KR20030003501A - Method for preparing glass bead for X-Ray Flourescence - Google Patents

Method for preparing glass bead for X-Ray Flourescence Download PDF

Info

Publication number
KR20030003501A
KR20030003501A KR1020010039388A KR20010039388A KR20030003501A KR 20030003501 A KR20030003501 A KR 20030003501A KR 1020010039388 A KR1020010039388 A KR 1020010039388A KR 20010039388 A KR20010039388 A KR 20010039388A KR 20030003501 A KR20030003501 A KR 20030003501A
Authority
KR
South Korea
Prior art keywords
sample
specimen
powder
melting
glass bead
Prior art date
Application number
KR1020010039388A
Other languages
Korean (ko)
Other versions
KR100427543B1 (en
Inventor
권인국
Original Assignee
고려용접봉 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려용접봉 주식회사 filed Critical 고려용접봉 주식회사
Priority to KR10-2001-0039388A priority Critical patent/KR100427543B1/en
Publication of KR20030003501A publication Critical patent/KR20030003501A/en
Application granted granted Critical
Publication of KR100427543B1 publication Critical patent/KR100427543B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2866Grinding or homogeneising

Abstract

PURPOSE: A method for manufacturing glass bead is provided to prevent cracking of furnace and obtain uniform specimen by preventing generation of defects at the specimen. CONSTITUTION: A method for manufacturing glass bead, comprises a first step of crushing an object specimen into powder; a second step of mixing the powder specimen with a flux and heating the mixture until the mixture reaches a semi-solid state; a third step of obtaining molten material by heating the specimen to the temperature higher than the specimen melting temperature; and a fourth step of injecting the molten specimen into a casting mold, and annealing the injected specimen in a heater having a temperature lower than the specimen melting temperature of the third step.

Description

형광 엑스선 분석용 글래스비드 제조방법{Method for preparing glass bead for X-Ray Flourescence}Glass bead for fluorescence X-ray analysis {Method for preparing glass bead for X-Ray Flourescence}

본 발명은 형광 X선 분석용 시료제조방법에 관한 것으로 더욱 상세하게는 형광 X선 분석용 글래스비드의 제조방법에 관한 것이다.The present invention relates to a method for preparing a sample for fluorescence X-ray analysis, and more particularly, to a method for producing glass beads for fluorescence X-ray analysis.

고속전자의 흐름을 물질에 충돌시켰을 때 생기는 파장이 짧은 전자기파인 X선은 그 특유한 성질 때문에 여러기술분야에서 응용되고 있다.X-rays, which are short-wavelength electromagnetic waves generated by collision of high-speed electrons with a material, have been applied in various technical fields because of their unique properties.

예를 들면, 의료면에서의 각종 병변(病變)이나 골격이상의 진단, 염증이나 종양의 치료, 공업면에서의 재료나 제품의 비파괴검사는 X선 발견 후부터 현재까지 큰 비중을 차지하고 있는 응용분야이며, 특히 공업재료의 비파괴검사에의 이용은 잘 알려진 X선의 응용분야이다.For example, the diagnosis of various lesions and skeletal abnormalities in the medical field, the treatment of inflammation and tumors, and the nondestructive examination of materials and products in the industrial field have been a major application field since the discovery of X-rays. In particular, the use of nondestructive testing of industrial materials is a well-known application field of X-rays.

한편 X선에 의한 물질구조의 해석법, 즉 X선해석은 결정학이나 고체물리학에 새로운 면을 개척함과 동시에 새로운 재료를 만들어내는 기반을 제공하고 있는바, 그 중 X선 형광분석법은 강력한 X선을 물질에 충돌시켜 그 곳에서 2차적으로 방출되는 그 물질 중의 원소에 고유한 파장을 가진 특성 X선, 즉 형광X선의 파장분포로부터 물질 중의 성분원소의 종류나 성분비를 추정하는 방법으로서 X선 분광분석(分光分析)(X-Ray Flourescence)이라고도 한다.On the other hand, X-ray analysis of material structures, that is, X-ray analysis, provides a foundation for creating new materials while pioneering new facets in crystallography and solid physics. X-ray spectroscopy as a method of estimating the type and ratio of component elements in a substance from the wavelength distribution of characteristic X-rays, that is, fluorescent X-rays, which have a wavelength inherent to the elements in the substance which are emitted secondarily from the substance Also called X-Ray Flourescence.

형광 X선은 X선에 의하여 원자 내의 전자가 낮은 에너지준위(準位)에서 높은 에너지준위로 올라가게 되어, 짧은 시간 내에 중간의 에너지준위를 거쳐 다시 원래의 낮은 에너지준위로 되돌아감으로써 일어난 것으로 이 스펙트럼을 원소분석(X선형광분석법)에 이용하는 것이다.Fluorescent X-rays are the result of X-rays in which electrons in atoms rise from a low energy level to a high energy level, and then return to their original low energy level through an intermediate energy level within a short time. The spectrum is used for elemental analysis (X-ray fluorescence analysis).

이러한 형광 X선 분광분석를 하기 위해서는 어느 형광 X선 분광분석기기에서나 시료를 고체상태의 균일 혼합물 또는 고체상태의 단일화합물로 제조할 필요가 있는바, 형광 X선 분광분석에서는 이 시료의 제조기술이 분석의 신속성 및 정확성에 아주 중요한 핵심요소가 되고 있다.In order to perform such fluorescence X-ray spectroscopy, it is necessary to prepare a sample as a uniform mixture in solid state or a single compound in solid state in any fluorescence X-ray spectrometer. Has become a very important key factor in the speed and accuracy of the system.

종래 이러한 형광 X선 분광분석에 사용되는 시료제조방법에는 크게 2가지가 소개되고 있는데 그 하나는 가압성형(Pressurization Molding)으로서 이는 시료를 분쇄한 뒤 이를 몰드에 고압주입하여 시료화 하는 방법이다.Conventionally, two kinds of sample manufacturing methods used in the fluorescence X-ray spectroscopy have been introduced. One is pressurization molding, which is a method of pulverizing a sample and injecting it into a mold to sample.

다른 하나로는 글래스비드(Glass Bead)법이라고 하는 것인데 이는 분쇄된 시료를 용융하여 캐스트 몰드에 주입하고 이를 냉각시켜 시료화 하는 방법이다.The other is called glass bead (Glass Bead) method, which is a method of melting the pulverized sample is injected into the cast mold and cooled to sample.

상기 소개된 형광 X선 분광분석에 사용되는 시료제조방법은 각기 장단점이있지만 글래스 비드법이 자주 이용되고 있다. 이는 분석에 영향을 미치는 인자로서, 분석시료의 입도의 영향이 분말상태를 그대로 사용하는 가압성형에서는 존해하나 분석 시료를 녹여 사용하는 글래스비드법에는 입도의 영향이 없으며, 매트릭스 효과(Matrix effect:분석 시료 혼합물에서 분석원소에 미치는 공존원소의 영향) 있어서는 가압성형법에서는 그 정도가 심하나 글래스비드법에서는 그 영향이 작기 때문인 것으로 알려져 있다.Sample preparation methods used in the above-described fluorescence X-ray spectroscopy have advantages and disadvantages, but glass beads are frequently used. This is a factor that affects the analysis. The influence of the particle size of the analytical sample is present in the press molding using the powder state as it is, but the glass bead method that melts the analytical sample has no effect on the particle size. The effect of coexisting elements on the analytical elements in the sample mixture is known to be due to the high degree of pressure in the molding method but the small effect in the glass bead method.

또한 글래스비드법에서는 제조된 시료에 있어서 편석(시료 혼합물중 몇 가지 성분이 뭉쳐서 불균일하게 되는 것)이 존재하지 않기 때문이기도 하다.This is also because the glass bead method does not have segregation (which causes some components in the sample mixture to aggregate and become nonuniform) in the prepared sample.

따라서 형광 X선 분광분석에 사용되는 시료제조방법이 자주 이용되고 있는바, 시료를 용융하는 장치로서는 가스버너 방식, 전기로 방식 및 고주파로방식이 사용되고 있으며 이들 분쇄된 시료의 용융장치는 각기 장단점이 있으며 이를 표로 정리하면 다음과 같다.Therefore, the sample manufacturing method used for fluorescence X-ray spectroscopy is frequently used. As a device for melting a sample, a gas burner method, an electric furnace method, and a high frequency furnace method are used, and these pulverized sample melting apparatuses have advantages and disadvantages. This is summarized as follows.

(표1)Table 1

용융방식Melting method 용융시간Melting time 장 점Advantages 단 점Disadvantages 가스버너방식Gas burner method 20~30분20-30 minutes 전력소요 적음Low power consumption 용융작업시 실내온도 상승Room temperature rise during melting 전기로 방식Electric furnace 20~30분20-30 minutes 유지보수 용이Easy maintenance 전력소요량 과다Excessive power consumption 고주파로방식High frequency furnace 4~10분4-10 minutes 용융시간이 짧음Short melting time 고장시 수리의 어려움Difficulty in repairing in case of breakdown

고주파로 방식은 위에서 본 바와 같이 시료의 용융시간이 4~ 10분으로 짧아 많이 이용되고 있는 방법이나, 융제와 분말시료를 백금제 도가니에 넣고 고주파로를 장착해 용융시키면 초기의 고주파 발진에 의해 도가니 속의 분말이 장치 내부로흘러나오는 문제점이 있으며 도가니로에서 분석대상 시료의 용융온도 이상에서 급작스런 가열로 도가니로의 균열 등이 빈번히 발생하여 왔다.The high frequency furnace method is widely used because the melting time of the sample is short as 4 to 10 minutes, as shown above.However, when the flux and powder sample are put into a platinum crucible and the high frequency furnace is attached and melted, There is a problem that the powder flows into the apparatus, and in the crucible furnace, cracks in the crucible furnace have been frequently generated by sudden heating above the melting temperature of the sample to be analyzed.

또한 X선이 조사될 때 시료의 단면마다의 균일성은 분석 정확성에 커다란 팩터가 되는데 제조된 시료의 균일성에 영향을 미치는 인자로는 시료 용융시 투입되는 융제와 시료의 혼합비, 용융시간, 용융물의 냉각방법 등이 있을 수 있으며 이러한 것들의 변화에 따라 제조된 시료의 결정화, 기포, 균열 등의 결점(defect)이 시료의 균일성에 직접적으로 연관된다.In addition, the uniformity of each cross section of the sample when X-rays are irradiated is a large factor in the accuracy of analysis. Factors affecting the uniformity of the prepared sample include the mixing ratio of melt and sample, melting time and cooling of the melt. And the like, and defects such as crystallization, bubbles, and cracks of the prepared samples are directly related to the uniformity of the sample.

이에 본 발명은 위와 같은 점에 입각하여 안출된 것으로 본 발명의 목적은 제조된 시료의 결정화, 기포, 균열 등의 결점(defect)이 발생하는 것을 방지하여 균일한 시료를 얻을 수 있는 형광 X선 분석용 글래스비드 제조방법을 제공함에 있다.Accordingly, the present invention has been devised in view of the above-mentioned point, and an object of the present invention is to prevent the occurrence of defects such as crystallization, bubbles, cracks, etc. of the prepared sample, and thus to obtain a uniform sample. The present invention provides a method for producing glass beads.

상기와 같은 본 발명의 목적은 형광 X선 분석용 시료를 제조함에 있어서, 분석대상 시료를 일반 전기로 등에서 예비가열(용융)하여 반고체상태로 한 다음 고주파로에서 완전 용융하고 이를 분석대상 시료의 용융점 이하의 발열체에서 서냉시켜 고체상태로 하는 것에 의해 달성된다.The object of the present invention as described above is to prepare a sample for fluorescence X-ray analysis, the sample to be analyzed is preheated (melted) in a general electric furnace, etc. to a semi-solid state and then completely melted in a high-frequency furnace and below the melting point of the sample to be analyzed. It is achieved by slow cooling in a heating element of to obtain a solid state.

즉, 구체적으로 본 발명의 형광 X선 분석용 시료의 제조방법은 분석대상 시료를 분말화 하기 위한 시료 분쇄단계: 이 분쇄된 분말형태의 시료를 융제와 혼합하여 이 혼합물을 가열하여 반고체상태로 제조하는 예비가열단계: 상기 예비가열된 시료를 시료 용융온도 이상으로 용융물을 얻는 시료용융단계: 및 이 용융된 시료를 캐스팅 몰드에 주입한 후 이를 시료용융단계의 용융온도 이하의 발열체에서 서냉시키는 것을 특징으로 한다.Specifically, the method for preparing a sample for fluorescence X-ray analysis of the present invention is a sample grinding step for powdering the sample to be analyzed: a mixture of the pulverized powder form sample with a flux is heated to prepare a semi-solid state Preheating step: A sample melting step of obtaining a melt above the sample melting temperature of the preheated sample: and after the molten sample is injected into the casting mold and characterized in that it is slowly cooled in a heating element below the melting temperature of the sample melting step It is done.

본 발명의 방법에서 분석대상 시료를 예비가열하는 목적은 고주파로에서의 급작스런 용융가열시 시료가 분해될 수 있으므로 이를 방지하고 또 융제와 시료를 도가니(일반적으로는 백금제 도가니)에 투입하고 고주파로에 장착해 가열시 초기에 고주파 발진에 의해 도가니속의 분말이 기기내부로 흘러나와 시료의 제조에 어려움이 있는바, 시료의 용융온도보다는 낮은 온도에서 예비적으로 가열하여 반고체상태의 시료를 제조하고 이를 융제가 혼합한 상태에서 고주파로에서 본격적으로 용융하는 것이다.In the method of the present invention, the purpose of preheating a sample to be analyzed is to prevent the sample from being decomposed during rapid melt heating in a high frequency furnace, and to prevent the addition of the flux and the sample into a crucible (usually a platinum crucible) and to mount the high frequency furnace. When heating, the powder in the crucible flows into the inside of the instrument by high frequency oscillation at the initial stage, which makes it difficult to prepare the sample.The sample is preheated at a temperature lower than the melting temperature of the sample to prepare a semi-solid sample, and the flux is It melts in earnest in a high frequency furnace in the mixed state.

예비가열온도는 분석대상 시료의 용융온도보다는 낮으므로 일반적인 전기로의 사용이 가능하다.Since the preheating temperature is lower than the melting temperature of the sample to be analyzed, it is possible to use a general electric furnace.

이러한 예비가열단계에서의 온도설정은 분석대상 시료에 따라 달라 용융점이 높은 안정된 산화물의 경우에는 980℃이상에서 가열하여야 하나 일반적으로 980℃정도에서 적정시간 가열한다. 그러나 대부분의 산화물의 경우에는 예비가열온도가 980℃를 초과하게 되면 시료의 기화가 시작되는 것도 있기 때문에 가급적 예비가열온도는 980℃를 넘지 않도록 함이 바람직하다.The temperature setting in this preheating step depends on the sample to be analyzed. It should be heated above 980 ℃, but in general, it should be heated at about 980 ℃ for a proper time. But for most oxides When the preheating temperature exceeds 980 ° C, vaporization of the sample may be initiated. Therefore, the preheating temperature is preferably not to exceed 980 ° C.

또한 본 발명은 예비가열되어 반고체상태로 된 시료를 고주파로에서 용융하여 이 용융된 시료를 캐스팅 몰드에 주입하여 용융온도 이하의 발열체에서 서냉시키는 것을 특징으로 한다. 이렇게 하면 기포, 결정화 및 균열이 없는 고체상태의 시료를 얻을 수 있는 것이다.In another aspect, the present invention is characterized in that the pre-heated semi-solid sample is melted in a high frequency furnace, and the molten sample is injected into a casting mold to be slowly cooled in a heating element below a melting temperature. In this way, a solid sample without bubbles, crystallization and cracking can be obtained.

한편, 시료의 용융시 융점을 낮추기 위해 융제를 투입하여 함께 가열하는데 제조된 분석대상 시료의 균일성 및 분석원소의 측정 정확성은 이 투입되는 융제와 분말시료의 혼합비와도 밀접한 관계가 있다.On the other hand, the uniformity of the sample to be analyzed and the measurement accuracy of the analytical element prepared by adding a flux to lower the melting point during melting of the sample is closely related to the mixing ratio of the injected flux and the powder sample.

본 발명자의 실험에 의하면, 시료분말과 융제의 혼합비는 1:10 ~ 1:15이 바람직한 것으로 확인되었다. 시료분말과 융제의 혼합비가 1:15를 초과하게 되면 시료의 용융시 고주파로용 도가니에서 넘쳐 흘러나오거나 융제에 의한 과다희석으로 분석 정확도가 감소하며, 반대로 시료분말과 융제의 혼합비가 1:10보다 낮게 되면 용융이 안 되거나 캐스팅 몰드에서 분석에 적합한 글래스 비드의 크기가 제조되지 않기 때문이다.According to the experiment of the present inventors, it was confirmed that the mixing ratio of the sample powder and the flux is preferably 1:10 to 1:15. If the mixing ratio of sample powder and flux exceeds 1:15, the accuracy of analysis decreases due to overflowing from the crucible for high frequency furnace melting or excessive dilution by flux, whereas the mixing ratio of sample powder and flux is less than 1:10. If it is low, it does not melt or the size of the glass beads suitable for analysis in the casting mold is not produced.

이상 설명한 본 발명의 방법에 따라 규산염 광물, 탄산염 광물 및 티탄광물각각에 대해 일반 전기로에서 980℃로 5분간 예비용융시켜 반고체상태로 한 뒤 고주파전기로(Philips제 상품명 Mini Fuse)에서 표2의 조건대로 1,100℃에서 4분간 용융시켜 500℃로 가열된 소형 일반전기로에서 비드로 성형시키는 캐스팅 몰드에 용융물을 주입하여 위 전기로를 서서히 낮추면서 서냉시켜가면서 완전한 글래스비드를 제조하였다.According to the method of the present invention described above, the silicate minerals, the carbonate minerals, and the titanium minerals were pre-melted at 980 ° C. for 5 minutes in a general electric furnace to be semi-solid, and then the conditions of Table 2 in a high frequency electric furnace (trade name Mini Fuse manufactured by Philips). Melting was injected into a casting mold which is melted at 1,100 ° C. for 4 minutes and formed into beads in a small general electric furnace heated to 500 ° C., thereby slowly cooling the furnace while slowly lowering the furnace to prepare a complete glass bead.

위와 같이 제조된 분석용 시료를 형광 X선 분석기(Philips제 상품명 PW2400.)에서 이를 분석하고 그 분석치를 표준시료와 비교하였다.(표 3 ~ 표5참조)The analytical sample prepared as described above was analyzed by a fluorescent X-ray analyzer (PW2400. Manufactured by Philips) and the analyzed value was compared with a standard sample (see Tables 3 to 5).

(표2)Table 2

시료량Sample amount 융제량Flux 시료/융제Sample / Flush 박리, 탈포제Peeling, defoamer 용융온도Melting temperature 시간time 0.6g ?BR>0.1mg0.6g? BR> 0.1mg Na2B4O78.0g±1.0mgNa 2 B 4 O 7 8.0g ± 1.0mg 1/13.31 / 13.3 Nal0.05g±0.1mgNal0.05g ± 0.1mg 1,100℃1,100 ℃ 4분4 minutes

(표3)Table 3

SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 TiO2 TiO 2 CaOCaO MgOMgO K2OK 2 O P2O5 P 2 O 5 표준시료( IPT53)Standard Sample (IPT53) 65.8065.80 18.3018.30 0.130.13 0.0130.013 0.270.27 0.0500.050 12.1012.10 0.0720.072 측정치Measure 65.7465.74 18.2618.26 0.130.13 0.0150.015 0.290.29 0.0460.046 12.1412.14 0.0740.074

(표4)Table 4

CaOCaO MgOMgO SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 PP SS K2OK 2 O 표준시료( CM1760)Standard Sample (CM1760) 37.5937.59 15.3815.38 0.250.25 0.1100.110 0.4590.459 0.00120.0012 0.0460.046 0.0190.019 측정치Measure 37.6237.62 15.3415.34 0.250.25 0.1200.120 0.4600.460 0.00150.0015 0.0440.044 0.0200.020

(표5)Table 5

TiO2 TiO 2 SiO2 SiO 2 Fe2O3 Fe 2 O 3 ZrO2 ZrO 2 CaOCaO MgOMgO Cr2O3 Cr 2 O 3 MnOMnO 표준시료( X 61)Standard sample (X 61) 93.3093.30 2.032.03 0.680.68 1.341.34 0.0900.090 0.0600.060 0.110.11 0.0100.010 측정치Measure 93.2493.24 2.002.00 0.670.67 1.351.35 0.0940.094 0.0530.053 0.110.11 0.0130.013

표준시료중 IPT53은 규산염광물의 표준시료로서 브라질의 표준재료그룹 기술연구소(Instituto De Pesquisas Technologicas Do Estado De Sao Paulo)에서 제조한 제조한 것을, CM1760은 탄산염광물로서 중국 금속표준화연구원(China Metallurgical Standadization Research Institute)에서 제조한 것을 그리고 X 61은 남아프리카공화국의 민텍(Mintek, P/Bag X3015 Randburg 2125)에서 제조한 티탄광물의 표준시료를 각각 나타낸다.IPT53 is a standard sample of silicate mineral manufactured by Instituto De Pesquisas Technologicas Do Estado De Sao Paulo of Brazil. CM1760 is a carbonate mineral. X 61 represents a standard sample of titanium mineral prepared by Mintek, P / Bag X3015 Randburg 2125, South Africa.

측정치는 각 시료에 대해 3회 측정해 평균치를 얻은 수치이다.The measured value was the number of times measured for each sample, and the average value was obtained.

위에서 볼 수 있는 바와 같이, 본 발명에 따라 제조된 형광 X선 분석시료는 측정치가 표준시료의 성분비와 거의 일치한다는 것을 알 수 있다.As can be seen from the above, it can be seen that the fluorescent X-ray sample prepared according to the present invention almost matches the component ratio of the standard sample.

이상의 실시예들은 규산염광물, 탄산염광물 및 티탄광물에 대한 것이지만 형광 X선분석에서 측정할 수 있는 물질, 즉 모든 금속 또는 비금속 산화물 및 화합물에 대해서도 동일하게 본 발명의 방법을 적용할 수 있음은 물론이다.Although the above examples are directed to silicate minerals, carbonate minerals and titanium minerals, the method of the present invention is equally applicable to materials that can be measured in fluorescence X-ray analysis, that is, all metal or nonmetal oxides and compounds. .

이상 설명한 본 발명의 방법에 따르면 분석대상 시료에 예비가열단계 및 용융물의 서냉과정을 적용함으로써 시료의 용융시 발생하던 도가니로의 빈번한 균열발생을 방지할 수 있고 또한 제조된 시료의 균일성이 확보되어 더욱 정확한 형광 X 선 분석이 가능하다.According to the method of the present invention described above by applying the preheating step and the slow cooling process of the melt to the sample to be analyzed can prevent frequent cracking to the crucible that occurred during melting of the sample and also ensure the uniformity of the prepared sample More accurate fluorescence X-ray analysis is possible.

Claims (3)

형광 X선 분석용 시료제조방법에 있어서,In the sample production method for fluorescence X-ray analysis, 분석대상 시료를 분말화 하기 위한 시료 분쇄단계:Sample grinding step to powder the sample to be analyzed: 상기 분쇄된 분말형태의 시료를 융제와 혼합하여 이 혼합물을 가열하여 반고체상태로 제조하는 예비가열단계:Preheating step of preparing the semi-solid state by heating the mixture by mixing the pulverized powder of the sample with the flux: 상기 예비가열된 시료를 시료 용융온도 이상으로 가열하여 용융물을 얻는 시료용융단계: 및Sample melting step of heating the preheated sample to a sample melting temperature or more to obtain a melt: And 상기 용융된 시료를 캐스팅 몰드에 주입한 후 이를 상기 시료용융단계의 용융온도 이하의 발열체에서 서냉시키는 것을 특징으로하는 형광 X선 분석용 글래스비드 제조방법.And injecting the molten sample into a casting mold, and then slowly cooling the molten sample in a heating element below a melting temperature of the sample melting step. 1항에 있어서, 상기 시료분말과 융제의 혼합비는 1:10 ~ 1:15인 것을 특징으로하는 형광 X선 분석용 글래스비드 제조방법.The method of claim 1, wherein the mixing ratio of the sample powder and flux is 1:10 to 1:15 glass beads for fluorescence X-ray analysis. 1항 또는 2항에 있어서, 상기 시료는 규산염광물, 탄산염광물 또는 티탄광물인 것을 특징으로하는 형광 X선 분석용 글래스비드 제조방법.The method of claim 1 or 2, wherein the sample is a silicate mineral, carbonate mineral or titanium mineral glass beads production method characterized in that the.
KR10-2001-0039388A 2001-07-03 2001-07-03 Method for preparing glass bead for X-Ray Flourescence KR100427543B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0039388A KR100427543B1 (en) 2001-07-03 2001-07-03 Method for preparing glass bead for X-Ray Flourescence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0039388A KR100427543B1 (en) 2001-07-03 2001-07-03 Method for preparing glass bead for X-Ray Flourescence

Publications (2)

Publication Number Publication Date
KR20030003501A true KR20030003501A (en) 2003-01-10
KR100427543B1 KR100427543B1 (en) 2004-04-28

Family

ID=27713108

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0039388A KR100427543B1 (en) 2001-07-03 2001-07-03 Method for preparing glass bead for X-Ray Flourescence

Country Status (1)

Country Link
KR (1) KR100427543B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130075488A (en) * 2011-12-27 2013-07-05 삼성전기주식회사 Quantative analysys method for dielectric substance of multi-layer ceramic capacitor
KR20130143368A (en) 2012-06-21 2013-12-31 주식회사 포스코 Method for manufacturing glassbead for xrf analysis of fe-p alloy iron
CN107271253A (en) * 2017-08-23 2017-10-20 唐山建龙特殊钢有限公司 The method that ferroalloy class sample founds X-ray fluorescence spectra analysis sheet glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101332364B1 (en) 2012-02-27 2013-11-22 한국기초과학지원연구원 Method of manufacturing glass reference materials for micro analysis of trace precious metals

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940004819B1 (en) * 1991-12-05 1994-06-01 포항종합제철 주식회사 Glass bead making method
JPH0720020A (en) * 1993-06-16 1995-01-24 Mitsubishi Materials Corp Method for adjusting glass bead sample for x-ray fluorescence analysis
KR960006541B1 (en) * 1993-07-14 1996-05-17 포항종합제철주식회사 Method of glass bead
JPH10170414A (en) * 1996-12-06 1998-06-26 Tdk Corp Method for producing x-ray fluorescence analysis glass bead and method for x-ray fluorescence analysis using the glass bead
KR20020039433A (en) * 2000-11-21 2002-05-27 이구택 A method of preparing glass-bead for analysis of total iron quantity in iron ore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130075488A (en) * 2011-12-27 2013-07-05 삼성전기주식회사 Quantative analysys method for dielectric substance of multi-layer ceramic capacitor
KR20130143368A (en) 2012-06-21 2013-12-31 주식회사 포스코 Method for manufacturing glassbead for xrf analysis of fe-p alloy iron
CN107271253A (en) * 2017-08-23 2017-10-20 唐山建龙特殊钢有限公司 The method that ferroalloy class sample founds X-ray fluorescence spectra analysis sheet glass

Also Published As

Publication number Publication date
KR100427543B1 (en) 2004-04-28

Similar Documents

Publication Publication Date Title
Lenoir et al. Quantitation of sulfate solubility in borosilicate glasses using Raman spectroscopy
Salakjani et al. Mineralogical transformations of spodumene concentrate from Greenbushes, Western Australia. Part 2: Microwave heating
Dwivedi et al. Optical properties of Eu3+ in oxyfluoroborate glass and its nanocrystalline glass
ElBatal et al. Gamma-ray interactions with WO3-doped sodium phosphate glasses
Banjuraizah et al. Synthesis and characterization of xMgO–1.5 Al2O3–5SiO2 (x= 2.6–3.0) system using mainly talc and kaolin through the glass route
KR100427543B1 (en) Method for preparing glass bead for X-Ray Flourescence
Yang et al. Microwave process for sintering of uranium dioxide
Assadi et al. Experimental and theoretical spectroscopic study of erbium doped aluminosilicate glasses
Schneider et al. Local structure of sodium aluminum metaphosphate glasses
Yao et al. Simultaneous enhancement of upconversion luminescence and thermometric property of upconversion nanoparticles by tuning crystal field
Liu et al. Intense 2.7 μm mid-infrared emission of Er3+ in oxyfluoride glass ceramic containing NaYF4 nanocrystals
Siligardi et al. Densification of glass powders belonging to the CaO–ZrO2–SiO2 system by microwave heating
Wang et al. Unveiling non-isothermal crystallization of CaO–Al2O3–B2O3–Na2O–Li2O–SiO2 glass via in situ X-ray scattering and raman spectroscopy
Guo et al. Preparation of CaF2 transparent ceramics by cold sintering
CN106746676A (en) A kind of Surface Crystallization devitrified glass containing rare earth and preparation method and application
Uematsu et al. Preparation of YVO4: Eu3+ phosphor using microwave heating method
Spiridigliozzi et al. Grain-size effect on Cr3+ and F-centres photoluminescence in nanophase MgAl2O4 ceramics
Kolobkova et al. Metal sodium nanoparticles in fluorophosphate glasses
Franco et al. Magnetic resonance study of the crystallization behavior of InF3-based glasses doped with Cu2+, Mn2+ and Gd3+
Chah et al. Micro-Raman and EPR studies of β-radiation damages in aluminosilicate glass
Kang et al. Structure and properties of CaO–MgO–Al2O3–SiO2 glasses obtained by vitrification of granite wastes
Kaewwiset et al. ESR and spectral studies of Er3+ ions in soda-lime silicate glass
EP3286544A1 (en) Method and apparatus for processing a sample material
Mollá et al. Dielectric losses of self-supporting chemically vapour deposited diamond materials
Saha et al. Studies on synthesis and properties of magnesia refractory aggregates prepared from Indian magnesite through plasma fusion

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20061212

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee