KR20030005778A - Gate insulator of MOS transistor and method for fabricating the same - Google Patents

Gate insulator of MOS transistor and method for fabricating the same Download PDF

Info

Publication number
KR20030005778A
KR20030005778A KR1020010041230A KR20010041230A KR20030005778A KR 20030005778 A KR20030005778 A KR 20030005778A KR 1020010041230 A KR1020010041230 A KR 1020010041230A KR 20010041230 A KR20010041230 A KR 20010041230A KR 20030005778 A KR20030005778 A KR 20030005778A
Authority
KR
South Korea
Prior art keywords
gate insulating
mos transistor
film
insulating film
heat treatment
Prior art date
Application number
KR1020010041230A
Other languages
Korean (ko)
Other versions
KR100379621B1 (en
Inventor
황현상
이혜란
전상훈
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR10-2001-0041230A priority Critical patent/KR100379621B1/en
Publication of KR20030005778A publication Critical patent/KR20030005778A/en
Application granted granted Critical
Publication of KR100379621B1 publication Critical patent/KR100379621B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28211Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer

Abstract

PURPOSE: A gate insulating layer of an MOS transistor and a method for fabricating the same are provided to obtain effective thickness and reduce current leakage of the gate insulating layer by using a Dy-doped hafnium oxide layer as the gate insulating layer. CONSTITUTION: A nitride layer(120) is formed on a silicon substrate(110) by performing a thermal process under nitrogen atmosphere. A metal layer is formed on the nitride layer(120) by sputtering simultaneously an Hf target and a Dy target. The metal layer has thickness of 3 to 10nm. A Dy-doped hafnium oxide layer(130a) is formed by oxidizing the silicon substrate(110) including the metal layer under atmosphere of O2. Accordingly, a gate insulating layer is formed by stacking the nitride layer(120) and the Dy-doped hafnium oxide layer(130a), sequentially.

Description

MOS 트랜지스터 게이트 절연막 및 그 제조방법{Gate insulator of MOS transistor and method for fabricating the same}Gate insulator of MOS transistor and method for fabricating the same

본 발명은 MOS 트랜지스터 게이트 절연막 및 그 제조방법에 관한 것으로서, 특히 차세대 게이트 절연막에 적합한 새로운 재질의 MOS 트랜지스터 게이트 절연막및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOS transistor gate insulating film and a method of manufacturing the same, and more particularly, to a MOS transistor gate insulating film of a new material suitable for a next generation gate insulating film and a method of manufacturing the same.

최근 차세대 게이트 절연막으로 고유전 박막이 많이 연구되고 있다. 그러나, 100nm급 MOS 소자에의 적용을 고려할 때 요구되는 1nm급의 유효두께와 낮은 누설전류 특성을 만족시킬 수 있는 절연막 형성 공정은 아직 확보되어 있지 않다.Recently, high-k dielectric thin films have been studied as next-generation gate insulating films. However, considering the application to the 100nm class MOS device, an insulating film forming process capable of satisfying the effective thickness of 1 nm class and low leakage current characteristics is not yet secured.

고유전 박막의 누설전류를 줄이기 위한 시도로 도핑(doping)을 이용하려는 시도가 있다. 최근 발표된 벨 연구소(Bell Lab.)의 논문에 따르면 TiO2에 란타나이드(lanthanide) 계의 Nd, Tb, Dy를 적정량 도핑함으로써 누설전류를 개선할 수 있다고 한다(참고: Applied physics letter, vol. 74, No. 20, p.3041, 1999). 그러나, TiO2는 열안정성 및 실리콘 계면과의 반응성 등으로 인해 게이트 절연막으로 응용하기에는 여전히 어려운 점이 있다.Attempts have been made to use doping in an attempt to reduce leakage current of high dielectric thin films. According to a recent paper published by Bell Lab., Leakage currents can be improved by doping TiO 2 with appropriate amounts of lanthanide Nd, Tb and Dy (see Applied physics letter, vol. 74, No. 20, p. 3041, 1999). However, TiO 2 is still difficult to be applied as a gate insulating film due to thermal stability and reactivity with a silicon interface.

따라서, 본 발명이 이루고자 하는 기술적 과제는, 차세대 게이트 절연막에 적합한 새로운 재질의 MOS 트랜지스터 게이트 절연막을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a MOS transistor gate insulating film of a new material suitable for the next generation gate insulating film.

본 발명이 이루고자 하는 다른 기술적 과제는, 상기 기술적 과제를 달성하는 데 적합한 게이트 절연막 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a method of manufacturing a gate insulating film suitable for achieving the above technical problem.

도 1a 내지 도 1c는 본 발명에 따른 MOS 트랜지스터 게이트 절연막 및 그 제조방법을 설명하기 위한 단면도들;1A to 1C are cross-sectional views illustrating a MOS transistor gate insulating film and a method of manufacturing the same according to the present invention;

도 2a 내지 도 2d는 하프늄 산화막에 Dy가 도핑된 경우와 도핑되지 않은 경우에 대한 특성분석 결과이다.2A to 2D show results of characterization of a case in which a hafnium oxide layer is doped with Dy and an undoped case.

< 도면의 주요 부분에 대한 참조번호의 설명 ><Description of Reference Numbers for Main Parts of Drawings>

110: 실리콘 기판 120: 질화막110: silicon substrate 120: nitride film

130: 금속막 130a: Dy 도핑된 하프늄 산화막130 metal film 130a: Dy-doped hafnium oxide film

상기 기술적 과제를 달성하기 위한 본 발명에 따른 MOS 트랜지스터 게이트절연막은, 하프늄 산화막에 Dy가 도핑되어 이루어지는 것을 특징으로 한다.The MOS transistor gate insulating film according to the present invention for achieving the above technical problem is characterized in that the hafnium oxide film is Dy doped.

여기서, 상기 Dy의 도핑량은 1 내지 20 원자% 인 것이 바람직하며, 상기 Dy 도핑된 하프늄 산화막은 원자증착법, 화학기상증착법, 및 반응성 스퍼터링법에 의하여 형성될 수 있다.Here, the doping amount of Dy is preferably 1 to 20 atomic%, and the Dy-doped hafnium oxide film may be formed by atomic deposition, chemical vapor deposition, and reactive sputtering.

상기 다른 기술적 과제를 달성하기 위한 본 발명에 따른 MOS 트랜지스터 게이트 절연막 제조방법은, 실리콘 기판 상에 Hf와 Dy를 증착하여 금속막을 형성하는 단계; 및 상기 금속막이 형성된 결과물을 산소원소 함유 분위기에서 열처리하는 단계를 포함하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method of manufacturing a MOS transistor gate insulating film, comprising: forming a metal film by depositing Hf and Dy on a silicon substrate; And heat-treating the resultant product in which the metal film is formed in an oxygen element-containing atmosphere.

여기서, 상기 금속막은 Hf와 Dy 타겟을 각각 마련하고 이를 동시에 스퍼터링하여 형성시킬 수 있으며, 상기 스퍼터링은 10-5내지 1 Torr의 압력범위에서 행하는 것이 바람직하다. 상기 금속막은 3 내지 10 nm 의 두께를 가지는 것이 바람직하며, 또한 Dy를 1 내지 20 원자% 만큼 함유하는 것이 바람직하다.Here, the metal film may be formed by sputtering the Hf and Dy targets respectively, and the sputtering is preferably performed at a pressure range of 10 −5 to 1 Torr. The metal film preferably has a thickness of 3 to 10 nm, and preferably contains 1 to 20 atomic% of Dy.

상기 열처리는 O2분위기에서 행할 수 있는데, 이 때의 열처리는 600 내지 800℃의 온도범위와 10-3내지 760 Torr 의 압력범위에서 행하는 것이 바람직하다. 그리고, 상기 열처리는 H2O 증기 분위기에서도 행할 수 있는데, 이 때의 열처리는 300 내지 500℃의 온도범위 및 10-3내지 103Torr의 압력범위에서 행하는 것이 바람직하다.The heat treatment may be performed in an O 2 atmosphere, and the heat treatment at this time is preferably performed in a temperature range of 600 to 800 ° C. and a pressure range of 10 −3 to 760 Torr. The heat treatment may be performed even in a H 2 O vapor atmosphere. The heat treatment at this time is preferably performed in a temperature range of 300 to 500 ° C. and a pressure range of 10 −3 to 10 3 Torr.

한편, 상기 금속막을 형성하는 단계 이전에 상기 실리콘 기판 상에 질화막을형성하는 단계를 더 포함할 수 있는데, 상기 질화막은 상기 실리콘 기판을 질소함유 분위기에서 열처리하거나, 상기 실리콘 기판을 질소함유 플라즈마에 노출시켜서 형성할 수 있다.Meanwhile, before the forming of the metal film, the method may further include forming a nitride film on the silicon substrate, wherein the nitride film heat-treats the silicon substrate in a nitrogen-containing atmosphere or exposes the silicon substrate to a nitrogen-containing plasma. Can be formed.

이하에서, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail.

도 1a 내지 도 1c는 본 발명에 따른 MOS 트랜지스터 게이트 절연막 및 그 제조방법을 설명하기 위한 단면도들이다.1A to 1C are cross-sectional views illustrating a MOS transistor gate insulating film and a method of manufacturing the same according to the present invention.

도 1a는 질화막(120)을 형성하는 단계를 설명하기 위한 단면도로서, 구체적으로, 실리콘 기판(110)을 질소함유 분위기에서 열처리하여 실리콘 기판(110) 상에 질화막(120)을 형성한다. 질화막(120)은 실리콘 기판(110)을 질소함유 플라즈마에 노출시켜서 형성시킬 수도 있다.FIG. 1A is a cross-sectional view illustrating a process of forming the nitride film 120. Specifically, the silicon substrate 110 is heat-treated in a nitrogen-containing atmosphere to form the nitride film 120 on the silicon substrate 110. The nitride film 120 may be formed by exposing the silicon substrate 110 to a plasma containing nitrogen.

도 1b는 금속막(130)을 형성하는 단계를 설명하기 위한 단면도이다. 구체적으로, Hf와 Dy 타겟을 각각 마련하고 이를 동시에 스퍼터링(co-sputtering)하여 질화막(120) 상에 3 내지 10 nm 의 두께를 갖는 금속막(130)을 형성한다. 스퍼터링은 10-5내지 1 Torr의 압력범위에서 행한다. 스퍼터링 시에 각 타겟에 인가되는 전력을 5 내지 1000 W 범위 내에서 조절하여 금속막(130) 내의 Dy 양이 1 내지 20 원자% 가 되도록 한다.1B is a cross-sectional view for describing a step of forming the metal film 130. Specifically, Hf and Dy targets are respectively provided and co-sputtered to form a metal film 130 having a thickness of 3 to 10 nm on the nitride film 120. Sputtering is carried out in a pressure range of 10 −5 to 1 Torr. The power applied to each target during sputtering is adjusted within the range of 5 to 1000 W so that the amount of Dy in the metal film 130 is 1 to 20 atomic%.

도 1c는 Dy 도핑된 하프늄 산화막(HfO2; 130a)을 형성하는 단계를 설명하기 위한 단면도이다. 구체적으로, 금속막(130)이 형성된 결과물을 O2분위기에서 열처리하여 산화시킴으로써 Dy 도핑된 하프늄 산화막(130a)을 형성한다. 따라서, 질화막(120)과 Dy 도핑된 하프늄 산화막(130a)이 순차적으로 적층된 게이트 절연막이 형성되게 된다. 열처리는 600 내지 800℃ 의 온도범위와 10-3내지 760 Torr의 압력범위에서 행한다.1C is a cross-sectional view for describing a step of forming a Dy-doped hafnium oxide film (HfO 2 ; 130a). Specifically, the Dy-doped hafnium oxide film 130a is formed by oxidizing a resultant product on which the metal film 130 is formed in an O 2 atmosphere. Accordingly, the gate insulating film in which the nitride film 120 and the Dy-doped hafnium oxide film 130a are sequentially stacked is formed. The heat treatment is carried out in a temperature range of 600 to 800 ° C. and a pressure range of 10 −3 to 760 Torr.

상기 열처리는 O2분위기 대신에 H2O 증기 분위기에서도 행할 수 있으며, 이 때의 열처리는 300 내지 500℃의 온도범위와 10-3내지 103Torr의 압력범위에서 행한다. 질화막(120)을 형성시키는 과정을 생략하여 금속막(130)을 실리콘 기판(110) 상에 바로 형성시킬 수도 있다. 이 경우에는 Dy 도핑된 하프늄 산화막(130a)만이 게이트 절연막 역할을 하게 된다.The heat treatment may be performed in an H 2 O vapor atmosphere instead of an O 2 atmosphere, and the heat treatment at this time is performed in a temperature range of 300 to 500 ° C. and a pressure range of 10 −3 to 10 3 Torr. The metal film 130 may be directly formed on the silicon substrate 110 by omitting the process of forming the nitride film 120. In this case, only the Dy-doped hafnium oxide film 130a serves as a gate insulating film.

Dy 도핑된 하프늄 산화막(130a)은 상기와 같은 방법 외에도 원자증착법(Atomic Layer Deposition method), 화학기상증착법(Chemical Vapor Deposition method), 및 반응성 스퍼터링법(Reactive Sputtering method) 등으로 형성시킬 수도 있다.In addition to the above method, the Dy-doped hafnium oxide film 130a may be formed by an atomic layer deposition method, a chemical vapor deposition method, a reactive sputtering method, or the like.

도 2a 내지 도 2d는 하프늄 산화막에 Dy가 도핑된 경우와 도핑되지 않은 경우에 대한 특성분석 결과이다.2A to 2D show results of characterization of a case in which a hafnium oxide layer is doped with Dy and an undoped case.

도 2a는 C-V 그래프이다. 도 2a를 참조하면, 하프늄 산화막에 Dy가 도핑되더라도 도핑되지 않은 경우와 비슷한 유효두께를 갖는다는 것을 알 수 있다. 도 2a 내에 삽입된 그래프는 X선 반사도(X-ray reflectivity)를 나타낸 것인데, 이 역시 Dy가 도핑된 경우와 도핑되지 않은 경우 모두 비슷한 물리적 두께를 갖는다는 것을보여준다.2A is a C-V graph. Referring to FIG. 2A, it can be seen that even though Dy is doped in the hafnium oxide film, the effective thickness is similar to that of the undoped layer. The graph inserted in FIG. 2A shows X-ray reflectivity, which also shows that both Dy and undoped have similar physical thicknesses.

도 2b는 누설전류를 측정한 결과이다. 도 2b를 참조하면, 하프늄 산화막에 Dy가 도핑되지 않았을 때에 비해 Dy가 도핑되었을 때 누설전류가 획기적으로 줄어들었음을 볼 수 있다.Figure 2b is the result of measuring the leakage current. Referring to FIG. 2B, it can be seen that the leakage current is significantly reduced when Dy is doped, compared to when Dy is not doped in the hafnium oxide film.

도 2c는 Dy 도핑 농도에 따른 AES(Auger Electron Spectroscopy) 분석결과이고, 도 2d는 Dy의 도핑 농도에 따른 하프늄 산화막의 누설전류 및 유효두께를 보여주는 그래프이다. 도 2d를 참조하면, Dy의 도핑농도가 1 내지 20 원자% 일 때에는 Dy 도핑된 하프늄 산화막의 유효두께의 급격한 증가 없이 누설전류가 우수함을 알 수 있다.FIG. 2C is a result of AES (Auger Electron Spectroscopy) analysis according to Dy doping concentration, and FIG. 2D is a graph showing leakage current and effective thickness of hafnium oxide film according to Dy doping concentration. Referring to FIG. 2D, it can be seen that when the doping concentration of Dy is 1 to 20 atomic%, the leakage current is excellent without a sharp increase in the effective thickness of the Dy-doped hafnium oxide film.

상술한 바와 같은 Dy 도핑된 하프늄 산화막을 게이트 절연막으로 사용하게 되면 차세대에 적합한 유효두께를 가질 뿐만 아니라 누설전류가 매우 적은 게이트 절연막을 얻을 수 있게 된다.When the Dy doped hafnium oxide film as described above is used as the gate insulating film, it is possible to obtain a gate insulating film having an effective thickness suitable for the next generation and having a very low leakage current.

본 발명은 상기 실시예에만 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의해 많은 변형이 가능함은 명백하다.The present invention is not limited to the above embodiments, and it is apparent that many modifications are possible by those skilled in the art within the technical spirit of the present invention.

Claims (17)

하프늄 산화막에 Dy가 도핑되어 이루어지는 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막.A MOS transistor gate insulating film comprising Dy doped in a hafnium oxide film. 제1항에 있어서, 상기 Dy의 도핑량이 1 내지 20 원자% 인 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막.The MOS transistor gate insulating film of claim 1, wherein the doping amount of Dy is 1 to 20 atomic%. 제1항에 있어서, 상기 Dy 도핑된 하프늄 산화막이 원자증착법, 화학기상증착법, 및 반응성 스퍼터링법에 의하여 형성되는 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막.The MOS transistor gate insulating film of claim 1, wherein the Dy-doped hafnium oxide film is formed by an atomic vapor deposition method, a chemical vapor deposition method, and a reactive sputtering method. 실리콘 기판 상에 Hf와 Dy를 증착하여 금속막을 형성하는 단계; 및Depositing Hf and Dy on the silicon substrate to form a metal film; And 상기 금속막이 형성된 결과물을 산소원소 함유 분위기에서 열처리하는 단계를 포함하는 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막 제조방법.And heat-treating the resultant product on which the metal film is formed in an oxygen element-containing atmosphere. 제4에 있어서, 상기 금속막이 Hf와 Dy 타겟을 각각 마련하고 이를 동시에 스퍼터링 함으로써 형성되는 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막 제조방법.5. The method of claim 4, wherein the metal film is formed by providing Hf and Dy targets respectively and sputtering them simultaneously. 제5항에 있어서, 상기 스퍼터링이 10-5내지 1 Torr의 압력범위에서 행해지는 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막 제조방법.The method of claim 5, wherein the sputtering is performed in a pressure range of 10 −5 to 1 Torr. 제4항에 있어서, 상기 금속막의 두께가 3 내지 10 nm 인 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막 제조방법.The method of claim 4, wherein the metal film has a thickness of 3 to 10 nm. 제4항에 있어서, 상기 금속막이 상기 Dy를 1 내지 20 원자% 만큼 함유하는 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막 제조방법.5. The method of claim 4, wherein the metal film contains 1 to 20 atomic percent of Dy. 제4항에 있어서, 상기 열처리가 O2분위기에서 행해지는 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막 제조방법.The method for manufacturing a MOS transistor gate insulating film according to claim 4, wherein the heat treatment is performed in an O 2 atmosphere. 제9항에 있어서, 상기 열처리는 600 내지 800℃의 온도범위에서 행해지는 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막 제조방법.The method of claim 9, wherein the heat treatment is performed at a temperature in a range of 600 to 800 ° C. 11. 제10항에 있어서, 상기 열처리가 10-3내지 760 Torr의 압력범위에서 행해지는 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막 제조방법.The method of claim 10, wherein the heat treatment is performed at a pressure range of 10 −3 to 760 Torr. 제4항에 있어서, 상기 열처리가 H2O 증기 분위기에서 행해지는 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막 제조방법.The method for manufacturing a MOS transistor gate insulating film according to claim 4, wherein the heat treatment is performed in a H 2 O vapor atmosphere. 제12항에 있어서, 상기 열처리가 300 내지 500℃의 온도범위에서 행해지는 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막 제조방법.13. The method of manufacturing a MOS transistor gate insulating film according to claim 12, wherein said heat treatment is performed in a temperature range of 300 to 500 캜. 제13항에 있어서, 상기 열처리가 10-3내지 103Torr의 압력범위에서 행해지는 것을 특징으로 하는 MOS 트랜지스터의 게이트 절연막 제조방법.The method of claim 13, wherein the heat treatment is performed in a pressure range of 10 −3 to 10 3 Torr. 제4항에 있어서, 상기 금속막을 형성하는 단계 이전에 상기 실리콘 기판 상에 질화막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막 제조방법.5. The method of claim 4, further comprising forming a nitride film on the silicon substrate before forming the metal film. 제15항에 있어서, 상기 질화막이 상기 실리콘 기판을 질소함유 분위기에서 열처리함으로써 형성되는 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막 제조방법.16. The method of claim 15, wherein the nitride film is formed by heat treating the silicon substrate in a nitrogen-containing atmosphere. 제15항에 있어서, 상기 질화막이 상기 실리콘 기판을 질소함유 플라즈마에노출시킴으로써 형성되는 것을 특징으로 하는 MOS 트랜지스터 게이트 절연막 제조방법.16. The method of claim 15, wherein the nitride film is formed by exposing the silicon substrate to a nitrogen-containing plasma.
KR10-2001-0041230A 2001-07-10 2001-07-10 Gate insulator of MOS transistor and method for fabricating the same KR100379621B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0041230A KR100379621B1 (en) 2001-07-10 2001-07-10 Gate insulator of MOS transistor and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0041230A KR100379621B1 (en) 2001-07-10 2001-07-10 Gate insulator of MOS transistor and method for fabricating the same

Publications (2)

Publication Number Publication Date
KR20030005778A true KR20030005778A (en) 2003-01-23
KR100379621B1 KR100379621B1 (en) 2003-04-10

Family

ID=27714240

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0041230A KR100379621B1 (en) 2001-07-10 2001-07-10 Gate insulator of MOS transistor and method for fabricating the same

Country Status (1)

Country Link
KR (1) KR100379621B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1480274A2 (en) * 2003-04-30 2004-11-24 Samsung Electronics Co., Ltd. Nonvolatile semiconductor memory device having gate stack including oha film and method of manufacturing the same
KR100613098B1 (en) * 2004-12-29 2006-08-16 동부일렉트로닉스 주식회사 Method for fabricating the gate oxide of semiconductor device
KR100618815B1 (en) * 2003-11-12 2006-08-31 삼성전자주식회사 Semiconductor device having different gate dielectric layers and method for manufacturing the same
WO2011156225A3 (en) * 2010-06-08 2012-04-19 Henkel Corporation Wafer backside coating containing reactive sulfur compound
US20180022858A1 (en) * 2014-12-24 2018-01-25 Kcc Corporation Highly elastic polyester modified urethane resin and clear coat composition containing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292673A (en) * 1989-08-16 1994-03-08 Hitachi, Ltd Method of manufacturing a semiconductor device
US5923056A (en) * 1996-10-10 1999-07-13 Lucent Technologies Inc. Electronic components with doped metal oxide dielectric materials and a process for making electronic components with doped metal oxide dielectric materials
US6020243A (en) * 1997-07-24 2000-02-01 Texas Instruments Incorporated Zirconium and/or hafnium silicon-oxynitride gate dielectric
US6727148B1 (en) * 1998-06-30 2004-04-27 Lam Research Corporation ULSI MOS with high dielectric constant gate insulator
KR100363082B1 (en) * 1999-09-21 2002-11-30 삼성전자 주식회사 Method for forming a gate insulating film having a dualistic thickness in process of fabrication of a transistor
KR100545706B1 (en) * 2000-06-28 2006-01-24 주식회사 하이닉스반도체 Semiconductor device manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1480274A2 (en) * 2003-04-30 2004-11-24 Samsung Electronics Co., Ltd. Nonvolatile semiconductor memory device having gate stack including oha film and method of manufacturing the same
KR100618815B1 (en) * 2003-11-12 2006-08-31 삼성전자주식회사 Semiconductor device having different gate dielectric layers and method for manufacturing the same
KR100613098B1 (en) * 2004-12-29 2006-08-16 동부일렉트로닉스 주식회사 Method for fabricating the gate oxide of semiconductor device
WO2011156225A3 (en) * 2010-06-08 2012-04-19 Henkel Corporation Wafer backside coating containing reactive sulfur compound
US20180022858A1 (en) * 2014-12-24 2018-01-25 Kcc Corporation Highly elastic polyester modified urethane resin and clear coat composition containing same

Also Published As

Publication number Publication date
KR100379621B1 (en) 2003-04-10

Similar Documents

Publication Publication Date Title
JP4791332B2 (en) Semiconductor structure including double metal gate and manufacturing method thereof (self-alignment integration of double metal gate)
KR100636856B1 (en) ULSI MOS with high dielectric constant gate insulator
JP3703373B2 (en) MOSFET and gate dielectric manufacturing method
KR100204083B1 (en) Tasin oxygen diffusion barrier in multilayer structure
TW564549B (en) Semiconductor device and the manufacturing method thereof
TW536744B (en) Method for improved plasma nitridation of ultra thin gate dielectrics
US20040175961A1 (en) Two-step post nitridation annealing for lower EOT plasma nitrided gate dielectrics
US20050062136A1 (en) Multilayer high k dielectric films and method of making the same
US20090294876A1 (en) Method for deposition of an ultra-thin electropositive metal-containing cap layer
JP3746478B2 (en) Manufacturing method of semiconductor device
US20010024860A1 (en) Method for manufacturing a gate structure incorporating therein aluminum oxide as a gate dielectric
KR20040072051A (en) Semiconductor device and method for manufacturing the same
JP2005317647A (en) Semiconductor device and its fabrication process
US6767847B1 (en) Method of forming a silicon nitride-silicon dioxide gate stack
KR100379621B1 (en) Gate insulator of MOS transistor and method for fabricating the same
KR100928023B1 (en) Semiconductor device and manufacturing method
KR100359489B1 (en) Method of fabricating gate dielectric for use in semiconductor device
KR20010063463A (en) Method of manufacturing a semiconductor device
US20070034974A1 (en) Semiconductor device and manufacturing method thereof
US20050189598A1 (en) Logic embedded-memory integrated circuits
KR100373165B1 (en) Method of manufacturing a semiconductor device utilizing a gate dielelctric
KR100593131B1 (en) Method of manufacturing a semiconductor device
KR20020035982A (en) Method for forming gate of semiconductor device
KR20020049196A (en) Method for forming metal silicate film for gate dielectric
JP2003101014A (en) Method of manufacturing semiconductor device having high dielectric constant metal oxide insulating film, and semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121211

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131211

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20141218

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20161205

Year of fee payment: 14

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20170224

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee