KR20030010826A - Heating element using conducting polymer film - Google Patents

Heating element using conducting polymer film Download PDF

Info

Publication number
KR20030010826A
KR20030010826A KR1020010045409A KR20010045409A KR20030010826A KR 20030010826 A KR20030010826 A KR 20030010826A KR 1020010045409 A KR1020010045409 A KR 1020010045409A KR 20010045409 A KR20010045409 A KR 20010045409A KR 20030010826 A KR20030010826 A KR 20030010826A
Authority
KR
South Korea
Prior art keywords
conductive polymer
heating element
planar heating
film
polyaniline
Prior art date
Application number
KR1020010045409A
Other languages
Korean (ko)
Other versions
KR100392882B1 (en
Inventor
김영호
김은옥
박수범
양준모
Original Assignee
김영호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영호 filed Critical 김영호
Priority to KR10-2001-0045409A priority Critical patent/KR100392882B1/en
Publication of KR20030010826A publication Critical patent/KR20030010826A/en
Application granted granted Critical
Publication of KR100392882B1 publication Critical patent/KR100392882B1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/146Conductive polymers, e.g. polyethylene, thermoplastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Abstract

PURPOSE: A plane heater using a conductive heater is provided to prevent an electric shock and a leakage of electricity by forming a conductive polymer film operated with a low resistance and a low voltage. CONSTITUTION: A conductive polymer such as polyaniline of 0.7g is melt into NMP(N-methyl-2-pyrrolidone) of 0.01 liter(100). The mixture of the polyaniline and NMP is filtered by a cotton filter and impurities are removed from the mixture(200). The mixture is filled into a groove of a molding substrate and a polyaniline film of 100mmLx100mmWx0.1mmH is formed by evaporating the NMP under temperature of 70 degrees centigrade(300). The polyaniline film of 100mmLx100mmWx0.1mmH is dipped into hydrochloric acid solution of 1M in order to dope hydrogen ions(400). A plane heater unit is formed by adhering an electrode ribbon and an electric contact on the polyaniline film(500). A post-process is performed(600).

Description

전도성고분자를 이용한 면상발열체{HEATING ELEMENT USING CONDUCTING POLYMER FILM}Planar heating element using conductive polymers {HEATING ELEMENT USING CONDUCTING POLYMER FILM}

본 발명은 전도성고분자를 이용한 면상발열체에 관한 것으로, 보다 상세하게는 전도성고분자 특히 폴리아닐린과 그 유도체 및/또는 폴리피롤과 그 유도체를 이용하여 저항이 낮은 전도성고분자필름을 제조하고, 상기 전도성고분자필름에 전극띠와 전기접점을 형성하고, 상기 전기접점에 직류전원을 인가함으로써, 저전압으로 작동이 가능하고, 감전 및 누전의 위험을 감소시키며, 일정시간이 지나면 최종발열온도에 도달하게되며 더 이상 발열온도가 증가하지 않기 때문에 과열방지회로가 필요 없는, 전도성고분자를 이용한 면상발열체에 관한 것이다.The present invention relates to a planar heating element using a conductive polymer, and more particularly, to prepare a conductive polymer film having low resistance using a conductive polymer, in particular polyaniline and its derivatives and / or polypyrrole and its derivatives, and an electrode on the conductive polymer film. By forming a belt and an electrical contact, by applying a DC power supply to the electrical contact, it is possible to operate at a low voltage, reduce the risk of electric shock and short circuit, and after a certain time to reach the final heating temperature and the heat generation temperature is no longer The present invention relates to a planar heating element using a conductive polymer that does not require an overheat prevention circuit.

대한민국 공개특허 제1996-17741호(출원번호 10-1994-39964호, 종래기술1)에는 폴리아닐린필름 및 복합체의 제조방법에 대한 기술이 개시되어 있고, 대한민국 공개특허 제1999-68286호(출원번호 10-1999-6126호, 종래기술2)에는 자기제어식 면상발열체필름 및 그 제조방법에 대한 기술이 개시되어 있다.Korean Unexamined Patent Publication No. 1996-17741 (Application No. 10-1994-39964, Prior Art 1) discloses a technique for manufacturing a polyaniline film and a composite, and Republic of Korea Patent Publication No. 1999-68286 (Application No. 10 -1999-6126, prior art 2) discloses a technique for a self-regulating planar heating element film and a method of manufacturing the same.

상기 종래기술1은 전도성 폴리아닐린을 제조함에 있어서, 아닐린을 양성자산 및 산화제 존재하에 산화중합시켜서 양성자산으로 도핑된 폴리아닐린을 제조하고, 상기 폴리아닐린을 증류수 및 메탄올로 세척한 후, 건조시켜서 얻은 폴리아닐린을 유기염기와 혼합시킨 후, 극성 용매 중에 용해시켜 폴리아닐린 용액을 얻고, 상기 폴리아닐린 용액을 코팅 또는 캐스팅하여 폴리아닐린 필름을 제조하는 것을 특징으로 한다.In the prior art 1, in preparing a conductive polyaniline, an aniline is oxidized in the presence of a positive asset and an oxidizing agent to prepare a polyaniline doped with a positive asset, and the polyaniline obtained by washing the polyaniline with distilled water and methanol and then drying the organic aniline After mixing with a base, it is dissolved in a polar solvent to obtain a polyaniline solution, and the polyaniline solution is coated or cast to prepare a polyaniline film.

