KR20030012199A - Dna vaccine comprising cytokine gene as active ingredient - Google Patents

Dna vaccine comprising cytokine gene as active ingredient Download PDF

Info

Publication number
KR20030012199A
KR20030012199A KR1020010046120A KR20010046120A KR20030012199A KR 20030012199 A KR20030012199 A KR 20030012199A KR 1020010046120 A KR1020010046120 A KR 1020010046120A KR 20010046120 A KR20010046120 A KR 20010046120A KR 20030012199 A KR20030012199 A KR 20030012199A
Authority
KR
South Korea
Prior art keywords
dna vaccine
expression vector
tccmvil
infection
gene
Prior art date
Application number
KR1020010046120A
Other languages
Korean (ko)
Inventor
김태성
황승용
Original Assignee
(주)지노첵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)지노첵 filed Critical (주)지노첵
Priority to KR1020010046120A priority Critical patent/KR20030012199A/en
Publication of KR20030012199A publication Critical patent/KR20030012199A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/04Mycobacterium, e.g. Mycobacterium tuberculosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]

Abstract

PURPOSE: Provided are a DNA vaccine comprising as an active ingredient cytokine gene, more specifically, interleukin 18(IL-18) gene which inhibits the infection of Mycobacterium sp., and an inhibition method of the infection of Mycobacterium sp. using the same. CONSTITUTION: A transformed E. coli DH5@/TcCMVIL-18(KCTC 10019BP) is obtained by transformation with an expression vector TcCMVIL-18 capable of expressing interleukin 18(IL-18) gene in a mammal cell. The DNA vaccine for the inhibition of Mycobacterium sp. comprises the expression vector TcCMVIL-18 as an active ingredient, and pharmaceutically acceptable carrier.

Description

사이토카인 유전자를 유효성분으로 포함하는 DNA 백신{DNA Vaccine Comprising Cytokine Gene As Active Ingredient}DNA Vaccine containing cytokine gene as an active ingredient {DNA Vaccine Comprising Cytokine Gene As Active Ingredient}

본 발명은 사이토카인 유전자를 포함하는 DNA 백신에 관한 것이다. 좀 더 구체적으로, 본 발명은 마이코박테리움 속 세균의 감염을 억제하는 것으로 알려진 인터루킨 18(interleukin 18, IL-18) 유전자를 포함하는 DNA 백신 및 전기 DNA 백신을 이용하여 마이코박테리움 속 세균의 감염을 억제하는 방법에 관한 것이다.The present invention relates to a DNA vaccine comprising a cytokine gene. More specifically, the present invention provides a bacterium of the genus Mycobacterium using a DNA vaccine and an electric DNA vaccine containing an interleukin 18 (IL-18) gene, which is known to inhibit infection of the genus Mycobacterium. The present invention relates to a method of inhibiting infection.

마이코박테리움 애비엄 복합체(Mycobacterium avium complex, MAC)는 AIDS 환자에 퍼져있는 세균성 감염 질병의 원인균으로 알려져 있다. 이러한 MAC의 감염을 억제시키기 위한 주요한 수단으로서, 인터페론 등의 사이토카인을 사용하고 있는데, 특히 MAC에 효과적인 것으로 알려진 사이토카인으로는 γ-인터페론(IFN-γ)이 알려져 있으며, 활성화된 CD4+ T 세포와 중성 킬러(neutral killer, NK)세포로부터 생성되는 것으로 알려져 있다. 한편, 최근에는 IFN-γ의 유도인자로 알려진 인터루킨-18(IL-18)이 새로운 사이토카인임이 밝혀졌는데, IL-18은 활성화된 CD4+ T 세포와 중성 킬러세포로부터 IFN-γ의 생성을 촉진하여, 감염성 병원균에 대한 중요한 방어기작을 제공하는 것으로 알려져 있다.Mycobacterium avium complex (MAC) is known as a causative agent of bacterial infectious diseases spread in AIDS patients. As a major means for inhibiting the infection of MAC, cytokines such as interferon are used. Especially, cytokines known to be effective for MAC are known as γ-interferon (IFN-γ) and activated CD4 + T cells. It is known to be produced from neutral killer (NK) cells. Recently, interleukin-18 (IL-18), a known inducer of IFN-γ, has been found to be a new cytokine. IL-18 promotes the production of IFN-γ from activated CD4 + T cells and neutral killer cells. It is also known to provide an important defense against infectious pathogens.

일반적으로, MAC 감염의 치료를 위하여, 재조합 IFN-γ를 임상적으로 사용하고 있으나, 재조합 IFN-γ를 정제하는 공정이 선행되어야 하므로 많은 비용이 소요되고, IFN-γ의 투여효과가 단기간동안 유지되므로 잦은 투여가 수행되어야 한다는 단점이 대두되었으나, 이에 대한 해결책을 찾지 못하는 실정이다.In general, for the treatment of MAC infection, recombinant IFN-γ is clinically used, but the process of purifying recombinant IFN-γ requires a lot of costs, and the administration effect of IFN-γ is maintained for a short time. Therefore, the disadvantage that the frequent administration should be carried out, but the situation does not find a solution.

따라서, MAC 감염의 치료시, 효과적으로 IFN-γ를 처리하는 방법을 개발하여야 할 필요성이 끊임없이 대두되었다.Therefore, there is a constant need to develop a method for effectively treating IFN- [gamma] in the treatment of MAC infection.

이에, MAC 감염의 치료시, 효과적으로 IFN-γ를 처리하는 방법을 개발하고자 예의 연구 노력한 결과, MAC 감염된 동물에 인터루킨 18을 암호화하는 유전자를 포함하는 발현벡터를 유효성분으로 하는 DNA 백신을 투여할 경우, IFN-γ를 처리한 것과 유사한 효과를 나타내어, MAC의 감염을 효과적으로 억제할 수 있음을 확인하고, 본 발명을 완성하게 되었다.Therefore, as a result of earnest research efforts to develop a method for effectively treating IFN-γ in the treatment of MAC infection, when a DNA vaccine containing an expression vector containing a gene encoding an interleukin 18 is administered to an MAC infected animal. The present invention was completed by confirming that the infection of MAC was effectively suppressed by showing a similar effect to the treatment with IFN-γ.

결국, 본 발명의 주된 목적은 인터루킨 18을 암호화하는 유전자를 포함하는 DNA 백신을 제공하는 것이다.After all, the main object of the present invention is to provide a DNA vaccine comprising a gene encoding interleukin 18.

본 발명의 다른 목적은 전기 DNA 백신을 이용하여 MAC의 감염을 억제하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for inhibiting infection of MAC using an electric DNA vaccine.

도 1은 발현벡터 TcCMVIL-18의 유전자지도를 나타내는 그림이다.1 is a diagram showing a gene map of the expression vector TcCMVIL-18.

도 2는 발현벡터가 IFN-γ의 생성에 미치는 영향을 나타내는 그래프이다.2 is a graph showing the effect of the expression vector on the production of IFN-γ.

도 3a는 감염 3주 후, 측정한 세포융해의 백분율비를 나타내는 그래프이다.3A is a graph showing the percentage ratio of measured cell lysis after 3 weeks of infection.

도 3b는 감염 8주 후, 측정한 세포융해의 백분율비를 나타내는 그래프이다.3B is a graph showing the percentage ratio of measured cell lysis after 8 weeks of infection.

본 발명의 인터루킨 18(IL-18)을 암호화하는 유전자를 포함하는 DNA 백신은 IL-18 유전자를 포유동물의 세포에서 발현시킬 수 있는 발현벡터를 유효성분으로 하고, 약학적으로 허용되는 담체를 포함한다.DNA vaccine containing the gene encoding the interleukin 18 (IL-18) of the present invention is an expression vector capable of expressing the IL-18 gene in mammalian cells as an active ingredient, and includes a pharmaceutically acceptable carrier do.

본 발명자들은 MAC의 감염을 효과적으로 저해하는 사이토카인으로 알려진 IFN-γ를 MAC가 감염된 동물에 효과적으로 처리하는 방법을 개발하기 위하여 연구한 결과, MAC가 감염된 동물에 IFN-γ를 직접적으로 처리하기 보다는, IFN-γ의 생산을 유도하는 것으로 알려진 IL-18을 처리하여 간접적으로 MAC의 감염을 저해하는 방법을 사용함이 효과적임을 확인하였으나, 재조합 IL-18을 처리하더라도, 전술한 높은 생산비용과 잦은 투여의 문제점을 근본적으로 해결할 수는 없었다. 이에, IL-18 유전자를 동물세포내에서 발현시킬 수 있는 발현벡터를 제조하여, 이를 MAC가 감염된 동물에 투여함으로써, 감염된 동물세포에서 재조합 IL-18를 발현시키도록 시도하였다.The present inventors studied to develop a method for effectively treating IFN- [gamma], which is known as a cytokine that effectively inhibits MAC infection, in an animal infected with MAC. Rather than treating IFN- [gamma] directly with an animal infected with MAC, Although treatment with IL-18, which is known to induce the production of IFN-γ, has been shown to be effective in indirectly inhibiting MAC infection, even with recombinant IL-18, the high production costs and frequent administration of The problem could not be solved fundamentally. Therefore, an expression vector capable of expressing the IL-18 gene in an animal cell was prepared and administered to the animal infected with MAC, thereby attempting to express recombinant IL-18 in the infected animal cell.

본 발명의 일 실시예로서, 마우스의 꼬리에서 수득한 게놈 DNA를 주형으로사용한 PCR 방법에 의하여 마우스의 IL-18 유전자를 수득하고, 이를 SV 오리진, CMV 프로모터, β-락타메이즈 유전자 등을 포함하는 진핵세포 발현벡터에 클로닝하여 IL-18을 발현시킬 수 있는 발현벡터 TcCMVIL-18을 작제하였으며, 대장균에 도입하여 형질전환체를 제조한 다음, 전기 형질전환체를 배양하여, 대량의 발현벡터를 수득하였다. 이때, IL-18 유전자를 포함하는 발현벡터가 특별히 제한되는 것은 아니며, 진핵세포에서 IL-18 유전자를 발현시킬 수 있는 어떠한 발현벡터라도 사용할 수 있다.In one embodiment of the present invention, the IL-18 gene of the mouse is obtained by PCR using genomic DNA obtained from the tail of the mouse as a template, which includes an SV origin, a CMV promoter, a β-lactamase gene, and the like. An expression vector TcCMVIL-18 capable of expressing IL-18 was cloned into an eukaryotic cell expression vector, and then introduced into E. coli to prepare a transformant, followed by culturing the transformant to obtain a large amount of the expression vector. It was. At this time, the expression vector containing the IL-18 gene is not particularly limited, and any expression vector capable of expressing the IL-18 gene in eukaryotic cells may be used.

전기 발현벡터를 MAC 감염된 마우스에 투여하면, 마우스에 감염된 MAC를 사멸시키므로 MAC의 증식이 효과적으로 억제되고, 이러한 효과는 약 8주 이상동안 유지됨을 알 수 있었다. 이러한 발현벡터의 효과는 발현벡터에 의해 발현되는 IL-18이 IFN-γ의 과다생산을 유도시켜 발생하는 것으로 확인되었으며, 부가적으로 NO2 -의 수준이 증가함을 확인할 수 있었다. 따라서, 본 발명의 IL-18을 암호화하는 유전자를 포함하는 DNA 백신을 이용하여 MAC의 감염을 효과적으로 억제할 수 있음을 알 수 있었다.When the expression vector was administered to the mice infected with MAC, it was found that killing the mice infected with MAC effectively inhibited the proliferation of MAC, and this effect was maintained for about 8 weeks or more. The effect of this expression vector was confirmed that IL-18 expressed by the expression vector is induced by inducing overproduction of IFN-γ, it was confirmed that the level of NO 2 - additionally increased. Therefore, it was found that the infection of MAC can be effectively suppressed by using the DNA vaccine containing the gene encoding IL-18 of the present invention.

이에, 본 발명자들은 전기 발현벡터 TcCMVIL-18로 형질전환된 대장균을 대장균 DH5@/TcCMVIL-18(Escherichia coliDH5@/TcCMVIL-18)이라 명명하고, 2001년 7월 20일 국제기탁기관인 생명공학연구원 유전자은행에 기탁번호 KCTC 10019BP 로 기탁하였다.Accordingly, the present inventors named Escherichia coli transformed with the electric expression vector TcCMVIL-18 as Escherichia coli DH5 @ / TcCMVIL-18 (Esherichia coli DH5 @ / TcCMVIL-18). The gene bank was deposited with the accession number KCTC 10019BP.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .

실시예 1: IL-18 발현벡터의 제조 Example 1 Preparation of IL-18 Expression Vector

마우스 cDNA 라이브러리 (Clontech, U.S.A.)로부터 마우스 IL-18의 cDNA 구조물 일부를 함유하는 프라이머 1: 5'-TTTCCACGATGTGAAACTTTGGCCGACTT-3'(서열번호 1)와 프라이머 2: 5'-GAAGATCTCTAACTTTGATGTAAGTT-3'(서열번호 2)를 사용한 PCR에 의하여, 원하는 제한효소 부위를 함유한 IL-18 유전자를 수득하고, 이를 SV40 오리진을 포함하는 포유동물 발현벡터 "TcCMVOVA"(참조: Lim Y.S.et al., Immunology 94:135-141, 1998)에 클로닝하여, IL-18 발현벡터 "TcCMVIL-18"을 작제하였다(참조: 도 1). 전기 작제된 TcCMVIL-18을 대장균에 도입하여 형질전환된 대장균을 제조하고, 이를 50ug/ml 암피실린이 함유된 LB 평판배지에서 배양한 다음, 배양된 대장균을 분쇄하여, 이로부터 세슘클로라이드 밀도구배(cesium chloride density gradient) 원심분리에 의해 정제된 대량의 TcCMVIL-18 DNA을 수득하였다. 정제된 DNA의 내독소 정도는 리물루스 아메보사이트 라이세이트 분석키트(limulus amebocyte lysate assay kit, Biowhittaker, Walkersville, MD)를 이용하여, 수득한 DNA의 세포내독성을 측정한 결과, 20EU/mg DNA 이하임을 알 수 있었다.Primer 1: 5'-TTTCCACGATGTGAAACTTTGGCCGACTT-3 '(SEQ ID NO: 1) and Primer 2: 5'-GAAGATCTCTAACTTTGATGTAAGTT-3' (SEQ ID NO: 2) containing a portion of the cDNA construct of mouse IL-18 from the mouse cDNA library (Clontech, USA) PCR was performed to obtain an IL-18 gene containing the desired restriction enzyme site, which was then expressed in mammalian expression vector "TcCMVOVA" containing SV40 origin (Lim YS et al ., Immunology 94: 135-141). , 1998) to construct the IL-18 expression vector "TcCMVIL-18" (see Figure 1). Electrolyzed TcCMVIL-18 was introduced into Escherichia coli to prepare transformed Escherichia coli, which was cultured in an LB plate medium containing 50 ug / ml ampicillin, and then, the cultured Escherichia coli was pulverized and cesium chloride density gradient (cesium) was obtained therefrom. chloride density gradient) to obtain a large amount of purified TcCMVIL-18 DNA by centrifugation. The endotoxin level of the purified DNA was measured using the Limulus amebocyte lysate assay kit (Biowhittaker, Walkersville, MD) to measure the cytotoxicity of the obtained DNA. It was found that the following.

이처럼 제조된 발현벡터 TcCMVIL-18을 COS-7 세포(ATCC CRL-1651, American Type Cell Collection, U.S.A.)에 도입하여 형질전환시키고, 3일간 배양한 다음, 원심분리하여 배양상층액을 수득하고, 이에 IL-18 항체가 결합된 CNBr-세파로스 4B 레진을 처리하고, 원심분리하여 면역침강시켰다. 전기 침강된 레진을 0.1%(v/v) 트윈 20이 포함된 50mM Tris 완충용액(pH 8.0)으로 3번 세척하고, SDS-PAGE 샘플링 완충용액으로 용출시킨 다음, 이를 전기영동하고, IL-18 항체를 이용하여 웨스턴 블럿을 수행하였다. 그 결과, COS-7 세포에 도입된 발현벡터에 의하여 IL-18이 정상적으로 발현됨을 알 수 있었다.The expression vector TcCMVIL-18 thus prepared was introduced into COS-7 cells (ATCC CRL-1651, American Type Cell Collection, USA), transformed, cultured for 3 days, and then centrifuged to obtain a culture supernatant. CNBr-Sepharose 4B resin bound with IL-18 antibody was treated and centrifuged to immunoprecipitate. Electroprecipitated resin was washed three times with 50 mM Tris buffer (pH 8.0) containing 0.1% (v / v) Tween 20, eluted with SDS-PAGE sampling buffer and electrophoresed, IL-18 Western blots were performed using the antibodies. As a result, it was found that IL-18 is normally expressed by the expression vector introduced into the COS-7 cells.

이에, 본 발명자들은 전기 발현벡터 TcCMVIL-18로 형질전환된 대장균을 대장균 DH5@/TcCMVIL-18(Escherichia coliDH5@/TcCMVIL-18)이라 명명하고, 2001년 7월 20일 국제기탁기관인 생명공학연구원 유전자은행에 기탁번호 KCTC 10019 BP로 기탁하였다.Accordingly, the present inventors named Escherichia coli transformed with the electric expression vector TcCMVIL-18 as Escherichia coli DH5 @ / TcCMVIL-18 (Esherichia coli DH5 @ / TcCMVIL-18). The gene bank was deposited with the accession number KCTC 10019 BP.

실시예 2: IL-18 발현벡터의 약리효과 Example 2 Pharmacological effect of IL-18 expression vector

전기 실시예 1에서 제조된 발현벡터를 생쥐근육에 주사하고, 주사된 생쥐의 병원균 감염정도, 체내에서 생성된 사이토카인의 양, 전기 발현벡터의 세포독성을 측정하였다.The expression vector prepared in Example 1 was injected into the mouse muscle, and the degree of infection of the pathogen of the injected mice, the amount of cytokines produced in the body, and the cytotoxicity of the electric expression vector were measured.

실시예 2-1: 발현벡터의 감염억제 효과 Example 2-1 : Inhibition Effect of Expression Vector

실시예 1에서 제조된 발현벡터 TcCMVIL-18 DNA 20, 100 또는 300㎍을 0.85%(w/v) 생리식염수 100㎕에 용해시켜서 28-gauge insulin syringe를 이용하여 각 각 생쥐의 사두근에 근육주사하여 실험군을 준비하고, 동일한 농도의 TcCMV를 각 각 동일한 방법으로 근육주사하여 대조군을 준비하며, 주사하지 않은 비처리군을 준비하였다. 1일 경과 후, 각 실험군, 대조군 및 비처리군을 MAC로 감염시키고, 감염 3주 및 8주가 경과한 다음, 각 실험군, 대조군 및 비처리군의 폐를 적출하고, 생리식염수를 첨가하여 균질화한 후, 고체배지(Middlebrook 7H11 agar plate, Difco Lab., U.S.A.)에 도말하고, 37℃에서 7일간 배양하여, 생성된 콜로니의 수를 측정하였다(참조: 표 1).20, 100 or 300 μg of the expression vector TcCMVIL-18 DNA prepared in Example 1 was dissolved in 100 μl of 0.85% (w / v) physiological saline and intramuscularly injected into the quadriceps of each mouse using a 28-gauge insulin syringe. The experimental group was prepared, and the control group was prepared by intramuscular injection of the same concentration of TcCMV in the same manner, respectively, and the non-treated group was prepared. After 1 day, each experimental group, the control group and the untreated group were infected with MAC, and after 3 and 8 weeks of infection, the lungs of each experimental group, the control group and the untreated group were removed and homogenized by adding saline solution. Afterwards, the cells were plated on a solid medium (Middlebrook 7H11 agar plate, Difco Lab., USA) and incubated at 37 ° C. for 7 days to determine the number of colonies generated (see Table 1).

발현벡터의 감염억제 효과(log scale)Infection inhibition effect of expression vector (log scale) 처리군Treatment group 3주 경과 콜로니의 수Number of colonies after 3 weeks 8주 경과 콜로니의 수Number of colonies after 8 weeks 생존일수Survival 비 주입군Non-injection group 5.8 ±0.25.8 ± 0.2 7.6 ±0.37.6 ± 0.3 62 ±4.762 ± 4.7 대조군(20㎍)Control (20 µg) 5.6 ±0.35.6 ± 0.3 7.0 ±0.27.0 ± 0.2 NDND 대조군(100㎍)Control (100 µg) 5.0 ±0.15.0 ± 0.1 6.1 ±0.36.1 ± 0.3 73 ±3.573 ± 3.5 대조군(300㎍)Control (300 µg) 5.1 ±0.15.1 ± 0.1 6.0 ±0.26.0 ± 0.2 77 ±4.777 ± 4.7 실험군(20㎍)Experimental group (20 µg) 5.9 ±0.25.9 ± 0.2 7.9 ±0.47.9 ± 0.4 NDND 실험군(100㎍)Experimental group (100 µg) 5.7 ±0.15.7 ± 0.1 7.3 ±0.27.3 ± 0.2 NDND 실험군(300㎍)Experimental group (300 µg) 6.0 ±0.26.0 ± 0.2 7.6 ±0.17.6 ± 0.1 61 ±2.261 ± 2.2

상기 표 1에서 보듯이, 감염 3주 및 8주 후에 실험군의 감염률이 대조군 보다 현저히 저하됨을 알 수 있었다.As shown in Table 1, it was found that the infection rate of the experimental group was significantly lower than the control group after 3 and 8 weeks of infection.

실시예 2-2: 발현벡터의 사이토카인 생성증진 효과 Example 2-2 : Cytokine Production Enhancement Effect of Expression Vector

발현벡터 TcCMVIL-18 300㎍을 0.85%(w/v) 생리식염수 100㎕에 용해시켜서 28-gauge insulin syringe를 이용하여 각각 생쥐의 사두근에 근육주사하여 실험군을 준비하고, 동일한 농도의 TcCMV를 각각 동일한 방법으로 근육주사하여 대조군을 준비하며, 주사하지 않은 비처리군을 준비하였다. 1일 경과 후, 각 실험군, 대조군 및 비처리군을 MAC로 감염시키고, 감염직후, 1, 2, 4, 6 및 8주가 경과한 다음, 각 실험군, 대조군 및 비처리군의 폐를 적출하고, 생리식염수를 첨가하여 균질화한 후, 각각의 폐의 균질액에서 폐세포를 선별하고, 5 ×105개의 폐세포를 1㎍/ml의 콘카나발린 A(ConA, Sigma Chem. Co., U.S.A.)이 함유된 RPMI 1640배지(Gibco BRL, U.S.A.)에서 72시간 동안 배양하였다. 배양물을 원심분리하여 상등액을 수득하고, 샌드위치 ELISA 방법을 이용하여 상등액에 함유된 IFN-γ의 수준을 측정하였다: 이때, 플레이트에 코팅된 항체로는 랫트 항-생쥐 IFN-γ(HB170)을 사용하고, 바이티닐레이트 2차 항체로는 바이티닐레이트 랫트 항-생쥐 IFN-γ(XMG 1.2)를 사용하며, IFN-γ의 검출에 있어서, 최소 제한값은 125pg/ml이다(참조: 도 2). 도 2는 발현벡터가 IFN-γ의 생성에 미치는 영향을 나타내는 그래프로서, (■)은 비처리군이고, (□)는 실험군이며, (▨)는 대조군을 나타낸다. 도 2에서 보듯이, 실험군은 대조군 및 비처리군과 비교하여 8주동안 높은 수준으로 IFN-γ을 유지함을 알 수있었다.300 μg of the expression vector TcCMVIL-18 was dissolved in 100 μl of 0.85% (w / v) saline solution and intramuscularly injected into the quadriceps of the mice using a 28-gauge insulin syringe to prepare experimental groups. A control group was prepared by intramuscular injection and a non-treated group was prepared. After 1 day, each experimental group, control group and untreated group were infected with MAC, and immediately after infection, 1, 2, 4, 6 and 8 weeks later, lungs of each experimental group, control group and untreated group were removed, After homogenization by adding saline solution, lung cells were selected from the homogenate of each lung, and 5 × 10 5 lung cells were collected at 1 μg / ml Concanavalin A (ConA, Sigma Chem. Co., USA). Incubated for 72 hours in RPMI 1640 medium (Gibco BRL, USA) containing the. The supernatant was obtained by centrifugation of the culture, and the level of IFN-γ contained in the supernatant was measured using a sandwich ELISA method: the antibody coated on the plate was subjected to rat anti-mouse IFN-γ (HB170). A bitinylate rat anti-mouse IFN- [gamma] (XMG 1.2) is used as the bitinylate secondary antibody, and the minimum limit for detection of IFN- [gamma] is 125 pg / ml (see FIG. 2). Figure 2 is a graph showing the effect of the expression vector on the production of IFN-γ (■) is an untreated group, (□) is an experimental group, (iii) represents a control group. As shown in Figure 2, the experimental group was found to maintain a high level of IFN-γ for 8 weeks compared to the control and untreated group.

실시예 2-3: 발현벡터의 NO2 -생성증진 효과 Example 2-3 : NO 2 - Production Enhancement Effect of Expression Vector

실시예 1에서 제조된 발현벡터 TcCMVIL-18 100 또는 300㎍을 0.85%(w/v) 생리식염수 100㎕에 용해시켜서 28-gauge insulin syringe를 이용하여 각각 생쥐의 사두근에 근육주사하여 실험군을 준비하고, 동일한 농도의 TcCMV를 각각 동일한 방법으로 근육주사하여 대조군을 준비하며, 주사하지 않은 비처리군을 준비하였다. 1일 경과 후, 각 실험군, 대조군 및 비처리군을 MAC로 감염시키고, 주사하지도 않고, 감염되지도 않은 비감염군을 별도로 준비하였다. 감염 3주 및 8주가 경과한 다음, 각 실험군, 대조군, 비처리군 및 비감염군의 폐를 적출하고, 생리식염수를 첨가하여 균질화한 후, 각각의 폐의 균질액에서 폐세포를 선별하고, 2 ×105개의 폐세포를 1㎍/ml의 콘카나발린 A가 함유된 RPMI 1640배지에서 72시간 동안 배양하였다. 배양물을 원심분리하여 상등액을 수득하고, 각각의 상등액 50㎕, 1%(w/v) 설포닐아미드 100㎕ 및 0.1%(w/v) N-1-나프틸-에틸렌디아민 디하이드로클로라이드가 용해된 2.5%(v/v) 폴리포스포린산 100㎕를 상온에서 5분간 혼합하고, 분광광도계를 이용하여 540nm에서 흡광도를 측정한 후, 표준물질인 Na(NO2)의 표준곡선과 비교하여, 각 시료의 NO2 -수준을 측정하였다(참조: 표 2)The experimental group was prepared by dissolving 100 or 300 μg of the expression vector TcCMVIL-18 prepared in Example 1 in 100 μl of 0.85% (w / v) physiological saline and then intramuscularly injection into the quadriceps of mice using a 28-gauge insulin syringe. In the same concentration, TcCMV was intramuscularly injected in the same manner to prepare a control group, and an untreated group was prepared. After 1 day, each experimental group, control group and untreated group were infected with MAC, and the non-infected group which was neither injected nor infected was prepared separately. After 3 and 8 weeks of infection, the lungs of each experimental group, control group, untreated group and uninfected group were removed, homogenized by adding saline solution, and lung cells were selected from the homogenate of each lung. 5 × 10 lung cells were incubated for 72 hours in RPMI 1640 medium containing 1 μg / ml concanavalin A. The supernatant was obtained by centrifuging the culture, and 50 μl of each supernatant, 100 μl of 1% (w / v) sulfonylamide and 0.1% (w / v) N-1-naphthyl-ethylenediamine dihydrochloride 100 μl of dissolved 2.5% (v / v) polyphosphoric acid was mixed at room temperature for 5 minutes, and the absorbance was measured at 540 nm using a spectrophotometer, and then compared with a standard curve of Na (NO 2 ) as a standard. , NO 2 - level of each sample was measured (see Table 2).

각 시료의 NO2 -수준NO 2 - level of each sample 처리군Treatment group 3주 경과3 weeks past 8주 경과After 8 weeks 비감염군Uninfected group <2.0<2.0 <2.0<2.0 비처리군Untreated group 35.2 ±4.835.2 ± 4.8 58.8 ±1.358.8 ± 1.3 대조군(100㎍)Control (100 µg) 29.8 ±6.029.8 ± 6.0 60.4 ±5.260.4 ± 5.2 대조군(300㎍)Control (300 µg) 41.3 ±2.841.3 ± 2.8 66.7 ±4.966.7 ± 4.9 실험군(100㎍)Experimental group (100 µg) 113.7 ±7.2113.7 ± 7.2 210.5 ±13.7210.5 ± 13.7 실험군(300㎍)Experimental group (300 µg) 128.3 ±5.7128.3 ± 5.7 207.2 ±18.8207.2 ± 18.8

상기 표 2에서 보듯이, 감염 후 8주가 경과하여도 실험군의 NO2 -수준은 대조군, 비감염군 및 비처리군에 비하여 높은 수준을 유지함을 알 수 있었다. NO2 -수준의 증가는 감염미생물의 중요한 사멸유도 기전 중의 하나인 대식세포의 활성화되었을 때 나타내는 현상으로, 이러한 결과는 TcCMVIL-18 DNA 주사는 지속적으로 대식세포를 활성화시킴을 알 수 있었다(참조: James, S.L., Microbiol. Rev., 59:533-547, 1995; James S.L. & Nacy, C., Curr. Opin., Immunol., 5:518-523, 1993).As shown in Table 2, even after 8 weeks after the infection, the NO 2 - level of the experimental group was found to maintain a higher level than the control, uninfected and untreated group. Increasing NO 2 - levels are associated with the activation of macrophages, one of the important killing mechanisms of infected microorganisms. These results indicate that TcCMVIL-18 DNA injection continues to activate macrophages. James, SL, Microbiol. Rev., 59: 533-547, 1995; James SL & Nacy, C., Curr. Opin., Immunol., 5: 518-523, 1993).

실시예 2-4: 감염세포에 대한 발현벡터의 세포독성 측정 Example 2-4 Measurement of Cytotoxicity of Expression Vectors on Infected Cells

실시예 1에서 제조된 발현벡터 TcCMVIL-18 DNA 100 ㎍을 0.85%(w/v) 생리식염수 100㎕에 용해시키고, 이를 생쥐의 사두근에 근육주사하여 실험군을 준비하고, 동일한 농도의 TcCMV를 동일한 방법으로 근육주사하여 대조군을 준비하며, 주사하지 않은 비처리군을 준비하였다. 1일 경과 후, 실험군, 대조군 및 비처리군을 MAC로 감염시키고, 감염 3주 및 8주가 경과한 다음, 실험군, 대조군 및 비처리군의 폐를 적출하였다. 이어, 생리식염수를 첨가하여 균질화하고, 각 폐의 균질액에서 폐세포를 선별한 다음, 5 ×104개의 폐세포와 다른 비율의51Cr 방사선 동위원소가 표지된 P815 세포(대식세포에 민감한 세포)를 2:1, 10:1, 25:1 또는 50:1(세포수)로 혼합하고, 37℃, CO2인큐베이터에서 4시간 동안 반응시켜준 후, 배양액으로 방출된51Cr 양을 측정하여, 특정 세포융해의 백분율비(% cytolysis)로서 나타내었다(참조: 도 3a, 도 3b). 이때, 세포융해의 백분율비는 다음과 같이 계산된다:100 μg of the expression vector TcCMVIL-18 DNA prepared in Example 1 was dissolved in 100 μl of 0.85% (w / v) physiological saline, and then injected into the quadriceps of the mouse to prepare an experimental group, and the same concentration of TcCMV was prepared in the same manner. A control group was prepared by intramuscular injection, and an untreated group was prepared. After 1 day, the experimental, control and untreated groups were infected with MAC, and after 3 and 8 weeks of infection, the lungs of the experimental, control and untreated groups were removed. Subsequently, the cells were homogenized by the addition of physiological saline, and the lung cells were selected from the homogenates of each lung, and then P815 cells (macrophage-sensitive cells) labeled with 5 × 10 4 lung cells and 51 Cr radioisotopes at different ratios. ) Is mixed at 2: 1, 10: 1, 25: 1 or 50: 1 (cell number), reacted at 37 ° C. in a CO 2 incubator for 4 hours, and the amount of 51 Cr released into the culture was measured. , As percentage of specific cytolysis (% cytolysis) (see FIGS. 3A and 3B). The percentage ratio of cell lysis is then calculated as follows:

도 3a는 감염 3주 후, 측정한 세포융해의 백분율비를 나타내는 그래프이고, 도 3b는 감염 8주 후, 측정한 세포융해의 백분율비를 나타내는 그래프이며, (■)는 실험군, (▲)는 대조군 및 (●)는 비처리군을 나타내고 혼합비율은 P815세포에 대한 폐세포의 비율을 나타낸다. 도 3a에서 보듯이, 3주 경과한 실험군은 대조군보다 훨씬 높은 세포독성을 나타내고, 도 3b에서 보듯이, 8주 경과한 후에도 실험군의 높은 세포독성은 유지되었음을 확인할 수 있었다.Figure 3a is a graph showing the percentage ratio of cell lysis measured after 3 weeks of infection, Figure 3b is a graph showing the percentage ratio of cell lysis measured after 8 weeks of infection, (■) is the experimental group, (▲) The control group and (●) represent the untreated group and the mixing ratio represents the ratio of lung cells to P815 cells. As shown in FIG. 3A, the experimental group after 3 weeks showed much higher cytotoxicity than the control group, and as shown in FIG. 3B, it was confirmed that the high cytotoxicity of the experimental group was maintained even after 8 weeks.

실시예 2-5: DNA 백신의 작용기전 분석 Example 2-5 Analysis of Mechanism of Action of DNA Vaccine

TcCMVIL-18 DNA 주사에 의해 증가된 IFN-γ의 생성이 항-마이코박테리움 활성으로 부터 유도된 것인지 확인하였다: 즉, 생쥐에 IFN-γ 항체와 유사한 isotype 항체를 각각 생쥐에 근육주사한 후, 0.85%(w/v) 생리식염수 100㎕에 용해된 TcCMVIL-18 DNA 300㎍을 각 생쥐의 사두근에 근육주사하여 실험군을 준비하고, 동일한 농도의 TcCMV를 동일한 방법으로 근육주사하여 대조군을 준비하며, 항체를 주사하지 않은 비처리군을 준비하였다. 1일 후에 각 실험군에 MAC를 감염시켰다. 이어, 항체를 2일마다 한 번씩 6일간 근육주사하고, 그 후는 1주일마다 1번씩 근육주사하였다. MAC 감염 3주 경과 후, 대조군, 실험군 및 비처리군으로부터 폐를 적출하여 실시예 2-1 내지 2-3의 실험을 수행하였다(참조: 표 3).It was confirmed that the production of increased IFN-γ by TcCMVIL-18 DNA injection was induced from anti-mycobacterial activity: that is, after each muscle injection of isotype antibodies similar to IFN-γ antibodies to mice , 300μg TcCMVIL-18 DNA dissolved in 100μl of 0.85% (w / v) saline was intramuscularly injected into the quadriceps of each mouse to prepare the experimental group, and the same concentration of TcCMV was intramuscularly injected to prepare the control group. The non-treated group was not prepared with injection of antibodies. After 1 day, each experimental group was infected with MAC. Subsequently, the antibody was injected intramuscularly once every 2 days for 6 days, after which the muscle was injected once every week. Three weeks after MAC infection, lungs were removed from the control, experimental and untreated groups to carry out the experiments of Examples 2-1 to 2-3 (see Table 3).

발현벡터의 MAC 감염억제에 대한 IFN-γ항체 효과Effect of IFN-γ Antibodies on MAC Inhibition of Expression Vectors 처리군Treatment group 콜로니의 수(Log scale)Log scale NO2 -수준(uM)NO 2 - level (uM) % 세포독성(1:50)% Cytotoxicity (1:50) 비처리군Untreated group 5.9 ±0.35.9 ± 0.3 30.6 ±4.830.6 ± 4.8 13.8 ±3.213.8 ± 3.2 대조군(IFN-γ항체)Control (IFN-γ Antibody) 6.1 ±0.26.1 ± 0.2 22.3 ±5.722.3 ± 5.7 18.1 ±2.518.1 ± 2.5 대조군(isotype 항체)Control (isotype antibody) 5.8 ±0.25.8 ± 0.2 31.8 ±6.431.8 ± 6.4 12.8 ±1.612.8 ± 1.6 비처리군Untreated group 5.1 ±0.15.1 ± 0.1 120.8 ±5.5120.8 ± 5.5 29.7 ±3.329.7 ± 3.3 실험군(IFN-γ항체)Experimental group (IFN-γ antibody) 6.2 ±0.36.2 ± 0.3 36.2 ±5.136.2 ± 5.1 12.6 ±1.812.6 ± 1.8 실험군(isotype 항체)Experimental group (isotype antibody) 5.0 ±0.25.0 ± 0.2 108.7 ±6.7108.7 ± 6.7 33.6 ±4.233.6 ± 4.2

상기 표 3에서 보는 바와 같이, IFN-γ항체를 처리할 경우, 실험군에서 관찰되는 항-마이코박테리움 할성도가 현저히 감소되었다. IFN-γ항체로 처리한 실험군 생쥐 폐에서의 박테리아의 수는 isotype 항체를 처리한 실험군 생쥐에 비해 보다 높다. 아울러, IFN-γ항체를 처리한 생쥐의 폐세포에 의한 NO2 -생성이나 P815 세포에 대한 세포독성 정도는 isotype 항체로 처리한 생쥐와 비교했을 때, 현저히 낮음을 알 수 있었다. 따라서, 발현벡터에 의한 마이코박터리움 감염 억제 효과는 증가된 NO2 -생성, 세포독성 등에 기인하며, 이는 발현벡터에 의해 증가된 IFN-γ로부터 기인된다는 것을 알 수 있었다.As shown in Table 3 above, when treated with IFN- [gamma] antibodies, the anti-mycobacterial activity degree observed in the experimental group was significantly reduced. The number of bacteria in the experimental mouse lungs treated with IFN- [gamma] antibodies was higher than that in experimental mice treated with isotype antibodies. In addition, the degree of NO 2 production and cytotoxicity to P815 cells by lung cells of mice treated with IFN-γ antibody was significantly lower than that of mice treated with isotype antibody. Therefore, it could be seen that the mycobacterium infection inhibition effect by the expression vector is due to increased NO 2 production, cytotoxicity, etc., which is due to the increased IFN-γ by the expression vector.

투여방법 및 제형Administration method and formulation

본 발명의 IL-18 유전자를 포유동물의 세포에서 발현시킬 수 있는 발현벡터 TcCMVIL-18를 유효성분으로 하고, 약학적으로 허용가능한 담체를 포함하는 DNA 백신은 비경구의 주사형태로 투여할 수 있다. 약학적으로 허용가능한 담체로는 등장성 수용액 또는 현탁액이 바람직하고, 보조제(예를 들면, 방부제, 안정화제, 습윤제 또는 유화제 용액 촉진제, 삼투압 조절을 위한 염 및/또는 완충제)를 함유한다. 또한, 이들은 기타 치료적으로 유용한 물질을 함유할 수 있다.A DNA vaccine containing an expression vector TcCMVIL-18 capable of expressing the IL-18 gene of the present invention in a mammalian cell as an active ingredient and a pharmaceutically acceptable carrier can be administered by parenteral injection. Pharmaceutically acceptable carriers are preferably isotonic aqueous solutions or suspensions and contain auxiliaries (eg, preservatives, stabilizers, wetting or emulsifier solution promoters, salts for controlling osmotic pressure and / or buffers). In addition, they may contain other therapeutically valuable substances.

투여량Dosage

본 발명의 DNA 백신의 투여량은 환자의 연령, 체중 및 증상의 정도에 따라 차이가 있으나, 통상 성인(체중 60kg 기준)의 경우 비경구로 1일 1 내지 3회 200 내지 400mg을 투여함이 바람직하고, 본 발명의 분야에서 통상의 지식을 가진 자의 경험에 의하여 적절히 결정될 수도 있다.The dosage of the DNA vaccine of the present invention is different depending on the age, weight, and the degree of symptoms of the patient, but in the case of adults (based on 60 kg body weight), it is preferable to administer 200 to 400 mg once a day parenterally. It may be appropriately determined by the experience of those skilled in the art.

급성독성 시험Acute Toxicity Test

본 발명에서 DNA 백신의 급성독성을 알아보기 위하여, DNA 백신을 웅성 C57BL/6 마우스에 복강주사하고, 투여후 7일간에 걸쳐 마우스의 사망수를 관찰하여 LD50값을 결정하였는 바, LD50값은 약 70mg/kg이었다. 따라서, 상기 표시하는 유효량의 범위에서, 본 발명의 IL-18 유전자를 포유동물의 세포에서 발현시킬 수 있는 발현벡터 TcCMVIL-18를 유효성분으로 함유하는 항암제는 충분히 안전한 약물임을 알 수 있었다.In order to examine the acute toxicity of DNA vaccine in the present invention, the abdominal cavity of a DNA vaccine in male C57BL / 6 mice injected and hayeotneun determining the LD 50 value by observing the number of death of mice over a 7 days after administration of the bar, LD 50 value Was about 70 mg / kg. Therefore, it was found that the anticancer agent containing the expression vector TcCMVIL-18 as an active ingredient capable of expressing the IL-18 gene of the present invention in a mammalian cell in the range of the effective amount indicated above was found to be a sufficiently safe drug.

이상에서 상세히 설명하고 입증하였듯이, 본 발명은 마이코박테리움 속 세균의 감염을 억제하는 것으로 알려진 인터루킨 18 유전자를 포함하는 DNA 백신 및 전기 DNA 백신을 이용하여 마이코박테리움 속 세균의 감염을 억제하는 방법을 제공한다. 본 발명의 DNA 백신을 마이코박테리움 속 세균으로 감염된 동물에 투여하면, 장기간에 걸쳐서 마우스에 감염된 마이코박테리움 속 세균의 증식이 억제되고, IFN-γ의 수준 및 NO2 -의 수준이 증가하므로, 암치료 및 세균성 감염질환의 치료에 널리 활용될 수 있을 것이다.As described and demonstrated in detail above, the present invention is to inhibit the infection of bacteria of Mycobacterium by using a DNA vaccine and an electric DNA vaccine containing the interleukin 18 gene known to inhibit the infection of bacteria of Mycobacterium Provide a method. When the DNA vaccine of the present invention is administered to an animal infected with bacteria of Mycobacterium spp., Proliferation of bacteria of Mycobacterium spp. Infected with mice is suppressed for a long time, and the level of IFN-γ and the level of NO 2 are increased. Therefore, it can be widely used in the treatment of cancer and the treatment of bacterial infectious diseases.

Claims (9)

IL-18 유전자를 포유동물의 세포에서 발현시킬 수 있는 발현벡터 TcCMVIL-18.Expression vector TcCMVIL-18 capable of expressing IL-18 gene in mammalian cells. 제 1항의 발현벡터 TcCMVIL-18로 형질전환된 대장균 DH5@/TcCMVIL-18(Escherichia coliDH5@/TcCMVIL-18)(KCTC 10019BP). Escherichia coli DH5 @ / TcCMVIL-18 (KCTC 10019BP) transformed with the expression vector TcCMVIL-18 of claim 1. IL-18 유전자를 포유동물의 세포에서 발현시킬 수 있는 발현벡터를 유효성분으로 하고, 약학적으로 허용되는 담체를 포함하는 세균감염 억제용 DNA 백신.A DNA vaccine for inhibiting bacterial infection, comprising as an active ingredient an expression vector capable of expressing the IL-18 gene in a mammalian cell, and comprising a pharmaceutically acceptable carrier. 제 3항에 있어서,The method of claim 3, wherein 발현벡터는 TcCMVIL-18인 것을 특징으로 하는Expression vector is TcCMVIL-18 세균감염 억제용 DNA 백신.DNA vaccine for inhibiting bacterial infection. 제 3항에 있어서,The method of claim 3, wherein 약학적으로 허용되는 담체는 등장성 수용액, 현탁액 또는 보조제인Pharmaceutically acceptable carriers are aqueous isotonic solutions, suspensions or auxiliaries. 것을 특징으로 하는Characterized by 세균감염 억제용 DNA 백신.DNA vaccine for inhibiting bacterial infection. 제 5항에 있어서,The method of claim 5, 보조제는 방부제, 안정화제, 습윤제 또는 유화제 용액 촉진제,Adjuvants include preservatives, stabilizers, wetting agents or emulsifier solution accelerators, 삼투압 조절을 위한 염 및/또는 완충제인 것을 특징으로 하는Salt and / or buffer for osmotic pressure control 세균감염 억제용 DNA 백신.DNA vaccine for inhibiting bacterial infection. 제 3항에 있어서,The method of claim 3, wherein 세균은 마이코박테리움속 미생물인 것을 특징으로 하는The bacterium is characterized in that the microorganism of the genus Mycobacterium 세균감염 억제용 DNA 백신.DNA vaccine for inhibiting bacterial infection. 마이코박테리움 속 세균으로 감염된 사람이 아닌 포유동물에 제 3항의 DNA 백신을 투여하는 단계를 포함하는, DNA 백신을 이용하여 마이코박테리움 속 세균의 감염을 억제하는 방법.A method of inhibiting infection of a bacterium of Mycobacterium using a DNA vaccine, comprising administering the DNA vaccine of claim 3 to a mammal not a human infected with the bacterium of Mycobacterium. 제 8항에 있어서,The method of claim 8, DNA 백신은 발현벡터 TcCMVIL-18을 포함하는 것을 특징으로 하는DNA vaccine comprising the expression vector TcCMVIL-18 DNA 백신을 이용하여 마이코박테리움 속 세균의 감염을 억제하는 방법.A method of inhibiting the infection of bacteria of Mycobacterium using a DNA vaccine.
KR1020010046120A 2001-07-31 2001-07-31 Dna vaccine comprising cytokine gene as active ingredient KR20030012199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010046120A KR20030012199A (en) 2001-07-31 2001-07-31 Dna vaccine comprising cytokine gene as active ingredient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010046120A KR20030012199A (en) 2001-07-31 2001-07-31 Dna vaccine comprising cytokine gene as active ingredient

Publications (1)

Publication Number Publication Date
KR20030012199A true KR20030012199A (en) 2003-02-12

Family

ID=27717379

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010046120A KR20030012199A (en) 2001-07-31 2001-07-31 Dna vaccine comprising cytokine gene as active ingredient

Country Status (1)

Country Link
KR (1) KR20030012199A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060219A1 (en) * 2006-11-13 2008-05-22 Theravac Pharmaceuticals Ab Il- 18 vaccine for the treatment of various inflammatory conditions.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139994A (en) * 1997-10-31 1999-05-25 Kureha Chem Ind Co Ltd Antitumor agent
US6060283A (en) * 1996-06-27 2000-05-09 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Genomic DNA encoding human interleukin-18 (IL-18, interferon-γ inducing factor)
KR20000052710A (en) * 1996-10-23 2000-08-25 멕코나시 에블린 에이치. Immunotherapy and improved vaccines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060283A (en) * 1996-06-27 2000-05-09 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Genomic DNA encoding human interleukin-18 (IL-18, interferon-γ inducing factor)
KR20000052710A (en) * 1996-10-23 2000-08-25 멕코나시 에블린 에이치. Immunotherapy and improved vaccines
JPH11139994A (en) * 1997-10-31 1999-05-25 Kureha Chem Ind Co Ltd Antitumor agent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Kremer L, J Immunol 1999 Sep 15;163(6):3226-3231 *
Yoshimura K, Cancer Gene Ther 2001 Jan;8(1):pp 9-16 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060219A1 (en) * 2006-11-13 2008-05-22 Theravac Pharmaceuticals Ab Il- 18 vaccine for the treatment of various inflammatory conditions.

Similar Documents

Publication Publication Date Title
Havell Production of tumor necrosis factor during murine listeriosis.
Nakane et al. Endogenous tumor necrosis factor (cachectin) is essential to host resistance against Listeria monocytogenes infection
Huffnagle et al. The role of monocyte chemotactic protein-1 (MCP-1) in the recruitment of monocytes and CD4+ T cells during a pulmonary Cryptococcus neoformans infection.
US20210244789A1 (en) Compositions and methods for treatment of intracellular damage and bacterial infection
US5437863A (en) Method of enhancing the growth of gut epithelial cells by administration of a cytokine such as interleukin II
Bermudez et al. Stimulation with cytokines enhances penetration of azithromycin into human macrophages
Ma et al. IL‐24 protects against Salmonella typhimurium infection by stimulating early neutrophil Th1 cytokine production, which in turn activates CD8+ T cells
EP3720493A1 (en) Combinations of ripk1- and ikk-inhibitors for the prevention or treatment of immune diseases
US20200131240A1 (en) Use of il-12 to generate endogenous erythropoietin
KR20210123556A (en) Anticancer Salmonella Inducing Immune Response by Control of Filamentous Growth and Anticancer Composition Comprising the Salmonella
EP2243489B1 (en) Granulysin and interleukin-6 for infections
Appelberg et al. Tumour necrosis factor‐alpha (TNF‐α) in the host resistance to mycobacteria of distinct virulence
JPH0618781B2 (en) Infectious disease treatment agent
Havell Listeria monocytogenes-Induced Interferon-v Primes the Host for Production of Tumor Necrosis Factor and Interferon-α/β
EP1653977A2 (en) Treatment of disorders associated with natural killer t cells
KR20030012199A (en) Dna vaccine comprising cytokine gene as active ingredient
Kawamura-Sato et al. Postantibiotic suppression effect of macrolides on the expression of flagellin in Pseudomonas aeruginosa and Proteus mirabilis
Hof et al. Murine Model for Therapy of Listeriosis in the Compromised Host: III. The Effect of Rifampicin
US20160324951A1 (en) Compositions and Methods for Treatment of Bacterial Infections
Montravers et al. Microbiological and inflammatory effects of murine recombinant interleukin-10 in two models of polymicrobial peritonitis in rats
Bermudez et al. Clarithromycin significantly improves interleukin-12-mediated anti-Mycobacterium avium activity and abolishes toxicity in mice
KR20170052946A (en) Novel Protein AP50-31 Having Lysis Activity Specific to Bacillus anthracis
KR20170052948A (en) Novel Protein B4 Having Lysis Activity Specific to Bacillus anthracis
US6593457B1 (en) Lymphocyte-derived antimicrobial protein (LDAP) and methods of isolating and producing and using the protein
Goessens et al. Responses of tolerant and nontolerant Staphylococcus aureus strains to methicillin treatment in an experimental infection in mice

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application