KR20030008090A - The internal structure of metal hydride - Google Patents

The internal structure of metal hydride Download PDF

Info

Publication number
KR20030008090A
KR20030008090A KR1020010042851A KR20010042851A KR20030008090A KR 20030008090 A KR20030008090 A KR 20030008090A KR 1020010042851 A KR1020010042851 A KR 1020010042851A KR 20010042851 A KR20010042851 A KR 20010042851A KR 20030008090 A KR20030008090 A KR 20030008090A
Authority
KR
South Korea
Prior art keywords
housing
storage alloy
hydrogen storage
heat
heat dissipation
Prior art date
Application number
KR1020010042851A
Other languages
Korean (ko)
Inventor
차승식
Original Assignee
차승식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 차승식 filed Critical 차승식
Priority to KR1020010042851A priority Critical patent/KR20030008090A/en
Publication of KR20030008090A publication Critical patent/KR20030008090A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/005Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using granular particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material
    • F28D17/023Sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0047Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for hydrogen or other compressed gas storage tanks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE: A built-in structure of hydrogen storage alloy generating heat and cold is provided to rapidly discharge heat energy and cold energy and reduce manufacturing cost. CONSTITUTION: A heat exchange pipe(5) comprises a tubular housing(1) having one end closed to store hydrogen storage alloy powder therein; radiating fins(2) formed on a surface of the housing; and a net(3) having penetrating holes smaller than the hydrogen storage alloy powder and installed on a front end of the housing after the hydrogen storage alloy powder is built in the housing. The hydrogen alloy absorbs hydrogen to generate heat and discharges hydrogen to generate cold.

Description

냉온을 발생시키는 수소저장합금의 내장구조{The internal structure of metal hydride}The internal structure of metal hydride that generates cold temperatures

본 발명은 냉·온을 발생시키는 수소저장합금의 내장구조에 관한 것으로, 특히 열교환관 내부에 수소저장합금을 내장하여, 상기 수소저장합금에 에어만 공급하거나 수소를 포함한 에어가 수소저장합금에 균일하고도 신속하게 공급되도록 하여 수소저장합금에 결합된 수소를 신속히 분리시키거나 수소저장합금에 수소가 신속히 결합될 수 있도록 하되, 수소이동과정에서 발생되는 냉기 또는 온기의 방열효과를극대화 시킬수 있게끔 열교환관 외부에 설치되는 방열핀의 방열면적을 극대화 시킴으로써, 고효율이 발생되도록 한 것이다.The present invention relates to a built-in structure of the hydrogen storage alloy for generating cold and hot, in particular a built-in hydrogen storage alloy inside the heat exchange tube, supplying only the air to the hydrogen storage alloy or air containing hydrogen is uniform in the hydrogen storage alloy The heat exchanger tube can be quickly and quickly supplied to the hydrogen storage alloy to separate the hydrogen or the hydrogen to the hydrogen storage alloy, and to maximize the heat dissipation effect of the cold or warm air generated during the hydrogen transfer process. By maximizing the heat dissipation area of the heat radiation fins installed on the outside, high efficiency is generated.

일반적으로 냉동 및 냉방공조 싸이클은 저온, 저압의 기체냉매를 흡입하여 고온, 고압으로 압축하는 압축기와, 상기 압축기에서 공급받은 고온, 고압의 기체냉매를 공기중에 방열하여 액체화하는 응축기와, 상기 응축기에서 응축기측 순환관을 통해 공급받은 중온, 고압의 액체를 감압하여 저온, 저압으로 액체화 하는 모세관과, 상기 모세관에서 증발기측 순환관으로 저온, 저압의 액체를 공급받아 외부의 열을 빼앗아 증발하는 증발기를 구비한 구성으로 되어 있다.Generally, the refrigeration and air conditioning cycles include a compressor for sucking low-temperature and low-pressure gas refrigerant and compressing them at high temperature and high pressure, a condenser for liquefying and dissipating high-temperature and high-pressure gas refrigerant supplied from the compressor into air, and in the condenser. Capillary tube to reduce the medium and high pressure liquid supplied through the condenser side circulation pipe to liquefy to low temperature, low pressure, and evaporator to take the external heat from the capillary tube to take the low temperature and low pressure liquid to evaporate It is equipped with the structure provided.

그러나, 이와 같은 종래의 냉동 및 냉방공조 싸이클에는 냉매의 냉각을 위해 응축기,증발기,모세관, 각종 냉매 순환 및 압축용 배관라인이 필요하여 그 구조가 복잡한데다가 조립공수가 증가하여 결과적으로 제품의 단가가 상승하게 되는 문제가 있으며, 아울러, 상기한 냉동싸이클에 사용되는 냉매는 오존층을 파괴하는 프레온가스가 사용되고, 이러한 상기 프레온가스가 대기중에 방출됨에 따라 오존층을 파괴하며, 이에 따라 지표면에 도달하는 자외선의 양이 증가하게 되어 심각한 환경오염으로 발전하게 되는 문제점을 갖게 된다.However, such a conventional refrigeration and cooling air conditioning cycle requires condenser, evaporator, capillary, and various refrigerant circulation and compression piping lines for cooling the refrigerant, which is complicated in structure and increases the number of assembly processes, resulting in an increase in the unit cost of the product. In addition, the refrigerant used in the refrigerating cycle is used as a freon gas that destroys the ozone layer, and destroys the ozone layer as the freon gas is released into the atmosphere, and thus the amount of ultraviolet rays reaching the earth's surface. This increase has the problem of developing into a serious environmental pollution.

그리고 종래의 냉동 및 냉방공조 싸이클을 역순환시키게 되면 난방운전이 되는 것으로 난방운전을 하게 될 경우, 열량의 밸런스를 냉방싸이클에 맞춘상태에서 냉매가 냉동싸이클을 역순환하므로 상대적으로 응축기의 열량이 증발기보다 30%가량 더 크게 되어 난방시에는 냉매량을 증가 시켜야 만 열량의 밸런스가 맞아 난방운전시의 난방효율이 최고가 될 수 있다.If the refrigeration and cooling air conditioning cycles are reversed, the heating operation is performed. When the heating operation is performed, the refrigerant cycles the refrigeration cycle in a state where the heat balance is set to the cooling cycle. It is about 30% larger than that, and the amount of refrigerant must be increased when heating, so the heat balance is balanced, so the heating efficiency can be the best during heating operation.

또한, 상기한 냉동싸이클은 밀폐형 냉동싸이클로서 동일한 냉매봉입량을 갖게 되는데 냉,난방운전시의 최적냉매봉입량이 서로 달라 냉방운전에 맞추어 냉매봉입량을 설정하여 난방운전을 할 경우, 난방운전에서는 난방최적냉매 봉입량이 아닌 상태에서 운전이 불가피하게 되므로 공기조화기의 난방효율이 떨어지게 되고 상대적으로 냉,난방운전능력비도 떨어지는 문제점이 발생하게 된다.In addition, the above-mentioned refrigeration cycle is a sealed refrigeration cycle has the same amount of refrigerant charge, but the optimum amount of refrigerant charge during the cooling, heating operation is different from each other when the refrigerant operation is set according to the cooling operation when heating operation, heating in heating operation Since the operation is inevitable in a state where the optimum amount of refrigerant is not enclosed, the heating efficiency of the air conditioner is lowered, and the cooling and heating operation capacity ratio also decreases.

이와 같이 종래의 냉동 및 냉방공조 싸이클은 모세관,순환관,밸브,응축기,증발기,압축기등의 구성요소들이 결합되어져야 함으로 그 제조시간이나 비용이 상승하며, 특히 오존층을 파괴하여 심각한 환경오염으로 떠오르고 있는 프레온가스를 냉매로 사용한다는 점에서 여러 문제점을 유발하고 있는 실정이다.As such, the conventional refrigeration and air conditioning cycles require that components such as capillaries, circulation tubes, valves, condensers, evaporators, and compressors be combined to increase their manufacturing time or cost, and in particular, they destroy ozone layers and lead to serious environmental pollution. It is a situation that causes various problems in that the use of a freon gas as a refrigerant.

상기한 문제점을 해결하기 위하여 안출된 본 발명은 수소저장합금분말로 부터 수소의 결합과 분리가 신속하고도 용이하게 이루어지도록 하여 냉, 온에너지를 신속하게 방출할 수 있도록 하기 위한 수소저장합금의 내장구조를 제공함에 그 목적이 있다.The present invention devised in order to solve the above problems is a combination of hydrogen storage alloy powder from the hydrogen storage alloy to enable the quick and easy to be made quickly and easily to release the cold, warm energy The purpose is to provide a structure.

또한, 상기 수소저장합금을 내장하는 열교환관은 알루미늄(Al)이나 구리(Cu)와 같은 열전도율이 뛰어난 재질을 이용하여 제조하되, 외부에 방열면적을 극대화 시킨 방열핀을 형성하여 냉·온에너지의 효율을 극대화 시킬수 있게 함에도 목적이 있다.In addition, the heat exchanger tube containing the hydrogen storage alloy is manufactured using a material having excellent thermal conductivity such as aluminum (Al) or copper (Cu), but by forming a heat radiation fin to maximize the heat dissipation area on the outside, the efficiency of cold and warm energy There is also a purpose to maximize the.

도 1은 본 발명의 일 실시예를 나타낸 일부 분해 사시도.1 is a partially exploded perspective view showing an embodiment of the present invention.

도 2는 도 1의 단면도.2 is a cross-sectional view of FIG.

도 3은 본 발명의 제 2실시예를 나타낸 분해사시도.Figure 3 is an exploded perspective view showing a second embodiment of the present invention.

도 4는 본 발명의 제 3실시예를 나타낸 단면예시도.Figure 4 is a cross-sectional view showing a third embodiment of the present invention.

도 5는 본 발명의 제 4실시예를 나타낸 일부 분해사시도.5 is an exploded perspective view showing a part of a fourth embodiment of the present invention.

도 6은 본 발명의 제 5실시예를 나타낸 사시도.6 is a perspective view showing a fifth embodiment of the present invention.

도 7a, 도7b는 본 발며의 열교환기에 대한 실시예를 나타낸 측면도.7A and 7B are side views showing an embodiment of the heat exchanger of the present invention.

도 1과 도 2에서 보는 바와같이As shown in Figures 1 and 2

본 발명은 수소저장합금을 내장할 수 있도록 일단이 막혀 있는 관체로 형성된 하우징(1)과,The present invention is a housing (1) formed of a tubular body is blocked one end so as to embed the hydrogen storage alloy,

상기 하우징(1)의 외표면에 형성된 방열핀(2), 그리고 상기 하우징(1)에 수소저장합금 분말(4)을 내장한 후 선단부에 수소저장합금분말보다 비교적 작은 통공을 가진 망체(3)를 설치구성하여 열교환기(5)을 구성한다.After the heat dissipation fins (2) formed on the outer surface of the housing (1), and the hydrogen storage alloy powder (4) is embedded in the housing (1), the net body (3) having a relatively smaller through hole than the hydrogen storage alloy powder at the front end The heat exchanger 5 is constructed by installing.

본 발명의 제 2실시예를 나타낸 도 3은, 하우징(1)의 구성을 2등분 구성하여, ""형의 압출부재(1a)를 압출형성한 후, 상기 압출부재(1a)의 외표면에 별도형성한 방열핀(2)을 브레이징 타잎(Brazing type)으로 용접설치하고, 상기와 같은 방열핀(2)을 용접고정하여서 된 압출부재(1a) 두개를 맞이음시켜 형성한 것이다.3 shows a second embodiment of the present invention, and the housing 1 is divided into two parts. After extruding the " type extrusion member 1a, the heat dissipation fin 2 formed separately on the outer surface of the extrusion member 1a is welded and installed by brazing type, and the heat dissipation fin 2 as described above. It is formed by abutting two extruded members (1a) by welding fixed.

도 4는 본발명의 제 3실시예로서 열교환기(5)의 구성을 별도형성한 방열핀(2) 대신에 압출부재 표면이 다수 두껍게 되도록 압출성형한뒤 표면을 가공하여 압출부재(1a)와 방열핀(2)이 일체로 되게끔 가공형성한 것이며, 또 하우징 자체를 도7a - 도7b에서 보듯이 사각관체나 육각, 8각, 및 원형 관체로 일체형으로 압출성형한뒤 표면을 가공하여 방열핀(2)을 형성하여도 된다.Figure 4 is a third embodiment of the present invention in place of the heat dissipation fin (2) of the heat exchanger (5) separately formed by extrusion molding so that the surface of the extrusion member is a large number, the surface is processed by the extrusion member (1a) and the heat dissipation fin (2) is formed to be integrally formed, and the housing itself is extrusion molded into a square tube, a hexagon, an octagon, and a circular tube as a single body as shown in Figs. ) May be formed.

이와같이 구성된 열교환기(5)의 하우징(1)에는 일측단부가 막힌 상태로 되게 하여 내부에 수소저장합금 분말(4)을 내장시킨뒤, 수소저장합금분말보다 작은 통공을 가진 망체(3)를 타측단에 대고 부착고정시키면 열교환관(5)이 완성되게 되며, 위와같이 제조된 열교환기(5)을 일정한 길이로 형성하여 병열도 다수 연결 설치사용하거나 ""형으로 절곡시킨 뒤, 펌프나 콤프레샤를 이용하여 수소이동을 시키면, 수소저장합금에 수소가 공급되면 수소가 흡수되면서 순식간에 고온으로 발열하여 열기가 열교환관(5) 및 방열핀(2)에 의해 방열되고, 수소저장합금에서 수소가 분리되어 빠져나가면 냉기가 열교환관(5) 및 방열핀(2)을 통하여 순식간에 방열되게 되는 것이며, 이때 방열효과는 방열핀(2)의 재질, 방열면적에 따라 다소 차이가 발생하기 때문에 재질은 가급적 열전도율이 뛰어나면서도 가벼운 알루미늄이나 구리등의 재질은 이용하는 것이 바람직하다.The housing 1 of the heat exchanger 5 configured as described above has one side end in a blocked state so that the hydrogen storage alloy powder 4 is embedded therein, and the net body 3 having a smaller pore size than the hydrogen storage alloy powder is used. Attaching and fixing to the side ends, the heat exchanger tube 5 is completed, and the heat exchanger 5 manufactured as described above is formed in a constant length so that a plurality of parallel columns can be installed or used. After bending in the form of ", and moving the hydrogen using a pump or a compressor, when hydrogen is supplied to the hydrogen storage alloy, the hydrogen is absorbed and rapidly generates heat at high temperature by the heat exchange tube (5) and the heat radiation fin (2) When the heat is released and the hydrogen is separated from the hydrogen storage alloy, the cold air is radiated through the heat exchange tube (5) and the heat radiating fin (2) in an instant. The heat radiating effect is somewhat dependent on the material and the heat radiating area of the heat radiating fin (2). Because of the difference, it is desirable to use materials such as aluminum or copper that are excellent in thermal conductivity and light as possible.

또한, 펌프나 콤푸레샤로서 수소이동을 시키는 과정에서 이동하는 수소와 함께 수소저장합금 분말이 빠져나오지 못하도록, 열교환관(5) 일측 선단부에 망체(3)를 설치고정하되, 상기 망체(3)는 수소저장합금 분말의 입자 보다 작은 메쉬로 된것을 이용하는 것이 바람직하다.In addition, the mesh 3 is fixed to one end of the heat exchange tube 5 so that the hydrogen storage alloy powder does not escape with the moving hydrogen in the process of hydrogen movement as a pump or a compressor, and the mesh 3 is hydrogen. It is preferable to use a mesh smaller than the particles of the storage alloy powder.

그리고, 본 발명에 있어서의 방열핀 구성은, 통상 방열면적을 고려하여 제작됨이 타당하고, 따라서 ""형으로 형성된 방열핀을 브레이징 타잎으로 하우징에 부착고정시키거나 얇게 켜서 ""형으로 형성하는 것이 바람직하며, 하우징의 상·하·좌·우면에 모두 형성하는 것이 방열효과를 극대화 시킬수 있는 좋은 예라 하겠다.In addition, it is reasonable that the heat radiation fin configuration in the present invention is usually manufactured in consideration of the heat radiation area. "The heat sink fin formed in the shape is fixed to the housing with brazing type or thinly turned on" "It is desirable to form in the form, it is a good example to maximize the heat dissipation effect is formed on the upper, lower, left and right surfaces of the housing.

또한, 열교환기(5)의 형상은 도7a, 도7b에서 보듯이 단면모양이 사각은 물론 원형, 6각형, 8각형, 3각형등 다양하게 형성할수 있으며, 방열핀의 형상및 결합구성은 전술한 바와같이 별도로 ""형으로 절첩시킨 것을 용접고정하거나 하우징 표면을 켜서 형성하는 방법외에도 띠형상의 얇은 알루미늄 박판이나 구리박판을 나선형으로 권취고정시켜 방열핀(2a)을 형성한다거나(도6 참조), 하우징의 단면 형상과 같은 구멍을 가진 ""형 또는 ""형 등등과 같은 방열편(2')을 끼워 고정시켜도 된다(도5 참조).In addition, the shape of the heat exchanger (5) can be formed in various shapes, such as circular, hexagonal, octagonal, triangular, as well as rectangular in cross-sectional shape as shown in Figures 7a, 7b, the shape and coupling configuration of the heat radiation fins described above Separately as " "In addition to the method of forming a welding folded or turned on the surface of the housing to form a heat-radiating fin (2a) by spirally wound strip-shaped thin aluminum sheet or copper foil (see Fig. 6), With the same hole " "Type or" A heat dissipation piece 2 ', such as " shape or the like, may be fitted and fixed (see Fig. 5).

이상 설명한 바와같이 본 발명은 프레온 가스를 사용하지 않고도 고효율의 냉·온에너지를 발산할 수 있는 수소저장합금을 내장하는 열교환관을 제공함으로서, 복잡한 냉동싸이클을 간단하게 구성할수 있어 조립공정이 크게 절감되고, 이에 따라 제조원가 절감효과가 뛰어나며, 대기오염과 같은 환경오염의 염려가 전혀 없으면서 냉·온열을 매우 효과적으로 이용할 수 있게 되는 매우 유용한 발명인 것이다.As described above, the present invention provides a heat exchanger tube containing a hydrogen storage alloy capable of dissipating high-efficiency cold and warm energy without using freon gas, so that a complicated refrigeration cycle can be easily configured, thereby greatly reducing the assembly process. Therefore, it is a very useful invention that is excellent in cost reduction effect, and can use the cold and heat very effectively without any concern about environmental pollution such as air pollution.

Claims (6)

수소저장합금 분말을 내장할 수 있도록 일단이 막혀 있는 관체로 형성된 하우징(1)과;A housing (1) formed of a tube body whose one end is blocked so as to contain the hydrogen storage alloy powder; 상기 하우징(1)의 표면에 형성된 방열핀(2), 그리고 상기 하우징(1)에 수소저장합금 분말(4) 내장한후 선단부에 수소저장합금분말보다 작은 통공을 가진 망체(3)를 설치구성하여 열교환관(5)을 구성함을 특징으로 하는 냉·온을 발생시키는 수소저장합금의 내장구조.Heat dissipation fins (2) formed on the surface of the housing (1), and the hydrogen storage alloy powder (4) embedded in the housing (1), and installed at the front end having a net body (3) having a smaller hole than the hydrogen storage alloy powder Built-in structure of hydrogen storage alloy for generating cold and hot, characterized in that the heat exchange pipe (5). 1항에 있어서,According to claim 1, 열교환기(5)을 구성하는 하우징(1)을 사각관체를 2등분한 구성으로 형성하여 ""형의 압출부재(1a)로 압출성형한 후, 압출부재(1a)의 외표면에 별도형성한 방열핀(2)을 브레이징 타잎으로 고정설치하고, 이와같이 구성된 압출부재(1a) 두개를 맞이음시켜 열교환관(5)을 구성함을 특징으로 하는 냉·온을 발생시키는 수소저장합금의 내장구조.The housing 1 constituting the heat exchanger 5 is formed in a configuration in which the square tube is divided into two parts. After extruding into the extrusion type member 1a of the " -type, the heat dissipation fins 2 formed separately on the outer surface of the extrusion member 1a are fixedly installed with a brazing type, and the two extrusion members 1a constituted as described above are welcomed. Built-in structure of hydrogen storage alloy for generating cold and hot, characterized in that the heat exchange pipe (5). 1항 또는 2항에 있어서,The method according to claim 1 or 2, 하우징(1)또는 하우징을 2등분 구성하여 형성된 압출부재(1a)의 표면을 절삭가공하여 방열핀(2)을 하우징(1)과 일체로 되게 형성함을 특징으로 하는 수소저장합금의 내장구조.A built-in structure of a hydrogen storage alloy, characterized in that the heat dissipation fin (2) is formed integrally with the housing (1) by cutting the surface of the extruded member (1a) formed by dividing the housing (1) or the housing into two parts. 1항 또는 2항에 있어서,The method according to claim 1 or 2, 열교환관을 구성하는 하우징의 단면형상은 원형, 삼각형, 6각형, 8각형 등등…의 형상중 어느 한 형상으로 이루어짐을 특징으로 하는 수소저장합금의 내장구조.The cross-sectional shape of the housing constituting the heat exchange tube is circular, triangular, hexagonal, octagonal, etc.. Built-in structure of the hydrogen storage alloy, characterized in that formed in any one of the shape of. 1항 또는 4항에 있어서,The method according to claim 1 or 4, 하우징(1)의 외주면에 띠형상의 얇은 알루미늄 박판이나 구리박판을 나선형으로 감아 고정시켜 방열핀(2a)을 구성함을 특징으로 하는 수소저장합금의 내장구조.An internal structure of the hydrogen storage alloy, characterized in that the heat dissipation fins (2a) are formed by spirally winding a band-shaped thin aluminum sheet or a copper sheet on the outer circumferential surface of the housing (1). 1항 또는 4항에 있어서,The method according to claim 1 or 4, 하우징의 단면형성과 같은 형상의 구멍을 가진 ""형 또는 ""형 등등의 방열편(2')을 하우징에 일정간격으로 조립고정시켜 구성함을 특징으로 하는 수소저장합금의 내장구조.With holes of the same shape as the cross-section of the housing "Type or" An internal structure of a hydrogen storage alloy, characterized in that the heat dissipation piece 2 "
KR1020010042851A 2001-07-16 2001-07-16 The internal structure of metal hydride KR20030008090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010042851A KR20030008090A (en) 2001-07-16 2001-07-16 The internal structure of metal hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010042851A KR20030008090A (en) 2001-07-16 2001-07-16 The internal structure of metal hydride

Publications (1)

Publication Number Publication Date
KR20030008090A true KR20030008090A (en) 2003-01-24

Family

ID=27715330

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010042851A KR20030008090A (en) 2001-07-16 2001-07-16 The internal structure of metal hydride

Country Status (1)

Country Link
KR (1) KR20030008090A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200082330A (en) * 2018-12-28 2020-07-08 국방과학연구소 Movable energy reversal charge/discharge system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200082330A (en) * 2018-12-28 2020-07-08 국방과학연구소 Movable energy reversal charge/discharge system

Similar Documents

Publication Publication Date Title
US7621320B2 (en) Internal heat exchanger
US10571163B2 (en) Thermoelectric heat pump type air conditioner
KR101938713B1 (en) Refrigerator
WO2002016835A1 (en) Sterling refrigerating system and cooling device
KR20030008090A (en) The internal structure of metal hydride
JP2008202881A (en) Cooling block body and cooling device
JP3333500B2 (en) Condenser structure of heat exchange device
CN210463384U (en) Air conditioning system
US20080066487A1 (en) Condenser and radiator of air conditioning refrigeration system
CA3170432A1 (en) System and method for manufacturing and operating a coaxial tube heat exchanger
JP3007455B2 (en) Refrigeration cycle device
KR100866065B1 (en) Local radiation cooling apparatus equipped with an insulation panel
KR20030008091A (en) A hydrogen storage alloy heat exchanges pipe
KR100575278B1 (en) A tube for heat exchange with a capillary-type heat pipe
JP2001255048A (en) Refrigerator
KR101260407B1 (en) Manufacturing method of a heat exchanger with a dual tube and a heat exchanger with a dual tube thereby
JPH07318222A (en) Refrigerator
JP4512596B2 (en) Cooling system
KR19990034215U (en) Condenser of heat exchanger
CN2045830U (en) Condensing unit for heat tube
JP2004101179A (en) Refrigerator
KR20020071209A (en) The internal structure of metal hydride
KR20130011188A (en) Heat exchange structure for capillary tube of refrigeration cycle
KR20030079296A (en) Heat exchanger for air conditioner using metal hydride
JP2003121090A (en) Heat exchanger and refrigerator using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E601 Decision to refuse application