상기 종래기술2는 폴리올레핀수지와 카본과 흑연과 수지안정제의 원료를 분말상태로하여 배합하는 제 1공정과, 배합된 분말체의 원료를 200℃이하의 온도에서 용융혼합하여 1차 압출기에 의해 봉상체로 압출시킨후, 냉각과정에 의해 고형화된 원료부재를 성형하는 제 2공정과, 고형화된 원료부재를 절단기에 의해 칩형태로 절단하는 제3공정과, 절단된 칩형태의 배합부재를 용융하여 2차 압출기에 의해 얇은 가닥형태로 압출하는 제 4공정과, 압출되는 원료를 분할구성된 전극띠 사이로 도포하고, 원료가 도포된 전극띠의 상,하부면에 코팅지를 적층하여 180℃ ∼ 190℃의 고온 압착로울러에 의해 압착가공하는 제 5공정과, 고온으로 압착가공되는 면상발열체 필름을 냉각하는 제 6공정과, 냉각된 면상발열체 필름을 권취하여 제조공정을 완료하는 제 7과정에 의해 자기제어식 면상발열체 필름을 제조하는 것을 특징으로 한다.The prior art 2 is a first step of blending a polyolefin resin, a raw material of carbon, graphite and a resin stabilizer in a powder state, and melt-mixing the raw material of the blended powder at a temperature of 200 ° C. or lower, and sealing with a first extruder After extruding to the upper body, the second process of forming the raw material member solidified by the cooling process, the third process of cutting the solidified raw material member into a chip form by a cutter, and melting the compounding member of the cut chip form The fourth step of extruding in a thin strand form by a second extruder, and the raw material to be extruded is applied between the divided electrode strip, and the coated paper is laminated on the upper and lower surfaces of the electrode strip to which the raw material is applied, A fifth step of pressing by high temperature press roller, a sixth step of cooling the planar heating element film pressed at high temperature, and a seventh step of winding the cooled planar heating element film to complete the manufacturing process It characterized by that for producing a self-control type plane heater film.

그러나, 상기 종래기술1은 대전방지용 필름, 전도성 필름, 전자파 차폐용 필름 등의 용도로 사용가능하나, 통상의 저항체(니크롬선 등)에 비하여 저항이 크므로 발열체로는 사용하기가 용이하지 않았다.However, the prior art 1 can be used for antistatic film, conductive film, electromagnetic wave shielding film and the like, but it is not easy to use as a heating element because the resistance is larger than that of a common resistor (such as nichrome wire).

또한, 상기 종래기술2는 폴리올레핀을 사용하였으나 폴리올레핀의 내열온도는 200 ℃이므로 발열체로 적합하지 않으며, 용융혼합하여 압출시킨후 봉상체로 성형하고, 봉상체를 절단하고, 2차 압출시키고, 압착로울러로 필름형태로 성형하고, 다시 냉각하는 등 제조과정이 복잡한 문제점이 있었다.In addition, the prior art 2 uses a polyolefin, but the heat resistance temperature of the polyolefin is 200 ℃, so it is not suitable as a heating element, and melt-mixed and extruded into a rod-shaped body, the rod-shaped body is cut, secondary extrusion, compression roller There was a complicated problem in the manufacturing process, such as molding in the form of a film, cooling again.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로, 전도성고분자를 이용한 면상발열체를 제조하되, 저항이 낮고, 저전압으로 작동이 가능하여 감전 및 누전의 위험이 없으며, 일정시간이 지나면 최종발열온도에 도달하게되며 더 이상 발열온도가 증가하지 않고 항온특성을 나타내기 때문에 과열방지회로가 필요 없으며, 내열성이 뛰어난 면상발열체를 제공하는 것을 그 목적으로 한다.The present invention is to solve the problems of the prior art as described above, while producing a planar heating element using a conductive polymer, the resistance is low, it is possible to operate at a low voltage, there is no risk of electric shock and short circuit, the final heat generation after a certain time Since the temperature is reached and the exothermic temperature does not increase any more, and it exhibits a constant temperature characteristic, there is no need for an overheat prevention circuit, and an object thereof is to provide a planar heating element having excellent heat resistance.

도1은 본 발명에 따른 폴리아닐린 분말의 생성과정도.1 is a production process of the polyaniline powder according to the present invention.

도2는 본 발명에 따른 일실시예에 있어서, 면상발열체의 제조과정을 도시한 흐름도.Figure 2 is a flow chart showing the manufacturing process of the planar heating element in one embodiment according to the present invention.

도3은 본 발명에 따른 일실시예에 있어서, 하나의 폴리아닐린필름에 전극띠와 전기접점을 생성시킨 단위셀의 개념도.3 is a conceptual diagram of a unit cell in which an electrode strip and an electrical contact are generated in one polyaniline film according to one embodiment of the present invention.

도4는 본 발명에 따른 일실시예에 있어서, 도3의 단위셀을 다수개 병렬로 연결하여 생성시킨 면상발열체의 개념도.4 is a conceptual diagram of a planar heating element generated by connecting a plurality of unit cells of FIG. 3 in parallel in one embodiment according to the present invention;

도 5는 본 발명에 따른 일실시예에 의해 제조된 면상발열체에서 전류인가 시간경과에 따른 전류 및 발열(온도)특성 그래프.Figure 5 is a graph of the current and heat generation (temperature) characteristics of the planar heating element produced by one embodiment according to the present invention over time.

도 6은 본 발명에 따른 또 다른 실시예에 의해 제조된 면상발열체에서 전류인가 시간경과에 따른 전류 및 발열(온도)특성 그래프.Figure 6 is a graph of the current and heat generation (temperature) characteristics according to the current application time in the planar heating element manufactured by another embodiment according to the present invention.

*** 도면의 주요부분에 대한 부호설명 ****** Explanation of main parts of drawing ***

10. 전도성고분자 필름20. 전극띠30. 전기접점10. Conductive polymer film 20. Electrode strip 30. Electrical contacts

100. 용해단계200. 필터링단계300. 필름생성단계100. Dissolution step 200. Filtering step 300. Film creation step

400. 수소이온 도핑단계500. 전원공급부 생성단계600. 후작업단계400. Hydrogen ion doping step 500. Generating power supply step 600. Post-Work Step

본 발명에 의한 전도성고분자를 이용한 면상발열체는, 전도성고분자를 이용한 것으로서, 전도성고분자를 용매에 투여하여 용해시키는 용해단계; 용해단계에서 생성된 전도성고분자용액을 몰딩기판에 투입한 후, 전도성고분자용액에 포함된 용매를 제거하여 전도성고분자필름을 생성하는 필름생성단계; 전도성고분자를 수소이온으로 도핑하는 도핑단계; 전도성고분자필름의 말단에 전극띠를 부착시키고 전기접점을 인출시키는 전원공급부생성단계를 포함하는 공정에 의해 제조된다.The planar heating element using the conductive polymer according to the present invention, as the conductive polymer, using a dissolving step of dissolving the conductive polymer in a solvent; Injecting the conductive polymer solution produced in the dissolution step into the molding substrate, the film generation step of producing a conductive polymer film by removing the solvent contained in the conductive polymer solution; A doping step of doping the conductive polymer with hydrogen ions; It is prepared by a process comprising a step of generating a power supply for attaching an electrode strip to the end of the conductive polymer film and withdraw the electrical contact.

본 발명에서 상기 도핑단계는 그 구체적인 순서 및 방법에 따라 구분될 수 있다.In the present invention, the doping step may be classified according to the specific order and method.

즉, 본 발명에서 도핑단계는 전도성고분자필름을 제조한 이후에 전도성고분자필름을 산성용액에 침지시키거나, 산성용액을 분사하여 수소이온으로 도핑하는 단계일 수 있다. 이 경우, 수소이온은 도핑시간이 충분치 않을 경우에 전도성고분자 필름이 형성된 이후에 필름의 표면에만 도핑되기 때문에 도핑효과가 다소 떨어질 수도 있다. 따라서 본 발명은 도핑효과를 극대화시키기 위한 또 다른 공정을 제공한다.That is, in the present invention, the doping step may be a step of immersing the conductive polymer film in an acidic solution after preparing the conductive polymer film, or doping with hydrogen ions by spraying the acidic solution. In this case, since the hydrogen ions are doped only on the surface of the film after the conductive polymer film is formed when the doping time is not sufficient, the doping effect may be less. Therefore, the present invention provides another process for maximizing the doping effect.

즉, 본 발명에서 용해단계에서 고분자를 용해시킴과 동시에 산성분을 용매에 추가로 첨가하여 액상에서 전도성고분자를 수소이온으로 도핑할 수도 있는 것이다.That is, in the present invention, while dissolving the polymer in the dissolution step, an acid component may be additionally added to the solvent to dope the conductive polymer with hydrogen ions in the liquid phase.

본 발명에서 상기 전도성고분자는 고분자 상태에서 어느 정도 전자의 흐름이 가능한 화학구조를 갖는 다양한 종류의 것을 사용할 수 있는데, 특히 폴리아닐린과 그 유도체 및/또는 폴리피롤과 그 유도체인 것이 바람직하다.In the present invention, the conductive polymer may use various kinds of chemical structures capable of flowing electrons to a certain extent in a polymer state, and particularly, polyaniline and its derivatives and / or polypyrrole and its derivatives.

본 발명에서 상기 용매는 상기 전도성고분자를 용해시킬 수 있는 용매로서, 특히 NMP(N-methyl-2-pyrrolidone), m-cresol, p-cresol, 3-ethylphenol, 2-Cl-phenol, 2-F-phenol, chloroform, DMF(dimethyl formamide), benzyl alcohol, 3-isopropylphenol, 2-OCH3-4-CH3-phenol, acetic acid, DMSO(dimethyl sulfoxide), o-chlorophenol, formic acid, acetic acid, dichloromethane, trifluoroacetic acid, benzene 중 어느 하나 또는 둘 이상의 혼합물일 수 있다.In the present invention, the solvent is a solvent capable of dissolving the conductive polymer, in particular, NMP (N-methyl-2-pyrrolidone), m-cresol, p-cresol, 3-ethylphenol, 2-Cl-phenol, 2-F -phenol, chloroform, DMF (dimethyl formamide), benzyl alcohol, 3-isopropylphenol, 2-OCH 3 -4-CH 3 -phenol, acetic acid, DMSO (dimethyl sulfoxide), o-chlorophenol, formic acid, acetic acid, dichloromethane , trifluoroacetic acid, benzene, or a mixture of two or more thereof.

본 발명에서 도펀트로는 수소이온을 제공할 수 있는 화학물질을 사용할 수 있는데, 구체적으로는 HCl(hydrochloric acid), HCSA(camphorsulfonic acid), HDBSA(dodecylbenzenesulfonic acid) 등과 같은 산인 것이 바람직하다.In the present invention, as the dopant, a chemical capable of providing hydrogen ions may be used. Specifically, an acid such as HCl (hydrochloric acid), HCSA (camphorsulfonic acid), or HDBSA (dodecylbenzenesulfonic acid) may be used.

본 발명에서는 전도성고분자필름의 전기 저항값을 낮추어 전력을 보다 적게 소모하도록 하기 위하여 탄소분말을, 본 발명에 의한 면상발열체가 발열할 때 인체에 유익한 원적외선을 방출하도록 하기 위하여 세라믹스 분말을 첨가할 수 있다. 이때 이들의 첨가량은 전도성고분자에 대하여 각각 0.01∼0.5중량부인 것이 바람직하다. 0.01중량부 이하이면 원하는 효과가 미미하게 발현되며, 0.5중량부 이상이면 필름의 물성을 현저하게 저하시키는 부작용이 있다. 분말 입자의 직경은 0.5∼50 ㎛ 범위인 것을 사용할 수 있으며, 평균입경이 10 ㎛인 것이 바람직하다.In the present invention, carbon powder may be added to lower the electric resistance value of the conductive polymer film to consume less power, and ceramic powder may be added to emit beneficial far infrared rays to the human body when the planar heating element according to the present invention generates heat. . At this time, the amount of these added is preferably 0.01 to 0.5 parts by weight based on the conductive polymer. If it is 0.01 parts by weight or less, the desired effect is minimally expressed, and if it is 0.5 parts by weight or more, there is a side effect of significantly lowering the physical properties of the film. The diameter of the powder particles may be in the range of 0.5 to 50 μm, and the average particle diameter is preferably 10 μm.

탄소분말 및/또는 세라믹스 분말을 용해단계에서 직접 첨가하여, 이들 분말 입자가 전도성고분자와 혼합되어 결국 필름의 내부에 균일하게 혼재되도록 할 수도 있고, 필름생성단계에서 고분자용액을 몰딩기판에 투입한 후 투입된 용액의 표면에 이들 분말을 균일하게 산포(散布)하여 분말 입자가 표면에만 존재하도록 할 수도 있다.Carbon powder and / or ceramic powder may be added directly in the dissolution step so that the powder particles may be mixed with the conductive polymer and eventually mixed uniformly inside the film. In the film formation step, the polymer solution is added to the molding substrate. These powders may be uniformly dispersed on the surface of the injected solution so that the powder particles exist only on the surface.

원적외선 세라믹스 분말로는 종래 원적위선 방출효과가 알려진 어떠한 것도 사용이 가능하며, 구체적으로는 알루미나 분말, 탄화규소 분말, 질화알루미나 분말 또는 이들의 혼합물을 사용할 수 있다.As the far infrared ceramic powder, any known conventional far-infrared ray emission effect can be used, and specifically, an alumina powder, silicon carbide powder, alumina nitride powder or a mixture thereof can be used.

본 발명에 의하면, 면상발열체에 탄소분말이 균일하게 분포되면 면상발열체의 전기저항이 작아지므로 저전압으로도 작동이 가능하기 때문에, 종래의 면상발열체와는 달리 저전압의 직류전원을 사용하는 것이 가능하게 된다. 따라서 본 발명에 따른 면상발열체는 단선이나 누전시에도 감전의 위험이 없다.According to the present invention, when the carbon powder is uniformly distributed in the planar heating element, the electric resistance of the planar heating element is reduced, so that operation is possible even at a low voltage. Therefore, unlike the conventional planar heating element, it is possible to use a low voltage DC power supply. . Therefore, the planar heating element according to the present invention has no risk of electric shock even when disconnection or leakage.

필요한 경우, 용해단계 다음에, 용매에 용해되지 않은 물질을 필터로 걸러내는 필터링단계를 추가할 수 있다.If necessary, after the dissolution step, a filtering step may be added to filter the material not dissolved in the solvent.

또한 본 발명에서 상기 전기접점에는 직류전원이 인가되는 것이 바람직하다.In the present invention, it is preferable that a direct current power is applied to the electrical contact.

이하 실시예와 실험예를 통하여 본 발명을 상세하게 설명한다. 그러나, 이들 실시예 및 실험예는 예시적인 목적일 뿐 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples and Experimental Examples. However, these examples and experimental examples are for illustrative purposes only, and the present invention is not limited thereto.

실시예 1 : 폴리아닐린의 합성 및 도핑Example 1 Synthesis and Doping of Polyaniline

(1) 폴리아닐린의 합성(1) Synthesis of Polyaniline

본 발명에 사용되는 전도성고분자 중의 하나인 폴리아닐린을 합성하는 과정을 도 1에 나타내었다.1 shows a process of synthesizing polyaniline, which is one of the conductive polymers used in the present invention.

먼저, 80 ㎖(0.22 mol)의 아닐린을 1,200 ㎖의 1M HCl에 녹여 0 ℃로 냉각시켰고, 별도로 46 g의 (NH4)2S2O8(산화제:K2Cr2O7, KMnO4, FeCl3)을 800 ㎖ 의 1 M HCl에 녹인 후 0 ℃로 냉각시켰다. 산화제가 포함된 용액을 아닐린이 포함된 용액에 서서히 가하면서 자석젓개로 저어주며 90 분 동안 반응시켰다. 반응 침전물(42% protonated)을 #1 Whatman 거름종이를 이용하여 여과 후 1M HCl 5 ℓ로 여과액이 무색이 될 때까지 세척하였다. 이 걸러진 시료를 다시 2000 ㎖ 1 M HCl 용액에 넣어 자석젓개로 저어주며 15 시간 방치한 후 여과하였다. 여과 시 1 M HCl 1000 ㎖를 사용하여 여과액이 완전히 무색이 될 때까지 세척하였다. 수득된 시료(50% protonated)를 다시 2000 ㎖ 0.1 M NH4OH 용액에 넣어 15 시간 동안 자석젓개로 저어주고 여과 후 진공라인과 연결된 건조 튜브(drying tube) 내에서 48 시간 건조하였다. 이상과 같은 과정을 거쳐 polyaniline emeraldine base 시료를 수득하였다.First, 80 ml (0.22 mol) of aniline was dissolved in 1,200 ml of 1 M HCl and cooled to 0 ° C., and 46 g (NH 4 ) 2 S 2 O 8 (oxidizing agent: K 2 Cr 2 O 7 , KMnO 4 , FeCl 3 ) was dissolved in 800 mL of 1 M HCl and cooled to 0 ° C. The solution containing the oxidant was slowly added to the solution containing aniline and stirred for 90 minutes while stirring with a magnetic spoon. The reaction precipitate (42% protonated) was filtered using # 1 Whatman filter paper and washed with 5 L of 1M HCl until the filtrate was colorless. The filtered sample was added to 2000 ml 1 M HCl solution, stirred with a magnetic spoon and left for 15 hours, and filtered. In filtration, 1000 ml of 1 M HCl was used until the filtrate was completely colorless. The obtained sample (50% protonated) was again added to 2000 ml 0.1 M NH 4 OH solution, stirred with a magnetic straw for 15 hours, filtered and dried in a drying tube connected to a vacuum line for 48 hours. Through the above process, a polyaniline emeraldine base sample was obtained.

본 발명에서는 상기 방법에 의하여 전도성고분자인 폴리아닐린을 합성하여 후속실험을 수행하였지만, 상기 방법 이외의 다양한 방법으로 전도성고분자를 제조하여 사용할 수도 있고, 시판되는 폴리아닐린을 구입하여 사용할 수도 있을 것이다.In the present invention, the following experiment was performed by synthesizing the polyaniline, which is a conductive polymer, by the above method. However, the conductive polymer may be prepared and used by various methods other than the above method, or a commercially available polyaniline may be purchased and used.

실시예 2 : 면상발열체의 제조Example 2 Preparation of Planar Heating Element

발명에 따른 전도성고분자를 이용한 면상발열체의 제조과정을 도 2에 도시하였다. 본 실시예에서는 필름형성 후 도핑하는 방식을 채택하였다.2 shows a manufacturing process of the planar heating element using the conductive polymer according to the present invention. In this embodiment, the doping method is adopted after film formation.

상기 실시예 1의 (1)에서 수득된 폴리아닐린 0.7g을 NMP 0.01ℓ에 포화되기까지 용해시킨 후(용해단계, 100)필터용 솜에 여과시켜 NMP 용매에 녹지 않은 폴리아닐린 및 기타 불순물을 제거하였다(필터링단계, 200).0.7 g of polyaniline obtained in (1) of Example 1 was dissolved until saturated in 0.01 L of NMP (dissolution step, 100), and then filtered through a filter pad to remove polyaniline and other impurities not dissolved in NMP solvent ( Filtering step, 200).

상기 필터링단계(200)를 거친 폴리아닐린용액을 바닥이 납작한 홈(100mmL×100mmW×10mmH)이 형성된 몰딩기판의 홈에 가득 차도록 투입하고, 70℃의 온도를 가하여 NMP를 증발시켜 100mmL×100mmW×0.1mmH 크기의 폴리아닐린 필름을 얻었다(필름생성단계, 300).The polyaniline solution passed through the filtering step 200 is filled in a groove of a molding substrate having a flat groove (100 mmL × 100 mmW × 10 mmH) formed therein, and the temperature of 70 ° C. is applied to evaporate NMP to 100 mmL × 100 mmW × 0.1 mmH. A polyaniline film of size was obtained (film production step, 300).

상기 필름생성단계(300)를 거처 얻어진 폴리아닐린 필름을 1M 염산용액에 침지시켜 24시간동안 수소이온을 도핑하였다(수소이온 도핑단계, 400). 도핑된 필름을 건조한 후, 폴리아닐린 필름(10)의 양말단에 전극띠(20)와 전기접점(30)을 부착시켜 도 3과 같이 면상발열체 단위셀을 제작하였다(전원공급부 생성단계, 500).The polyaniline film obtained through the film producing step 300 was immersed in 1M hydrochloric acid solution to dope hydrogen ions for 24 hours (hydrogen ion doping step, 400). After the doped film was dried, the electrode strip 20 and the electrical contact 30 were attached to the sock end of the polyaniline film 10 to prepare a planar heating element unit cell as shown in FIG. 3 (power supply generation step 500).

미설명부호 후작업단계(600)는 본 발명에 의해 생성된 면상발열체를 제품으로 가공하는 단계로서 전기담요, 전기장판, 자동차시트, 손난로 등 최종 제품의 형태에 따라 외부에 담요를 씌우거나, 장판을 씌우는 등의 작업을 가리키며, 본 발명을 실시하는 경우 상기 후작업단계(600)를 포함하여 실시할 수 있다.Post-operation step (600) is a step of processing the planar heating element produced by the present invention as a product to cover the outside according to the form of the final product such as electric blanket, electric blanket, car seat, hand stove, or Pointing to the work, such as covering the jangpan, when the present invention can be carried out including the post-work step (600).

실시예 3 : 탄소분말 및 세라믹스분말이 첨가된 면상발열체의 제조Example 3 Preparation of Planar Heating Element Added with Carbon Powder and Ceramics Powder

상기 용해단계(100)에서 폴리아닐린에 대하여 탄소 분말 30중량부와 원적외선 세라믹스 분말 15중량부를 첨가하면서 상기 실시예 1 및 2에 기재된 것과 동일한 방법으로 탄소분말 및 원적외선 세라믹스분말이 첨가된 면상발열체를 제조하였다.In the dissolving step 100, a planar heating element to which carbon powder and far-infrared ceramic powder were added was prepared in the same manner as described in Examples 1 and 2, while adding 30 parts by weight of carbon powder and 15 parts by weight of far infrared ceramics powder to polyaniline. .

이때 사용된 탄소분말은 평균입경이 10 ㎛인 것을 사용하였으며, 세라믹스 분말은 알루미나, 탄화규소, 질화알루미나를 주성분으로 하는 것으로서 평균입경이 10 ㎛인 것을 사용하였다.In this case, the carbon powder used was one having an average particle diameter of 10 μm, and the ceramic powder was composed of alumina, silicon carbide, and alumina nitride, and the average particle diameter was 10 μm.

실험예 : 면상발열체의 특성조사Experimental Example: Investigation of characteristics of planar heating

상기 실시예 2 및 3에 의해 제조된 면상발열체에 9 V의 직류전압을 인가하고 시간의 흐름에 따른 온도의 변화 및 전류의 변화를 조사하였다(도 5, 6). 도 5, 6의 실험에 사용된 면상발열체의 크기는 W x L x t = 20 x 70 x 0.1mm 이다.DC voltage of 9 V was applied to the planar heating elements prepared in Examples 2 and 3, and the change of temperature and the change of current over time were examined (FIGS. 5 and 6). The size of the planar heating element used in the experiments of FIGS. 5 and 6 is W x L x t = 20 x 70 x 0.1 mm.

(1) 실시예 2의 시료를 원료로 한 면상발열체(1) Planar heating element using the sample of Example 2 as a raw material

도 5를 살펴보면, 실온에서 직류전압 9 V 인가시 약 92 mA의 전류가 흘렀으며, 점점 온도가 증가하여 1분 후에는 50℃까지 증가하였다. 그 후에는 온도의 상승속도가 현저히 둔화되면서 약 60℃를 유지하며 더 이상 온도상승이 발생되지 않않고 포화상태(항온특성)를 나타내었다. 또한 전류는 107 mA 까지 증가하다가 60℃에 도달한 이후에는 약간 감소하기 시작하여 전류가 104 mA 이하를, 온도는 60℃를 유지하였다.Referring to FIG. 5, when a DC voltage of 9 V was applied at room temperature, a current of about 92 mA flowed, and the temperature gradually increased, and then increased to 50 ° C. after 1 minute. After that, the rate of temperature slowed down significantly, maintaining about 60 ° C., and the temperature rise did not occur anymore, indicating a saturated state (constant temperature characteristic). In addition, the current increased to 107 mA and started to decrease slightly after reaching 60 ° C. to maintain the current below 104 mA and the temperature at 60 ° C.

(2) 실시예 3의 시료를 원료로 한 면상발열체(2) Planar heating element using the sample of Example 3 as a raw material

도 6을 살펴보면, 실온에서 직류전압 9 V 인가시 약 170 mA의 전류가 흘렀으며, 점점 온도가 증가하여 1분 후에는 53℃까지 증가하였다. 그 후에는 온도의 상승속도가 현저히 둔화되면서 약 60℃를 유지하며 더 이상 온도상승이 발생되지 않고 포화상태를 나타내었다. 또한 전류는 180 mA 까지 증가하다가 60℃에 도달한 이후에는 약간 감소하기 시작하여 전류가 178 mA 이하를, 온도는 60℃를 유지하였다.Referring to FIG. 6, when a DC voltage of 9 V was applied at room temperature, a current of about 170 mA flowed, and the temperature increased gradually and increased to 53 ° C. after 1 minute. After that, the rate of increase of temperature was significantly slowed to maintain about 60 ° C. and no further temperature increase occurred, indicating a saturation state. In addition, the current increased to 180 mA and started to decrease slightly after reaching 60 ° C., keeping the current below 178 mA and the temperature at 60 ° C.

전기한 실험예에 의하면, 본 발명에 의한 면상발열체는 얻고자하는최종온도(60℃)에 도달한 이후에는 온도가 상승되지 않고 일정한 온도를 유지하는 특성(항온특성)을 갖고있는 것으로 나타났다. 따라서, 본 발명에 의한 면상발열체에는 과열방지 제어회로가 필요 없으며, 이에 따라 종래의 면상발열체에 비하여 제어장치가 간편하고, 보다 안전한 열 발생 기구로 사용될 수 있음이 확인되었다.According to the experimental example described above, the planar heating element according to the present invention has a characteristic of maintaining a constant temperature (constant temperature characteristic) after the temperature reaches the final temperature (60 ° C.) to be obtained. Therefore, it was confirmed that the planar heating element according to the present invention does not require an overheating control circuit, and thus, the control device is simpler and can be used as a safer heat generating mechanism than the conventional planar heating element.

본 발명에 따른 면상발열체는 저전압으로도 가동이 가능하므로 소형으로(예를들면 손난로) 제작하여 일반 AA형 건전지를 전원으로 사용할 수도 있을 것이다.Since the planar heating element according to the present invention is movable even at low voltage, it may be manufactured in a small size (for example, a hand stove) to use a general AA type battery as a power source.

이상과 같이 본 발명에 의하여 생성된 전도성고분자를 이용한 면상발열체는. 저항이 낮고, 저전압으로 작동이 가능하여 감전 및 누전의 위험이 없으며, 일정이상의 온도에 도달하여 일정시간이 지나면 최종발열온도에 도달하게되며 더 이상 발열온도가 증가하지 않고 항온특성을 나타내기 때문에 과열방지회로가 필요 없으며, 내열성이 뛰어난 효과가 있다.Planar heating element using the conductive polymer produced by the present invention as described above. Low resistance, low voltage operation, no risk of electric shock or short-circuit.After a certain time, the final heating temperature is reached and the heating temperature does not increase any longer. There is no need for a prevention circuit, and the effect is excellent in heat resistance.

Claims (10)

전도성고분자를 이용한 면상발열체에 있어서,In the planar heating element using a conductive polymer, 전도성고분자를 용매에 투여하여 용해시키는 용해단계;A dissolving step of dissolving the conductive polymer in a solvent; 상기 용해단계에서 생성된 전도성고분자용액을 몰딩기판에 투입한 후, 상기 전도성고분자용액에 포함된 용매를 제거하여 전도성고분자필름을 생성하는 필름생성단계;A film generation step of adding a conductive polymer solution generated in the dissolving step to a molding substrate and then removing a solvent contained in the conductive polymer solution to produce a conductive polymer film; 전도성고분자를 수소이온으로 도핑하는 도핑단계; 및A doping step of doping the conductive polymer with hydrogen ions; And 상기 전도성고분자필름의 말단에 전극띠를 부착시키고 전기접점을 인출시키는 전원공급부생성단계;Generating a power supply unit attaching an electrode strip to the end of the conductive polymer film and drawing an electrical contact; 를 포함하는 공정에 의해 생성된 전도성고분자를 이용한 면상발열체.Planar heating element using a conductive polymer produced by a process comprising a. 제 1 항에 있어서,The method of claim 1, 상기 도핑단계는 상기 필름생성단계 이후에 전도성고분자필름을 산성용액에 침지시키거나, 산성용액을 분사하여 수소이온으로 도핑하는 단계인 것을 특징으로 하는 전도성고분자를 이용한 면상발열체.The doping step is a planar heating element using a conductive polymer, characterized in that the step of immersing the conductive polymer film in an acidic solution after the film generation step, or doping with hydrogen ions by spraying the acidic solution. 제 1 항에 있어서,The method of claim 1, 상기 도핑단계는 상기 용해단계에서 산성분을 추가로 첨가하여 액상에서 전도성고분자를 수소이온으로 도핑시키는 단계인 것을 특징으로 하는 전도성고분자를이용한 면상발열체.The doping step is a planar heating element using a conductive polymer, characterized in that the addition of an acid component in the dissolving step to doping the conductive polymer in the liquid phase with hydrogen ions. 제 1 항에 있어서,The method of claim 1, 상기 도핑단계는 상기 용해단계 이전에 전도성고분자를 산성용액 내에 침지시켜 전도성고분자를 수소이온으로 도핑시키는 단계인 것을 특징으로 하는 전도성고분자를 이용한 면상발열체.The doping step is a planar heating element using a conductive polymer, characterized in that to dope the conductive polymer with hydrogen ions by immersing the conductive polymer in an acidic solution before the dissolution step. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 상기 용해단계에서, 전도성고분자를 용매에 용해시키기 전후 또는 용해시킴과 동시에, 탄소 분말 및/또는 원적외선세라믹스 분말을 추가로 첨가하는 것을 특징으로 하는 전도성고분자를 이용한 면상발열체.In the dissolving step, the planar heating element using a conductive polymer, characterized in that before or after dissolving the conductive polymer in a solvent, and further adding carbon powder and / or far infrared ceramic powder. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 상기 필름생성단계에서 고분자용액을 몰딩기판에 투입한 후 투입된 용액의 표면에 탄소 분말 및/또는 원적외선세라믹스 분말을 산포하는 것을 특징으로 하는 전도성고분자를 이용한 면상발열체.The planar heating element using a conductive polymer, characterized in that the polymer solution is added to the molding substrate in the film production step and then carbon powder and / or far infrared ceramic powder is dispersed on the surface of the solution. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 상기 전도성고분자는 폴리아닐린, 폴리아닐린 유도체, 폴리피롤 및 폴리피롤 유도체로 이루어지는 군에서 선택된 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 전도성고분자를 이용한 면상발열체.The conductive polymer is a planar heating element using a conductive polymer, characterized in that any one or a mixture of two or more selected from the group consisting of polyaniline, polyaniline derivatives, polypyrrole and polypyrrole derivatives. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 상기 용매는 NMP(N-methyl-2-pyrrolidone), m-cresol, p-cresol, 3-ethylphenol, 2-Cl-phenol, 2-F-phenol, chloroform, DMF(dimethyl formamide), benzyl alcohol, 3-isopropylphenol, 2-OCH3-4-CH3-phenol, acetic acid, DMSO(dimethyl sulfoxide), o-chlorophenol, formic acid, acetic acid, dichloromethane, trifluoroacetic acid, benzene 중 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 전도성고분자를 이용한 면상발열체.The solvent is N-methyl-2-pyrrolidone (NMP), m-cresol, p-cresol, 3-ethylphenol, 2-Cl-phenol, 2-F-phenol, chloroform, dimethyl formamide (DMF), benzyl alcohol, 3 -isopropylphenol, 2-OCH 3 -4-CH 3 -phenol, acetic acid, dimethyl sulfoxide (DMSO), o-chlorophenol, formic acid, acetic acid, dichloromethane, trifluoroacetic acid, benzene any one or a mixture of two or more Planar heating element using a conductive polymer. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 상기 용해단계 다음에,After the dissolution step, 상기 용매에 용해되지 않은 물질을 필터로 걸러내는 필터링단계를 추가로 포함하는 전도성고분자를 이용한 면상발열체.Planar heating element using a conductive polymer further comprising a filtering step of filtering the material not dissolved in the solvent with a filter. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 상기 전기접점에는 직류전원이 인가되는 것을 특징으로 하는 전도성고분자를 이용한 면상발열체.Planar heating element using a conductive polymer, characterized in that the direct current is applied to the electrical contact.
KR10-2001-0045409A 2001-07-27 2001-07-27 Heating element using conducting polymer film KR100392882B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0045409A KR100392882B1 (en) 2001-07-27 2001-07-27 Heating element using conducting polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0045409A KR100392882B1 (en) 2001-07-27 2001-07-27 Heating element using conducting polymer film

Publications (2)

Publication Number Publication Date
KR20030010826A true KR20030010826A (en) 2003-02-06
KR100392882B1 KR100392882B1 (en) 2003-07-28

Family

ID=27716949

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0045409A KR100392882B1 (en) 2001-07-27 2001-07-27 Heating element using conducting polymer film

Country Status (1)

Country Link
KR (1) KR100392882B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008002071A1 (en) * 2006-06-27 2008-01-03 Naos Co., Ltd. Method for manufacturing planar heating element using carbon micro-fibers
EP3382733A1 (en) * 2017-03-31 2018-10-03 General Electric Technology GmbH High- and medium-voltage gas-insulated substation presenting an electrically conductive polyaniline coating

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895786B1 (en) * 2007-05-11 2009-05-07 충북대학교 산학협력단 Surface Treatment Method for the Flexible Carbon Fiber Heating Element
KR101879440B1 (en) * 2014-10-23 2018-07-17 한국생산기술연구원 Electrostatic filter structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008002071A1 (en) * 2006-06-27 2008-01-03 Naos Co., Ltd. Method for manufacturing planar heating element using carbon micro-fibers
EP3382733A1 (en) * 2017-03-31 2018-10-03 General Electric Technology GmbH High- and medium-voltage gas-insulated substation presenting an electrically conductive polyaniline coating

Also Published As

Publication number Publication date
KR100392882B1 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
Shen et al. High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer
EP2038335B1 (en) Positive temperature coefficient composition and associated method
EP0140893B1 (en) Self-limiting heater and resistance material
KR100392882B1 (en) Heating element using conducting polymer film
EP0740841B1 (en) Heat-sensitive resistive compound and method for producing it and using it
CN104252935A (en) Thermistor and method for manufacturing the same
US20080006795A1 (en) Article and associated device
KR20200073840A (en) method for manufacturing carbon fiber nonwoven fabric to which metal-plated carbon fiber is added, and carbon surface heating element
CA2561750A1 (en) Conductive composition for producing carbon flexible heating structure, carbon flexible heating structure using the same, and manufacturing method thereof
CN101556852A (en) Macromolecular thermistance element and manufacturing method thereof
KR20170111066A (en) Thermoelectric material and preparation method thereof
TWI224343B (en) Conductive polymer compositions containing fibrillated fibers and devices
KR101563261B1 (en) Electrochemical method of graphene oxide deposition, graphene oxide deposited substrate made by the same, and electric device including the same
US7132630B2 (en) Resistive heating using polyaniline fiber
KR20200032881A (en) Flexible cable type thermoelectric device comprising thermoelectric printing layer and method for manufacturring the same
KR100767058B1 (en) Manufacturing method of ptc polymer sheet-electrode assembly
Zhang et al. Electrically conductive, melt‐processed ternary blends of polyaniline/dodecylbenzene sulfonic acid, ethylene/vinyl acetate, and low‐density polyethylene
JPS6112627B2 (en)
CN103881177B (en) A kind of modified PTC conducing composite material and preparation and application thereof
Perrin et al. Polyaniline-based thermoplastic blends
KR100470906B1 (en) Very low resistance ptc device and continuous manufacturing method thereof
JP2000109615A (en) Conductive polymer composition having positive temperature coefficient characteristic
Diwald Zinc oxide nanoparticles for varistors
CN115386194B (en) Recoverable thermal protector plate and preparation method thereof
KR20100013466A (en) Polymer ptc thermistor using slim type battery and thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee