases.

따라서, 본 발명은 상온에서 발광부(300)를 정격 광 출력의 약 60%∼70% 정도로 설계하고 약 30%∼40%는 마진폭으로 남겨둔다. 이는, 온도 상승시에 보상용으로 전류를 증가시켜 약 100% 수준의 광 출력을 얻고자 하는 것이다.Therefore, the present invention designs the light emitting part 300 at about 60% to 70% of the rated light output at room temperature and leaves about 30% to 40% of the margin width. This is to increase the current for compensation when the temperature rises to obtain a light output of about 100% level.

이러한, 본 발명은 크게 전파 정류부(100), 온도 보상부(200), 발광부(300)로 구성된다.Such, the present invention is largely composed of a full-wave rectifier 100, a temperature compensator 200, the light emitting unit (300).

상기 전파 정류부(100)는 전원단(120), 변압기(140), 브릿지 회로(160)로 이루어져, 상기 전원단(120)에서 발생된 AC전원(220V/100V)은 변압기(140)에 인가되어, 상기 변압기(140)의 1차측(Npri)과 2차측(Nsec)의 권선비(Npri/Nsec)에 따른 전원전압이 조절된다.The full wave rectifier 100 includes a power stage 120, a transformer 140, and a bridge circuit 160, and AC power 220 V / 100V generated at the power stage 120 is applied to the transformer 140. The power supply voltage according to the winding ratio Npri / Nsec of the primary side Npri and the secondary side Nsec of the transformer 140 is adjusted.

여기서, 상기 변압기(140)는 권선비를 조절하여 전원전압을 필요한 만큼 올리거나 낮출 수 있으며, 교류전원을 정류기 회로로부터 전기적으로 분리시켜 충격에 의한 손상을 줄일 수 있다.Here, the transformer 140 may increase or decrease the power supply voltage by adjusting the turns ratio, and may electrically separate the AC power supply from the rectifier circuit to reduce damage due to impact.

이러한, 상기 변압기(140)를 통한 전원전압은 4개(D1,D2,D3,D4)의 다이오드(180)로 구성된 상기 브릿지 회로(160)에 인가되면, 입력이 정(+)의 반주기 동안 다이오드(180) D1과 D2는 순방향 바이어스가 되어 정(+)의 반주기가 출력된다.When the power supply voltage through the transformer 140 is applied to the bridge circuit 160 composed of four diodes D1, D2, D3, and D4, an input is applied during a positive half period. D1 and D2 are forward biased to output a positive half period.

그리고, 입력의 주기가 부(-)되는 동안 다이오드(180) D3와 D4는 순방향 바이어스 되어 상기 정(+)의 반주기 동안과 같은 방향으로 출력된다. 한편, 부(-)의 반주기 동안에 D1과 D2는 역방향 바이어스 된다.In addition, while the period of the input is negative, diodes 180 D3 and D4 are forward biased and output in the same direction as during the positive half period. On the other hand, D1 and D2 are reverse biased during the negative half period.

따라서, 상기 전파 정류부(100)에 입력된 교류전원(AC)은 전파정류된 직류전압(DC)으로 출력(Vout)되는 것이다.Therefore, the AC power source AC input to the full wave rectifying unit 100 is outputted to the full wave rectified DC voltage DC.

상기 온도 보상부(200)는 상기 전파 정류부(100)와 전기적으로 연결되어, 트랜지스터(220)의 컬렉터(Collector)는 제 1 저항(230)과 제 1 온도보상저항(240)이 병렬로 연결되어 양극선(280)에 결선된다.The temperature compensator 200 is electrically connected to the full-wave rectifier 100, and a collector of the transistor 220 is connected to the first resistor 230 and the first temperature compensation resistor 240 in parallel. It is connected to the anode line 280.

그리고, 상기 트랜지스터(220)의 베이스(Base)는 제 2 저항(250)과 제 2 온도보상저항(260)이 직렬로 연결되어 양극선(280)에 결선되며, 상기 베이스에 연결된 제 3 저항(270)은 음극선(290)에 접지된다.In addition, the base of the transistor 220 has a second resistor 250 and a second temperature compensation resistor 260 connected in series to be connected to the anode line 280, and a third resistor 270 connected to the base. ) Is grounded to the cathode ray 290.

여기서, 상기 트랜지스터(220)는 NPN형으로 사용되며 상기 제 1 온도보상저항(240)과 상기 제 2 온도보상저항(260)은 NTC(Negative Temperature Coefficient Thermistor)이다.Here, the transistor 220 is used as an NPN type, and the first temperature compensation resistor 240 and the second temperature compensation resistor 260 are negative temperature coefficient thermistors (NTCs).

또한, 상기 트랜지스터(220)를 PNP형으로 선택하고, 상기 제 1 온도보상저항(240)과 상기 제 2 온도보상저항(260)을 PTC(Positive Temperature Coefficient Thermistor)로 선택 사용할 수 있다.In addition, the transistor 220 may be selected as a PNP type, and the first temperature compensation resistor 240 and the second temperature compensation resistor 260 may be selectively used as PTC (Positive Temperature Coefficient Thermistor).

이러한, 본 발명에 사용되는 상기 제 1 온도보상저항(240)과 상기 제 2 온도보상저항(260)은 NTC(Negative Temperature Coefficient Thermistor)인 것으로, 일반적인 금속과는 달리 온도가 높아지면 저항값이 감소하는 부저항온도계수의 특성을 가지고 있다. 구조적으로는 직열형, 방열형, 지연형으로 분류되어 사용된다.The first temperature compensation resistor 240 and the second temperature compensation resistor 260 used in the present invention are NTC (Negative Temperature Coefficient Thermistor), and unlike general metals, the resistance value decreases when the temperature increases. It has the characteristic of negative resistance temperature coefficient. Structurally, it is classified into direct heat type, heat dissipation type, and delay type.

따라서, 상기 온도 보상부(200)는 온도 변화에 따라 상기 발광부(300)에 인가되는 기준전압의 변화폭을 일정하게 유지시키기 위해, 온도의 변화를 감지하여 온도가 상승되면 저항을 감소시켜 전압이 증가되도록 하고, 온도가 낮아지면 저항을 증가시켜 전압이 낮아지도록 한다.Therefore, the temperature compensator 200 senses a change in temperature and decreases the resistance when the temperature is increased in order to maintain a constant variation of the reference voltage applied to the light emitter 300 according to the temperature change. If the temperature is lowered, increase the resistance to lower the voltage.

상기 발광부(300)는 다수개의 LED(320)가 상기 트랜지스터(220)의 이미터(Emitter)와 음극선(280) 사이에 직렬로 연결되어 상기 온도 보상부(200)에 의해 직류전압이 인가되어 발광된다.In the light emitting unit 300, a plurality of LEDs 320 are connected in series between an emitter of the transistor 220 and a cathode line 280 so that a DC voltage is applied by the temperature compensating unit 200. Light emission.

여기서, 상기 발광부(300)는 LED(320)외에 다른 다수의 발광체(미도시)를 사용하여 동작 가능하다.Here, the light emitter 300 may operate using a plurality of light emitters (not shown) in addition to the LED 320.

상기에서 설명한 바와 같이, 온도 변화에 따라 발광부(300)에 인가되는 기준전압의 변화폭을 일정하게 유지시켜, 온도변화시에 상기 발광부(300)의 LED(320)가 일정한 광 출력을 발산할 수 있다.As described above, the change width of the reference voltage applied to the light emitting unit 300 is kept constant according to the temperature change so that the LED 320 of the light emitting unit 300 emits a constant light output at the temperature change. Can be.

따라서, 본 발명은 상온에서 발광부(300)를 정격 광 출력의 약 60%∼70% 정도로 설계하고 약 30%∼40%는 마진폭으로 남겨두어, 온도상승시 보상용으로 전류를 증가시켜 약 100% 수준의 광 출력을 얻을 수 있는 것이다.Therefore, in the present invention, the light emitting unit 300 is designed to be about 60% to 70% of the rated light output at room temperature, and about 30% to 40% is left as a margin width, thereby increasing the current for compensation when the temperature rises to about 100%. You can get a level of light output.

이상에서 상술한 바와같이 본 발명에 따른 온도보상을 위한 기준전압 발생회로에 의하면, 온도변화에 따라 다수의 LED에 인가되는 기준전압의 변화폭을 일정하게 유지되도록 하여, 온도변화에 따른 상기 LED가 일정한 광 출력을 발산할 수 있다.As described above, according to the reference voltage generation circuit for temperature compensation according to the present invention, the change in the reference voltage applied to the plurality of LEDs according to the temperature change is kept constant, the LED according to the temperature change is constant Can emit light output.

이러한, 본 발명에 의한 온도보상을 위한 기준전압 발생회로는 회로내의 온도변화를 감지하여, 온도가 상승하면 저항을 감소시켜 LED에 인가되는 전압이 증가되고, 온도가 낮아지면 저항을 증가시켜 상기 LED에 인가되는 전압이 낮아져 상기 LED의 광 출력을 일정하게 유지시키는 효과를 얻을 수 있다.The reference voltage generation circuit for temperature compensation according to the present invention senses a temperature change in a circuit, and decreases the resistance when the temperature rises, thereby increasing the voltage applied to the LED, and increasing the resistance when the temperature decreases. The voltage applied to the lowering can obtain the effect of maintaining a constant light output of the LED.

비록, 본 발명이 상기에서 언급한 바람직한 실시예와 관련하여 설명되어졌지만, 본 발명의 요지와 범위로 부터 벗어남이 없이 다른 다양한 수정 및 변형이 가능할 것이다. 따라서, 첨부된 청구의 범위는 본 발명의 진정한 범위내에 속하는 그러한 수정 및 변형을 포함할 것이라고 여겨진다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, various other modifications and variations may be made without departing from the spirit and scope of the invention. Accordingly, it is intended that the appended claims cover such modifications and variations as fall within the true scope of the invention.

Claims (3)

전원단(120)의 교류전원이 변압기(140)를 통해 필요한 전원전압 만큼 조절된 후, 브릿지 회로(160)에 입력되어 전파정류된 직류전압이 출력되는 전파 정류부(100)와;After the AC power of the power supply terminal 120 is adjusted by the required power supply voltage through the transformer 140, the full-wave rectifying unit 100 is input to the bridge circuit 160 and outputs a full-wave rectified DC voltage; 상기 전파 정류부(100)의 양극선(280)에 결선된 트랜지스터(220)의 컬렉터는 제 1 저항(230)과 제 1 온도보상저항(240)이 병렬로 연결되고, 베이스는 제 2 저항(250)과 제 2 온도보상저항(260)이 직렬로 연결되며, 상기 베이스에 연결된 제 3 저항(270)은 음극선(290)에 접지되는 다수의 온도 보상부(200)와;In the collector of the transistor 220 connected to the anode line 280 of the full-wave rectifying unit 100, a first resistor 230 and a first temperature compensation resistor 240 are connected in parallel, and a base of the second resistor 250 is connected. And a second temperature compensation resistor 260 are connected in series, and the third resistor 270 connected to the base includes a plurality of temperature compensators 200 grounded to the cathode line 290; 상기 트랜지스터(220)의 이미터와 음극선(280) 사이에 다수개의 LED(320)가 직렬로 연결되어 발광되는 발광부(300)를 포함하는 것을 특징으로 하는 온도보상을 위한 기준전압 발생회로.A reference voltage generation circuit for temperature compensation, characterized in that it comprises a light emitting unit (300) which emits a plurality of LEDs 320 are connected in series between the emitter and the cathode ray (280) of the transistor (220). 상기 제 1 항에 있어서, 상기 제 1 온도보상저항(240) 및 상기 제 2 온도보상저항(260)은 NTC(Negative Temperature Coefficient Thermistor)인 것을 특징으로 하는 온도보상을 위한 기준전압 발생회로.The reference voltage generator of claim 1, wherein the first temperature compensation resistor (240) and the second temperature compensation resistor (260) are NTC (Negative Temperature Coefficient Thermistor). 상기 제 1 항에 있어서, 상기 트랜지스터(220)는 NPN형인 것을 특징으로 하는 온도보상을 위한 기준전압 발생회로.The reference voltage generating circuit for temperature compensation according to claim 1, wherein the transistor (220) is of NPN type.
KR1020010046130A 2001-07-31 2001-07-31 A Standard Voltage Circuit For Temperature Compensation KR20030012202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010046130A KR20030012202A (en) 2001-07-31 2001-07-31 A Standard Voltage Circuit For Temperature Compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010046130A KR20030012202A (en) 2001-07-31 2001-07-31 A Standard Voltage Circuit For Temperature Compensation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR2020010023198U Division KR200255367Y1 (en) 2001-07-31 2001-07-31 A Standard Voltage Circuit For Temperature Compensation

Publications (1)

Publication Number Publication Date
KR20030012202A true KR20030012202A (en) 2003-02-12

Family

ID=27717382

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010046130A KR20030012202A (en) 2001-07-31 2001-07-31 A Standard Voltage Circuit For Temperature Compensation

Country Status (1)

Country Link
KR (1) KR20030012202A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714621B1 (en) * 2006-01-24 2007-05-07 삼성전기주식회사 Led driving apparatus with temperature compensation function
US7688055B2 (en) 2006-02-25 2010-03-30 Samsung Electronics Co., Ltd. Reference voltage generator with less dependence on temperature

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315254A (en) * 1988-06-15 1989-12-20 Hitachi Lighting Ltd Driving device for transistor
KR19980035402A (en) * 1996-11-13 1998-08-05 최진호 Temperature Compensation Circuit for Discharge Lamps
KR19990040838U (en) * 1998-05-08 1999-12-06 윤종용 Constant Current Circuit with Temperature Compensation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315254A (en) * 1988-06-15 1989-12-20 Hitachi Lighting Ltd Driving device for transistor
KR19980035402A (en) * 1996-11-13 1998-08-05 최진호 Temperature Compensation Circuit for Discharge Lamps
KR19990040838U (en) * 1998-05-08 1999-12-06 윤종용 Constant Current Circuit with Temperature Compensation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714621B1 (en) * 2006-01-24 2007-05-07 삼성전기주식회사 Led driving apparatus with temperature compensation function
US7688055B2 (en) 2006-02-25 2010-03-30 Samsung Electronics Co., Ltd. Reference voltage generator with less dependence on temperature

Similar Documents

Publication Publication Date Title
US8890419B2 (en) System and method providing LED emulation of incandescent bulb brightness and color response to varying power input and dimmer circuit therefor
US8975825B2 (en) Light emitting diode driver with isolated control circuits
JP3445540B2 (en) Power circuit
US6940733B2 (en) Optimal control of wide conversion ratio switching converters
EP2579689B1 (en) Led turn-on circuit, lamp, and illumination apparatus
US20190104583A1 (en) Power supply system, lighting device, and illumination system
US4352045A (en) Energy conservation system using current control
JP2008166192A (en) Power supply circuit for driving led
KR101092508B1 (en) LED Lighting System with changeable connecting type of LED depending on the supplied volatge
JP2003059676A (en) Power supply device of light-emitting diode
JP2010287459A (en) Led lighting module and lighting device using the same
KR20090048100A (en) Dimming control switch mode power supply of led
US10264636B2 (en) Light source and light emitting module
KR20150105260A (en) Light-emitting diode lighting device with adjustable color rendering indexes
JP2006040584A (en) Led lighting device and illumination device incorporating the same
KR200255367Y1 (en) A Standard Voltage Circuit For Temperature Compensation
KR100966147B1 (en) Current limitation switching mode power supply for light emitting element
KR20030012202A (en) A Standard Voltage Circuit For Temperature Compensation
KR20140104196A (en) Power supply circuit for light emitting diode lighting
KR20160094020A (en) Circuit and method to control led lighting apparatus
US11051380B2 (en) Driver and lighting module
KR100919420B1 (en) Led lamp with smoothing circuit
KR100457878B1 (en) Ballast Circuit for LED Lamp
KR200322433Y1 (en) Power supply circuit to maintain even light-source of LED signal lamp
CN211267182U (en) Independent driving power supply for enabling LED lamp to normally emit light

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application