KR20030004461A - Super retarding agent for concrete and control of hydration heat of mass concrete using super retarding agent - Google Patents

Super retarding agent for concrete and control of hydration heat of mass concrete using super retarding agent Download PDF

Info

Publication number
KR20030004461A
KR20030004461A KR1020010039943A KR20010039943A KR20030004461A KR 20030004461 A KR20030004461 A KR 20030004461A KR 1020010039943 A KR1020010039943 A KR 1020010039943A KR 20010039943 A KR20010039943 A KR 20010039943A KR 20030004461 A KR20030004461 A KR 20030004461A
Authority
KR
South Korea
Prior art keywords
concrete
super
hydration
retardant
heat
Prior art date
Application number
KR1020010039943A
Other languages
Korean (ko)
Other versions
KR100436235B1 (en
Inventor
한천구
한민철
전충근
심보길
김상우
유동수
Original Assignee
한천구
(주) 선엔지니어링종합건축사사무소
(주)두성기업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한천구, (주) 선엔지니어링종합건축사사무소, (주)두성기업 filed Critical 한천구
Priority to KR10-2001-0039943A priority Critical patent/KR100436235B1/en
Publication of KR20030004461A publication Critical patent/KR20030004461A/en
Application granted granted Critical
Publication of KR100436235B1 publication Critical patent/KR100436235B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/20Retarders
    • C04B2103/24Hardening retarders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/44Thickening, gelling or viscosity increasing agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE: A super set retardant comprising sugar solution, thickener and air entraining agent is provided to delay setting and hardening time of concrete or cement mortar, enabling transportation and storage for a long time. Also, the retardant controls heat of hydration in casting, resulting in reduction of cracking. CONSTITUTION: The super set retardant is obtained by mixing sugar solution, thickener solution and air entraining(AE) agent in a weight ratio of 1 : 0.1-1.5 : 0.001-0.01, wherein the sugar solution is prepared by dissolving sugar and water in a weight ratio of 1 : 1 and the thickener solution is prepared by diluting thickener powder, polyethylene oxide(PEO), into water. Also, the heat of hydration of mass concrete is controlled by the following steps of: dividing a section of mass concrete uniformly; adding a large quantity of super set retardant to the lower part of concrete and a small quantity of super set retardant to the upper part of concrete, wherein the amount of retardant is in the range of 0.01-0.2%; casting conventional concrete on the upper part.

Description

콘크리트용 초지연제와 이 초지연제를 이용한 매스콘크리트의 수화열 조정방법{Super retarding agent for concrete and control of hydration heat of mass concrete using super retarding agent}Super retarding agent for concrete and control of hydration heat of mass concrete using super retarding agent

본 발명은 콘크리트용 초지연제와 이 초지연제를 이용한 매스콘크리트의 수화열 조정방법에 관한 것으로서, 특히 일정 농도의 설탕 용액에 소정비율로증점제(PEO) 및 AE(air entraining agent)제를 첨가하여 콘크리트 또는 시멘트 모르터 등에 적용시 응결 및 경화시간을 크게 지연시켜 그 사용가능시간을 연장시키는 초지연제를 제조하고, 제조된 초지연제를 이용하여 매스콘크리트의 수화열을 조정하므로써 온도균열을 저감시키는 콘크리트용 초지연제와 이 초지연제를 이용한 매스콘크리트 수화열 조정방법에 관한 것이다.The present invention relates to a super-delay agent for concrete and a method for adjusting the heat of hydration of mass concrete using the super-delay agent, in particular, by adding a thickening agent (PEO) and an air entraining agent (AE) at a predetermined ratio to a sugar solution of a certain concentration, When applied to cement mortar, to produce a super-delay agent to significantly delay the condensation and curing time to extend its usable time, and to adjust the heat of hydration of the mass concrete using the prepared super-delay agent and to reduce the temperature cracks and It relates to a method for regulating mass concrete hydration heat using this super delay agent.

일반적으로, 특수한 조건이거나 제한적인 환경에서 콘크리트를 시공할 경우 효과적인 방법을 찾지 못해 품질저하 및 경제적인 손실등을 초래하는 경우가 발생하고 있다. 즉, 도서 벽지나 산간 오지등 특수한 조건이거나 제한적인 환경에서는 굳지 않은 콘크리트의 장거리 수송이 곤란할 수 밖에 없었다. 또한, 콘크리트를 2층 이상 나누어 타설하는 경우에는 구조체의 일체화를 도모하기 어려워 줄눈현상등 시공불량이 발생 하며, 부재가 큰 매스콘크리트 타설시는 수화열에 의해 발생되는 구속응력균열등에 대하여 적절하게 대처하지 못함으로써 콘크리트의 품질저하를 유발하게 되었다.In general, when concrete is installed in special conditions or in a limited environment, it is difficult to find an effective method, resulting in deterioration of quality and economic loss. In other words, it is difficult to transport long-distance concrete that is not solid under special conditions such as book wallpaper or mountainous backcountry. In addition, when the concrete is divided into two or more layers, it is difficult to integrate the structure, resulting in poor construction, such as joint phenomenon, and when mass-concrete with large members is not properly coped with constrained stress cracking caused by the heat of hydration. Failure to do so may cause deterioration of concrete.

외국의 경우에는 이러한 유형의 문제점을 해결하기 위한 방안으로 응결지연성능이 탁월한 각종 초지연제를 개발해 이를 실용화함으로써 시공법 및 콘크리트의 품질향상에 활용하고 있지만, 아직 국내에서는 초지연제에 관한 연구 성과는 이루어지지 않고 있는 실정이다.In the case of foreign countries, as a way to solve this type of problem, various super-delays with excellent condensation delay performance have been developed and put into practical use to improve the construction method and the quality of concrete. I'm not doing it.

본 발명은 상기와 같은 실정을 감안하여 발명된 것으로, 콘크리트 또는 모르터 등에 적용시 블리딩등 재료분리가 발생하지 않고, 목표공기량을 발휘하며, 경화후 강도발현에는 악영향을 미치지 않으면서 콘크리트나 모르터의 응결 및 경화시간을 크게 지연시켜 다양한 활용가능성이나 콘크리트의 품질향상을 부여하는 초지연제를 제조하는 데 그 목적이 있다.The present invention has been invented in view of the above circumstances, and when applied to concrete or mortar, it does not separate materials such as bleeding, exhibits a target air amount, and condenses concrete or mortar without adversely affecting the strength expression after curing. And the purpose is to produce a super delay agent that gives a variety of applicability or concrete quality improvement by greatly delaying the curing time.

본 발명의 또 다른 목적은 제조된 초지연제를 이용하여 매스콘크리트 시공시 수화열을 콘트롤하므로써 수화열에 의한 온도균열을 저감시키는 매스콘크리트 수화열 조정방법을 제공하는 것이다.Still another object of the present invention is to provide a method for adjusting the mass concrete hydration heat to reduce the temperature cracking caused by the heat of hydration by controlling the heat of hydration during the mass concrete construction using the manufactured super delay agent.

도 1은 본 발명에 따른 콘크리트용 초지연제의 제조방법에 사용되는 각종 첨가물의 혼입비율에 따른 특성을 나타낸 그래프이다.1 is a graph showing the characteristics according to the mixing ratio of the various additives used in the manufacturing method of the super-retardant for concrete according to the present invention.

도 2는 본 발명에 따른 콘크리트용 초지연제의 혼입률 변화에 따른 슬럼프 및 공기량을 W/C별로 구분하여 나타낸 그래프이다.Figure 2 is a graph showing the slump and the air amount according to the W / C according to the mixing rate change of the super-retardant for concrete according to the present invention.

도 3은 본 발명에 따른 초지연제의 혼입률 변화에 따른 블리딩량을 W/C별로 구분하여 나타낸 그래프이다.Figure 3 is a graph showing the amount of bleeding according to the change in the mixing rate of the ultra-delay retardant according to the present invention divided by W / C.

도 4는 본 발명에 따른 콘크리트용 초지연제의 혼입률 변화에 따른 응결시간을 나타낸 그래프이다.Figure 4 is a graph showing the setting time according to the mixing rate change of the super-retardant for concrete according to the present invention.

도 5는 본 발명에 따른 초지연제의 혼입률 변화에 따른 시험체 중앙의 온도이력을 W/C별로 구분하여 나타낸 그래프이다.Figure 5 is a graph showing the temperature history of the center of the test specimen according to the change of the mixing rate of the ultra-delay agent according to the present invention divided by W / C.

도 6은 본 발명에 따른 초지연제 혼입시 재령경과에 따른 압축강도를 나타낸 그래프이다.Figure 6 is a graph showing the compressive strength according to the age of the super-retardant incorporation according to the present invention.

도 7은 본 발명에 따른 초지연제 혼입시 종결 이후 재령경과에 따른 압축강도를 나타낸 그래프이다.Figure 7 is a graph showing the compressive strength according to the age after the termination of the super-retardant incorporation according to the invention.

도 8은 본 발명에 따른 초지연제의 혼입률에 따라 콘크리트의 건조수축에 의한 길이변화율을 나타낸 그래프이다8 is a graph showing the rate of change in the length of drying by shrinkage of concrete according to the mixing rate of the super-delay agent according to the present invention

도 9는 본 발명에 따른 초지연제의 혼입률에 따라 콘크리트의 동결융해작용 사이클 수에 따른 상대동탄성계수를 나타낸 그래프이다.Figure 9 is a graph showing the relative dynamic modulus of elasticity according to the number of cycles of freezing and thawing action of the concrete according to the mixing rate of the super-delay agent according to the present invention.

도 10은 매스콘크리트 모의부재의 크기와 내부의 수화열을 측정하기 위한 열전대 매입위치, 또한 코어채취위치를 나타낸 도면이다.10 is a view showing a thermocouple embedding position for measuring the size of the mass concrete mock member and the heat of hydration therein, and also the core collecting position.

도 11은 플레인 콘크리트를 일체타설한 모의부재의 재령에 따른 온도 이력을 나타낸 그래프이다.11 is a graph showing the temperature history according to the age of the simulation member integrally cast the plain concrete.

도 12는 플레인 콘크리트를 2회 분리 타설한 경우 모의부재의 재령에 따른 온도 이력을 나타낸 그래프이다.12 is a graph showing the temperature history according to the age of the simulation member when the two times the plain concrete is poured.

도 13은 상부에는 플레인 콘크리트를 타설하고, 하부에는 초지연제 0.2% 혼입한 콘크리트를 동시에 타설한 모의부재의 재령에 따른 온도 이력을 나타낸 그래프이다.13 is a graph showing the temperature history according to the age of the mock member in which the concrete is poured at the top, the concrete mixed with 0.2% super-retardant at the bottom.

도 14는 모의부재의 타설방법에 따른 코어위치별 상, 하부 압축강도를 나타낸 그래프이다.14 is a graph showing the upper and lower compressive strength for each core position according to the method of placing the simulation member.

상기의 목적을 달성하기 위해서 본 발명에 따른 초지연제는,In order to achieve the above object, the ultra-delay agent according to the present invention,

분말상의 설탕은 상온의 물을 중량비로 1:1로 혼합하여 용해시킨후 사용하게 되는 데, 이때, 분말상설탕: 분말상 증점제가 희석된 용액: AE제가 중량비로 1 : 0.1∼1.5 : 0.001∼0.01로 혼합되어 제조된다.Powdered sugar is used after dissolving water at room temperature in a 1: 1 by weight ratio, and dissolving it, wherein powdered sugar: dilute solution of powdered thickener: AE agent is 1: 0.1 to 1.5: 0.001 to 0.01 by weight ratio. It is prepared by mixing.

바람직하게 초지연제는 분말상설탕: 분말상 증점제가 희석된 용액: AE제가 중량비로 1 : 1 : 0.005로 혼합되어 제조된다.Preferably, the super delayed agent is prepared by mixing powdered sugar: a solution in which the powdered thickener is diluted: AE agent in a weight ratio of 1: 1: 0.005.

또한, 본 발명에 따른 매스 콘크리트의 수화열 조정방법은In addition, the method of adjusting the heat of hydration of mass concrete according to the present invention

매스콘크리트의 타설에 있어서, 매스 단면을 균등히 분할하고 상기의 방법에 의하에 제조된 초지연제를 혼입률 0.01∼0.2% 범위에서 점차 축소하여 첨가하고, 최상층은 보통콘크리트를 함께 타설하여 수화열을 조정하는 것이다..In the case of mass concrete pouring, the mass cross section is divided equally, and the super-delay agent prepared according to the above method is gradually reduced and added in the mixing ratio of 0.01 to 0.2%, and the uppermost layer is poured with ordinary concrete to adjust the heat of hydration. ..

일반적으로 초지연제는 시멘트의 응결지연효과를 갖는 화합물을 주성분으로 하며 종류로는 유기계 화합물과 무기계 화합물로 나누어지며, 일반적으로 유기계 화합물이 무기계 화합물보다 지연성도 크고 사용성도 유리하다. 특히, 유기계 화합물 중 당류는 그 효과가 우수하다. 본 발명에 따른 초지연제의 주재료는 유기계 화합물 중 당류인 설탕으로 일반 시중에서 유통되는 것이 사용되어 진다.In general, the super-delay agent is mainly composed of a compound having a cement delaying effect of the cement and is divided into organic compounds and inorganic compounds as a kind, in general, organic compounds are more delayed and usable than inorganic compounds. In particular, saccharides among organic compounds have excellent effects. The main material of the ultra-delaying agent according to the present invention is a sugar which is a saccharide of the organic compound, which is commonly used in the market.

이상에서 언급한 바와 같이, 본 발명에 따르면, 아직 국내에서는 연구된바 없는 콘크리트의 응결 및 경화시간을 크게 지연시키는 초지연제를 얻기 위해서, 비교적 저렴한 설탕에 증점제 및 AE제를 일정 비율로 혼합하여 초지연제를 제조한다.As mentioned above, according to the present invention, in order to obtain a super delay agent that significantly delays the condensation and curing time of concrete, which has not been studied in Korea yet, relatively thick sugars and thickeners and AE agents are mixed with a certain ratio of grass paper. Prepare a softener.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 보통 콘크리트 제조시 설탕 용액을 함께 혼합하여 지연성능을 갖는 콘크리트를 제조하는 데 이러한 과정에서 발생하는 문제점중 블리딩량의 증가를 제어하기 위해 증점제(PEO)를 첨가하고 또한, 공기량의 저하를 회복시키기 위해 AE제를 첨가하여 궁극적으로 문제점을 해결하면서 성능이 개선된 초지연제를 개발하고자 한다.In the present invention, in the production of concrete, a mixture of sugar solution is mixed together to produce a concrete having a delay performance. Among the problems occurring in this process, a thickener (PEO) is added to control the increase in the amount of bleeding. In order to recover, the AE agent is added to ultimately solve the problem while developing a super delay agent with improved performance.

분말상의 설탕과 상온의 물을 무게비로 1:1로 혼합하여 설탕을 물에 완전히 용해시킨 후, 여기에 분말상의 증점제(PEO)를 상온의 물에 희석한 증점제 용액 일정량과 AE제 일정량을 함께 적정비율로 첨가한 다음, 일정시간동안 혼합하여 제조된다.The powdered sugar and water at room temperature are mixed at a weight ratio of 1: 1, and the sugar is completely dissolved in water, followed by titration of a certain amount of thickener solution in which the powdered thickener (PEO) is diluted with water at room temperature and a certain amount of AE agent. It is added by the ratio and then mixed for a certain time.

분말상설탕 : 증점제용액 : AE제의 혼합비는 중량비로 1 : 0.1∼1.5 : 0.001∼0.01의 비율로 혼합되나 바람직하게는 1 : 1 : 0.005이다.The mixing ratio of powdered sugar: thickener solution: AE agent is mixed at a weight ratio of 1: 0.1 to 1.5: 0.001 to 0.01, but preferably 1: 1: 0.005.

초지연제를 제조하기 위하여 도 1에서 보는 바와 같이 설탕 용액을 혼입한 콘크리트는 블리딩량이 보통 콘크리트에 비해 약 60% 이상 증가하지만, 여기에 증점제(PEO)를 시멘트에 대하여 0.2% 첨가할 경우 블리딩량이 제어되고, 또한 공기량은 1∼2%정도 감소하지만, 여기에 AE제를 시멘트에 대하여 0.001%의 비율로 첨가할 경우 공기량을 회복하고 있어, 설탕 : 증점제 : AE제를 1 : 1 : 0.005의 비율로 혼합하는 경우 소요의 품질을 확보할 수 있는 초지연제를 제조할 수 있다.As shown in FIG. 1, the bleeding amount of concrete mixed with a sugar solution is increased by about 60% or more as compared to the concrete, but the amount of bleeding is controlled when 0.2% of thickener (PEO) is added to cement. In addition, the amount of air decreases by 1 to 2%, but when the AE agent is added at a ratio of 0.001% to the cement, the air amount is being recovered, and the sugar: thickener: AE agent is 1: 1: 0.005. When mixing, it is possible to produce a super delay agent that can ensure the required quality.

또한 상기에서 제조된 초지연제를 이용하여 수화열을 콘트롤하므로써 매스콘크리트 시공시 수화열에 의한 온도균열을 저감시킬 수 있다. 일반적으로 보통콘크리트의 수화열은 타설 후 1∼2일 사이에 최고온도에 도달한 후 서서히 식기 시작하여 5∼6일 후에 외기온과 같게 된다. 그러나 초지연제 0.2% 첨가시 콘크리트의 수화열은 6∼7일 후에 최고온도에 도달한 후 서서히 저하하여 10∼11일 경과 후에 외기온과 같게 된다. 따라서 일정단면의 매스콘크리트 시공시 단면을 1/2~1/5의 여러등분으로 분할하여 하부에는 초지연제를 많이 첨가하고, 상부에는 첨가량을 축소시켜 첨가한 콘크리트를 타설하고, 동시에 상부에는 보통콘크리트를 일체타설하므로써 종래 수화열 저감을 위해 분리타설을 실시할 경우의 문제점인 부착성, 수밀성 및 내구성 등의 문제점을 해결함과 동시에 수화열을 조정하여 수화열에 의한 온도균열을 줄일 수 있는 매스콘크리트의 수화열 조정방법을 제공한다.In addition, by controlling the heat of hydration using the super-delay agent prepared above, it is possible to reduce the temperature cracking due to the heat of hydration during mass concrete construction. Generally, the heat of hydration of ordinary concrete starts to cool down slowly after reaching the maximum temperature within 1 ~ 2 days after pouring and becomes the same as the outside temperature after 5 ~ 6 days. However, when 0.2% of super-retardant is added, the heat of hydration of concrete gradually decreases after reaching the maximum temperature after 6-7 days and becomes the same as the outside temperature after 10-11 days. Therefore, when mass concrete construction of a certain section is divided into several parts of 1/2 ~ 1/5, add a lot of super-retardant to the lower part, reduce the amount of addition to the upper part, and add concrete to the upper part, and at the same time, normal concrete Solving the problem of sticking, watertightness, and durability, which are the problems in case of separate casting to reduce the heat of hydration, by adjusting the heat of hydration, and adjusting the heat of hydration of mass concrete that can reduce the temperature crack caused by the heat of hydration Provide a method.

도 2는 개발된 초지연제의 혼입률 변화에 따른 슬럼프 및 공기량을 W/C별로 구분하여 나타낸 것이다. 도 2에서 보는 바와 같이 W/C 40%와 50%에서는 개발된 초지연제의 혼입률이 증가하여도 변화가 거의 없는 것으로 나타났다. 이는 초지연제 속에 첨가된 증점제 및 AE제에 기인한 것으로 분석된다. 그러나 W/C 30%의 경우에는 크게 저하하는 것으로 나타나, 고강도 콘크리트의 경우는 증점제는 줄이고 AE제는 증가시키는 새로운 배합비율이 요구된다. 도 3은 개발된 초지연제의 혼입률 변화에 따른 블리딩량을 W/C별로 구분하여 나타낸 것으로, 모든 배합에서 혼입률이 증가하여도 블리딩량은 보통 콘크리트와 유사하게 발생하였다. 이는 개발된 초지연제에 첨가된 증점제 성분에 의한 점성증대에 기인한 것으로 분석된다.Figure 2 shows the slump and the amount of air according to the change of the mixing rate of the developed super delay agent divided by W / C. As shown in FIG. 2, the W / C 40% and 50% showed little change even if the mixing ratio of the developed super delay agent increased. This is believed to be due to the thickeners and AEs added in the ultra delay agent. However, in the case of W / C 30%, it appears to be greatly reduced, and in the case of high-strength concrete, a new compounding ratio is required to reduce the thickener and increase the AE agent. Figure 3 shows the bleeding amount according to the change in the mixing rate of the developed super-delay agent by W / C, the amount of bleeding occurred in all formulations similar to the concrete even when the mixing rate increases. This is due to the increase in viscosity due to the thickener component added to the developed super delay agent.

도 4는 개발된 초지연제의 혼입률 변화에 따른 응결시간을 나타낸 것이다. 보통 콘크리트의 경우 종결은 10∼12시간 정도가 소요되는 반면, 초지연제 혼입률 0.1%에서는 3∼4일 사이에, 0.2%에서는 5∼6.5일 사이에 종결이 각각 측정되어 응결시간은 크게 지연되는 것으로 나타났다. 향후 개발된 초지연제의 실무 적용성을 가늠하여 본다면 혼입률 0.2%이내의 범위 내에서 사용이 가능할 것으로 분석된다.Figure 4 shows the setting time according to the mixing rate of the developed super delay agent. In the case of concrete, the termination takes about 10 to 12 hours, whereas the termination time is measured between 3 to 4 days at 0.1% of super-delay retardant content and 5 to 6.5 days at 0.2%. appear. The practical applicability of the ultra-delay agent developed in the future is estimated to be used within the mixing ratio of 0.2%.

도 5는 개발된 초지연제의 혼입률 변화에 따른 시험체 중앙의 온도이력을 W/C별로 구분하여 나타낸 것이다. 초지연제의 혼입률이 증가할수록 최고상승온도는 저하하고 최고상승온도 도달시간은 크게 지연되는 것으로 나타났는데 먼저, W/C 30%의 경우 초지연제의 혼입률이 증가함에 따라 혼입률 0.1 및 0.2%에서 최고온도는 보통콘크리트에 비해 약 10℃ 및 20℃ 정도 저감되었고, 최고온도 도달시간은 4일과 11일 정도 지연되었다. W/C 40% 및 50%의 경우는 초지연제 혼입률 0.1% 및 0.2%에서 5℃와 15℃ 전후의 온도가 저감되었으며, 최고온도 도달시간은 2∼3일과 7∼8일 정도 지연되었다. 이러한 온도저하 현상은 초지연제의 혼입률 증가에 의한 수화잠복기간의 연장에 따라 넓은 시간대의 수화반응 및 외부로의 열발산 효과에 기인한 결과로 분석된다.Figure 5 shows the temperature history of the center of the test specimen according to the change in the mixing rate of the developed super-delay agent divided by W / C. As the mixing rate of ultra-delay was increased, the maximum rise temperature decreased and the time to reach the maximum rise was significantly delayed. First, in the case of 30% of W / C, the maximum temperature at 0.1 and 0.2% was increased as the mixing rate of super-delay was increased. Was reduced by about 10 ℃ and 20 ℃ compared with normal concrete, and the maximum temperature arrival time was delayed by 4 days and 11 days. In the case of 40% and 50% of W / C, the temperature of 5 ° C and 15 ° C was decreased at 0.1% and 0.2% of the super-delay-retardant content, and the maximum temperature reaching time was delayed by 2-3 days and 7-8 days. This temperature drop phenomenon is analyzed as a result of the hydration reaction and heat dissipation effect in a wide time zone as the hydration latency is prolonged by increasing the mixing rate of the ultra delay agent.

도 6은 재령경과에 따른 압축강도를 나타낸 것이고, 도 7은 종결이후 재령에따른 압축강도를 나타낸 것이다. 보통 콘크리트에 비해 초지연제 혼입시 초기재령에서는 압축강도는 작게 나타났으나, 재령이 경과할수록 급격한 강도증진 현상을 보이며, 후기재령에서는 보통 콘크리트 보다 10% 전후의 큰 압축강도를 나타내었다. 이는 수화초기 응결지연작용에 의해 서서히 수화반응이 진행되고, 이로인해 밀실한 수화생성물이 생성되어 내부조직이 보다 치밀화 한 것에 기인되는 것으로 분석된다. 도 8은 건조수축에 의한 길이변화율을 초지연제의 혼입률별로 구분하여 나타낸 것이다. 초기 7일 동안 수중양생을 한 경우는 약간 팽창을 하는 것으로 나타났고, 그 이후 기건양생기간에는 수축하는 것으로 나타났는데, 보통 콘크리트와 비교하여 유사한 길이변화율이 나타났다.Figure 6 shows the compressive strength according to the age of age, Figure 7 shows the compressive strength according to the age after termination. Compared with normal concrete, compressive strength was shown to be lower at early age when super-retardant was mixed. However, as the age passed, the compressive strength increased rapidly. At later ages, the compressive strength was about 10% higher than that of concrete. It is analyzed that this is due to the hydration reaction proceeding gradually due to the initial hydration delay, and the dense hydration product is generated and the internal structure becomes more compact. 8 shows the length change rate by dry shrinkage according to the mixing rate of the ultra-delay agent. Underwater curing during the first seven days showed a slight expansion, and then during the curing period, there was a contraction, with a similar rate of change in length compared to normal concrete.

도 9는 동결융해작용 사이클 수에 따른 상대동탄성계수를 초지연제의 혼입률별로 구분하여 나타낸 것이다. 모든 배합에서 동결융해 300사이클 후의 상대동탄성계수는 90% 이상으로 나타나 내동해성이 양호하게 나타났으며, 보통 콘크리트에 비해서 5%이내의 미소한 차이를 나타내었다.Figure 9 shows the relative dynamic modulus of elasticity according to the number of freezing thaw cycles by the mixing rate of the super delay agent. In all formulations, the relative dynamic modulus after 300 cycles of freeze-thawing was more than 90%, which showed good freeze resistance, and showed a slight difference of less than 5% compared to that of concrete.

도 10은 매스콘크리트 모의부재의 크기와 내부의 수화열을 측정하기 위한 열전대 매입위치, 또한 코어채취위치를 나타낸 것이다.10 shows the thermocouple embedding position for measuring the size of the mass concrete simulation member and the heat of hydration therein, and also the core collecting position.

도 11은 플레인 콘크리트를 일체타설한 모의부재의 재령에 따른 온도 이력을 나타낸 것이다. 먼저, 수화열의 최고온도는 콘크리트 타설 후 1일(24시간)에 도달하였고, 이후 서서히 저하하여 3.5일 후 상온과 일치하였다. 또한, 온도 이력에서 상승 및 하강 곡선의 폭이 좁으며, 기울기가 급한 것으로 미루어 초기 구속 응력에 의한 온도균열과 후기 구속 응력에 의한 온도균열 발생 확률이 매우 큰 것으로 분석된다.Figure 11 shows the temperature history according to the age of the simulation member integrally cast the plain concrete. First, the maximum temperature of the heat of hydration reached 1 day (24 hours) after concrete pouring, and then gradually decreased to match the room temperature after 3.5 days. In addition, since the width of the rising and falling curve is narrow and the slope is steep in the temperature history, it is analyzed that the temperature cracking probability due to the initial restraint stress and the temperature cracking occurrence due to the late restraint stress are very high.

도 12는 플레인 콘크리트를 2회 분리 타설한 경우 모의부재의 재령에 따른 온도 이력을 나타낸 것이다. 플레인 콘크리트의 2회 분리 타설(2회 이상도 가능)은 현재 일부 매스 콘크리트 시공시 사용되는 방안으로써 일체 타설과 비교하여 9℃정도 수화열을 경감시키는 것으로 나타났지만, 내외부의 온도차 및 온도이력곡선의 기울기는 크게 나타났고, 후기 2회째 타설한 콘크리트의 수화열 또한 1회 타설의 경우와 유사한 경향으로 나타났다.Figure 12 shows the temperature history according to the age of the mock member in the case of two separate pouring concrete concrete. Twice separate casting of plain concrete (more than two times possible) is currently used in some concrete concrete construction and it has been shown to reduce the heat of hydration by about 9 ℃ compared to all the placing, but the slope of internal and external temperature difference and temperature history curve Was great, and the heat of hydration of the concrete poured in the second time was also similar to that of the one time.

도 13은 상부 플레인 콘크리트 및 하부 초지연제 0.2% 혼입한 콘크리트를 동시에 타설한 모의부재의 재령에 따른 온도 이력을 나타낸 것이다. 초기 플레인 콘크리트의 수화열에 의한 온도곡선 기울기는 급하지만, 일반 콘크리트 일체타설의 경우와 비교하여 최고점 온도를 20℃ 이상 낮추고 중심부와 외측면과의 온도차는 약 10℃ 정도 낮게 나타났다. 또한, 초지연제를 혼입한 콘크리트의 수화곡선은 완만한 기울기를 보이고 장시간에 걸쳐 분포되는 것으로 미루어 구속응력에 의한 균열을 경감시킬 수 있는 것으로 분석된다.FIG. 13 shows the temperature history according to the age of the simulation member in which the upper plain concrete and the lower super-retardant 0.2% mixed concrete are poured at the same time. Although the slope of the temperature curve due to the heat of hydration of the early plain concrete was abrupt, the peak temperature was lowered by more than 20 ℃ and the temperature difference between the center and the outer surface was about 10 ℃ lower than that of the general concrete integral casting. In addition, the hydration curve of concrete mixed with super-retardant shows a gentle slope and distributed over a long time, it can be analyzed that it can reduce the crack caused by the restraint stress.

도 14는 모의부재의 타설방법에 따른 코어위치별 상, 하부 압축강도를 나타낸 것이다. 먼저, 코어 위치별 압축강도는 전반적으로 중심부(①)가 최외부(④)보다 다소 작게 나타났는데, 이는 중심부의 높은 수화열에 의한 수화반응 저하, 내부응력 등의 영향으로 저하된 것으로 분석된다. 또한, 타설방법에 따른 상, 하부 코어 압축강도는 보통콘크리트 일체 타설의 경우는 상, 하부 큰 차이 없이 나타난 반면, 보통콘크리트 분리타설의 경우 상부와 하부가 유사한 강도로써 하부가 상부보다 다소 크게 나타났다. 이는 상부 종결 후 재령 28일의 코어 압축강도이므로 하부는 이미 재령 28일 이후가 되어 하부의 강도가 다소 크게 나타난 것으로 사료된다. 하부 초지연콘크리트(0.2%)와 상부 보통콘크리트의 경우 코어 압축강도는 상부 보다 하부에 초지연제를 혼입한 경우가 크게 나타났는데, 이는 초지연제를 혼입한 콘크리트가 응결이 지연됨에 따라 내부는 더욱 밀실한 수화생성물이 생성되어 내부조직이 치밀하게 되는 것에 기인한 것으로 사료된다.Figure 14 shows the upper and lower compressive strength for each core position according to the method of placing the simulation member. First, the compressive strength for each core position showed that the central part (①) was somewhat smaller than the outermost part (④), which was analyzed to be degraded by the influence of hydration reaction and internal stress due to high heat of hydration. In addition, the upper and lower core compressive strengths according to the casting method were found to be no significant difference between the upper and lower parts in the case of ordinary concrete integral casting, whereas the upper and lower cores showed a similar strength in the lower part than the upper part in the case of the ordinary concrete separate casting. Since the core compressive strength is 28 days after the end of the upper part, the lower part is already after 28 days. In the case of the lower super-delay concrete (0.2%) and the upper common concrete, the core compressive strength was found to be mixed with the super-delay agent in the lower part than the upper part, which is more closed inside as the concrete containing the super-delay agent is delayed. This may be due to the formation of a hydration product and the dense internal tissue.

결론적으로, 개발된 초지연제를 이용할 경우 슬럼프, 공기량 및 블리딩량은 개발된 초지연제에 적정비율로 혼합된 증점제 및 AE제에 의해 혼입률이 증가하여도 슬럼프는 1cm 내외, 공기량은 1% 이내로 변화량이 작게 나타났고, 블리딩량도 플레인과 거의 비슷한 수준으로 발생하였다.In conclusion, in the case of using the developed super delay agent, the slump, air amount and bleeding amount were increased by the thickener and AE agent mixed with the developed super delay agent at the proper ratio. It appeared small, and the amount of bleeding occurred at about the same level as the plane.

응결지연성능은 개발된 초지연제의 혼입율 0.2%이내에서는 약 6일 정도 까지 콘크리트의 응결을 지연시켜 양호한 응결지연성능을 발휘하였고, 시멘트 수화열에 의한 온도이력 특성은 초지연제의 혼입률이 증가함에 따라 최고상승온도는 저하하였고, 수화발열 기간은 넓어지며, 최고상승온도 도달시간은 크게 지연되는 경향이 나타나, 향후 매스콘크리트 등의 시공시 개발된 초지연제를 이용한 타설방안이 계획된다면 수화열 경감에 큰 효과가 있을 것으로 기대된다.The coagulation delay performance showed good coagulation delay performance by delaying the coagulation of concrete for about 6 days within 0.2% of the mixing rate of the developed super delay agent, and the temperature history characteristic by the heat of cement hydration was the highest as the mixing rate of the super delay agent was increased. The rise in temperature has decreased, the duration of hydration heat is widened, and the time to reach the maximum rise temperature tends to be significantly delayed. Therefore, if a casting method using super-delay agents developed during the construction of mass concrete is planned, it will have a great effect on reducing the heat of hydration. It is expected to be.

경화 콘크리트의 압축강도는 초지연제 혼입시 모든 배합에서 플레인과 동등하거나 그 이상으로 나타나 개발된 초지연제의 경우 강도에는 큰 영향을 미치지 않는 것으로 나타났고, 또한 건조수축에 의한 길이변화율 및 동결융해저항성 등의 내구성은 보통 콘크리트와 유사한 성상을 나타내어 콘크리트의 내구성에 미치는 개발된초지연제의 영향은 거의 없는 것으로 나타났다.The compressive strength of hardened concrete was equal to or higher than the plain in all blends when it was mixed, and the developed supertardant did not have a significant effect on the strength. Also, the length change rate and freeze thaw resistance caused by dry shrinkage The durability of is similar to that of concrete, and the effect of the developed super-delay agent on the durability of concrete is found to be little.

모의 부재의 코어 압축강도는 전반적으로 중심부가 최외부 보다 다소 작게 나타났는데, 이는 중심부 수화열 영향으로 저하된 것으로 분석되고, 특히, 하부 초지연콘크리트(0.2%) 상부 보통콘크리트를 타설한 모의부재의 코어 압축강도는 상부 보다 하부에 초지연제를 혼입한 경우가 크게 나타났는데, 이는 초지연제를 혼입한 콘크리트가 응결이 지연됨에 따라 내부는 더욱 밀실한 수화물이 생성됨에 기인한 것으로 사료된다.The core compressive strength of the mock member was generally smaller than the outermost part, which was analyzed to be lowered due to the heat of hydration of the core. In particular, the core of the mock member cast the upper super-delay concrete (0.2%) Compressive strength was found to be greater in the case of the super delay agent incorporating the lower part than the upper part, which may be due to the formation of more tightly hydrated interior of the concrete as the condensation delayed.

온도이력은 플레인 콘크리트 일체타설 중심부의 최고온도가 가장 높고 외측면과의 차이도 큰 것으로 나타났고, 플레인 콘크리트의 분리타설은 중심부의 최고온도를 조금 저감하였다. 또한, 초지연제를 혼입한 콘크리트를 하부에 플레인 콘크리트를 상부에 타설한 일체타설의 경우는 수화열을 대폭적으로 저감 할 수 있어 매우 유리하였다. 온도 균열지수는 초지연제를 혼입한 콘크리트를 일반 콘크리트와 병용하였을 경우 일반콘크리트 일체 타설의 1/4, 일반콘크리트 분리타설의 1/2정도의 온도 균열 발생 확률을 나타내었다.The temperature history showed that the highest temperature in the center of the plain concrete was the highest and the difference with the outer surface was large, and the separation of the plain concrete reduced the maximum temperature in the center slightly. In addition, in the case of integral casting in which concrete containing super-retardant is poured at the bottom of the concrete, the heat of hydration can be greatly reduced, which is very advantageous. The temperature cracking index showed the temperature cracking probability of about 1/4 of general concrete integral casting and 1/2 of general concrete separating casting when concrete mixed with super-retardant was used together with general concrete.

이상에서 언급한 바와 같이, 본 발명에 의해 개발된 초지연제를 응결지연성능을 갖는 콘크리트에 이용하는 경우 기존에 개발되어 있는 지연제에 비해 콘크리트의 응결지연성능이 수배에서 수십배 크기 때문에 보다 넓은 현장 실무에서의 활용가능성이 기대된다.As mentioned above, when the super-delay agent developed by the present invention is used in concrete having a coagulation delay performance, the coagulation delay performance of the concrete is several times to several tens of times larger than that of the conventionally developed retardant. It is expected to be possible to use.

그리고, 개발된 초지연제는 설탕용액에 증점제 및 AE제를 일정비율로 첨가하므로써 기존에 사용상의 문제점으로 제기된 블리딩량의 증가 및 공기량의 감소의 문제점을 해결 보완하였기 때문에 개발된 초지연제 사용시 콘크리트의 품질 및 시공성을 향상시키는데 큰 효과를 얻을 수 있다.In addition, the developed super delay agent solved the problem of the increase of the bleeding amount and the decrease of the air volume, which was raised due to the problem of use by adding the thickener and the AE agent in a certain ratio to the sugar solution. A great effect can be obtained in improving quality and workability.

또한, 매스콘크리트 시공시 수화열 조정을 위하여 사용한다면 종래 수화열 저감을 위해 실시되던 분리타설 및 파이프 쿨링 등의 문제점인 부착성, 수밀성, 내구성 저하 및 시공비 고가 등의 여러 문제점을 해결할 수 있다.In addition, when used to adjust the heat of hydration during the mass concrete construction, it is possible to solve various problems such as adhesion, watertightness, deterioration of durability and construction cost, which are problems such as separation and pipe cooling, which have been conventionally performed for reducing hydration heat.

상기에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to a preferred embodiment of the present invention, those skilled in the art will be variously modified and changed within the scope of the invention without departing from the spirit and scope of the invention described in the claims below I can understand that you can.

Claims (2)

분말상의 설탕과 상온의 물을 중량비로 1:1로 혼합하여 용해시켜 사용하되, 분말상 설탕: 분말상 증점제가 희석된 용액: AE제가 중량비로 1 : 0.1∼1.5 : 0.001∼0.01로 혼합되어 제조된 콘크리트용 초지연제Powdered sugar and water at room temperature are mixed and dissolved in a weight ratio of 1: 1. Powdered sugar: A solution in which a powdered thickener is diluted: AE is mixed in a weight ratio of 1: 0.1 to 1.5: 0.001 to 0.01. Super Delay Retardant 매스콘크리트의 타설에 있어서, 매스 단면을 균등히 분할하고 상기 제 1 항의 방법에 의하에 제조된 초지연제를 혼입률 0.01∼0.2% 범위에서 점차 축소하여 첨가하고, 최상층은 보통콘크리트를 함께 타설하여 수화열을 조정하는 매스 콘크리트의 수화열 조정방법.In the case of mass concrete pouring, the mass section is divided equally, and the super-delay agent prepared according to the above method is gradually reduced in the mixing ratio of 0.01 to 0.2%, and the uppermost layer is poured with ordinary concrete to adjust the heat of hydration. How to adjust the heat of hydration of mass concrete.
KR10-2001-0039943A 2001-07-05 2001-07-05 Super retarding agent for concrete and control of hydration heat of mass concrete using super retarding agent KR100436235B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0039943A KR100436235B1 (en) 2001-07-05 2001-07-05 Super retarding agent for concrete and control of hydration heat of mass concrete using super retarding agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0039943A KR100436235B1 (en) 2001-07-05 2001-07-05 Super retarding agent for concrete and control of hydration heat of mass concrete using super retarding agent

Publications (2)

Publication Number Publication Date
KR20030004461A true KR20030004461A (en) 2003-01-15
KR100436235B1 KR100436235B1 (en) 2004-06-12

Family

ID=27713472

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0039943A KR100436235B1 (en) 2001-07-05 2001-07-05 Super retarding agent for concrete and control of hydration heat of mass concrete using super retarding agent

Country Status (1)

Country Link
KR (1) KR100436235B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100581148B1 (en) * 2006-02-01 2006-05-16 (주) 선엔지니어링종합건축사사무소 Crack reducing method of mass concrete for mat foundation considering the combined addition of fly ash, blast furnace slag and chemical admixture
KR100581150B1 (en) * 2006-02-01 2006-05-16 (주) 선엔지니어링종합건축사사무소 Crack reducing method of mass concrete for mat foundation considering the combined addition of blast furnace slag, limestone powder and chemical admixture
KR100581149B1 (en) * 2006-02-01 2007-11-30 (주) 선엔지니어링종합건축사사무소 Crack reducing method of mass concrete for mat foundation considering the combined addition of fly ash, limestone powder and chemical admixture

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920000651A (en) * 1990-06-12 1992-01-29 장 크라머, 한스 루돌프 하우스 Additives for concrete mixtures
JPH06193033A (en) * 1992-12-25 1994-07-12 Ii R C:Kk Concrete placing method to control temperature stress of mass concrete structure by partial heating
JP3217594B2 (en) * 1994-07-04 2001-10-09 株式会社奥村組 How to prevent cracks in mass concrete
JP3017024B2 (en) * 1994-10-03 2000-03-06 株式会社奥村組 Mass concrete casting method
KR100360822B1 (en) * 1999-10-28 2003-03-29 (주) 선엔지니어링종합건축사사무소 Segregation-reducing type superplasticizer for concrete

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100581148B1 (en) * 2006-02-01 2006-05-16 (주) 선엔지니어링종합건축사사무소 Crack reducing method of mass concrete for mat foundation considering the combined addition of fly ash, blast furnace slag and chemical admixture
KR100581150B1 (en) * 2006-02-01 2006-05-16 (주) 선엔지니어링종합건축사사무소 Crack reducing method of mass concrete for mat foundation considering the combined addition of blast furnace slag, limestone powder and chemical admixture
KR100581149B1 (en) * 2006-02-01 2007-11-30 (주) 선엔지니어링종합건축사사무소 Crack reducing method of mass concrete for mat foundation considering the combined addition of fly ash, limestone powder and chemical admixture

Also Published As

Publication number Publication date
KR100436235B1 (en) 2004-06-12

Similar Documents

Publication Publication Date Title
Felekoğlu et al. Effect of chemical structure of polycarboxylate-based superplasticizers on workability retention of self-compacting concrete
Bilim et al. Influence of admixtures on the properties of alkali-activated slag mortars subjected to different curing conditions
CN110272244B (en) Crack-resistant concrete and preparation process thereof
KR102069789B1 (en) A high early strength concrete composition modified with polymer for concrete admixture having excellent durability and repairing method for concrete pavement using the same
US4921537A (en) Shrinkage compensated mortar material
KR101970676B1 (en) High speed concrete composition for road pavement and repair
WO2001074737A1 (en) Hydraulic binder resulting from the mixture of a sulphatic binder and a binder comprising the mineralogical compound c4a3s
US10308554B2 (en) Concrete composition
CN109133774A (en) Microdilatancy type assembled architecture ultrahigh-performance cement-based grouting material and preparation method
KR100403979B1 (en) Manufacturing method of The rapid set latex modified concrete composite
Bouzoubaâ et al. Deicing salt scaling resistance of concrete incorporating fly ash and (or) silica fume: laboratory and field sidewalk test data
Pizoń Long-term compressive strength of mortars modified with hardening accelerating admixtures
US4769077A (en) Cementitious grout patching formulations and processes
KR100436235B1 (en) Super retarding agent for concrete and control of hydration heat of mass concrete using super retarding agent
JPS6235804A (en) Manufacture of concrete
KR100875240B1 (en) High performance concrete composition for constructing bridge slab integrated with pavement and bridge slab construction method using the same
KR102121560B1 (en) Calcium sulfur aluminate high early strength material, and composition for low weight repair mortar comprising thereof
Boss et al. Testing the frost resistance of concrete with different cement types-experience from laboratory and practice
Gagne et al. Frost durability of high performance concretes
CN106587839B (en) A kind of grouting agent of ungauged regions, Self-curing, anticorrosive function
CN117263623A (en) Cement-based phase change material and preparation method thereof
CN111848068A (en) Rapid repair mortar for horizontal surface defects and preparation method thereof
CN1326795C (en) Addition for concrete of road for enhacing anti-bending strength
CN112321179B (en) Weather-resistant low-heat cement and preparation method thereof
WO2012069763A1 (en) Novel cement that is resistant to internal sulphate reactions and to external sulphate attacks

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081028

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee