KR20030001579A - Formation method for nitride layer using atomic layer deposition - Google Patents

Formation method for nitride layer using atomic layer deposition Download PDF

Info

Publication number
KR20030001579A
KR20030001579A KR1020010036356A KR20010036356A KR20030001579A KR 20030001579 A KR20030001579 A KR 20030001579A KR 1020010036356 A KR1020010036356 A KR 1020010036356A KR 20010036356 A KR20010036356 A KR 20010036356A KR 20030001579 A KR20030001579 A KR 20030001579A
Authority
KR
South Korea
Prior art keywords
nitride film
amide compound
group
gas
formation method
Prior art date
Application number
KR1020010036356A
Other languages
Korean (ko)
Inventor
김윤수
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020010036356A priority Critical patent/KR20030001579A/en
Publication of KR20030001579A publication Critical patent/KR20030001579A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: A method for fabricating a nitride layer by an atomic layer deposition(ALD) method is provided to improve stability and reduce danger by using an amide compound which is more stable as compared with an alkyl compound. CONSTITUTION: An amide compound of a XIII group element is supplied to the upper surface of a semiconductor substrate having a lower structure and is absorbed to the surface of the substrate by using carrier gas. Purge gas is supplied to remove an absorbed material. Reaction gas is supplied to react with the amide compound absorbed to the surface of the semiconductor substrate. Purge gas is supplied to eliminate a reaction product and a remaining material.

Description

원자층 증착법을 이용한 질화막 형성 방법{FORMATION METHOD FOR NITRIDE LAYER USING ATOMIC LAYER DEPOSITION}Nitride film formation method using atomic layer deposition method {FORMATION METHOD FOR NITRIDE LAYER USING ATOMIC LAYER DEPOSITION}

본 발명은 반도체 제조에 있어서의 질화막 형성방법에 관한 것으로, 특히 13족 원소(M; B, Al, Ga, In, Tl)의 질화막을 원자층 증착법을 이용하여 형성하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a nitride film in semiconductor manufacturing, and more particularly, to a method for forming a nitride film of group 13 elements (M; B, Al, Ga, In, Tl) using an atomic layer deposition method.

질화막은 DRAM이나 LED에서 많이 응용되고 있는 물질로, AlN, GaN, InN 은 풀 컬러 LED의 기본 물질로 사용되고 있을 뿐만 아니라, 확산 방지막으로도 사용되고 있다.Nitride films are widely used in DRAMs and LEDs. AlN, GaN, and InN are not only used as basic materials for full color LEDs, but also as diffusion barriers.

13족 원소의 질화막을 형성하는 데에 있어서, 종래에는 13족 원소의 알킬 화합물과 반응기체로서의 암모니아를 사용하여 하기 반응식 1과 같은 반응에 의하여 형성하였다.In forming a nitride film of a Group 13 element, conventionally, an alkyl compound of a Group 13 element and ammonia as a reactant were formed by a reaction as in Scheme 1 below.

MR3+ NH3--> MN + 3HRMR 3 + NH 3- > MN + 3HR

(M은 13족 원소, R은 알킬기)(M is group 13 element, R is alkyl group)

상기 MR3와 NH3가 반응하여 질화막을 형성하기 위해서는 강한 결합인 M-R과 N-H 결합이 끊어져야 하므로, 일반적으로 900℃이상의 높은 반응온도와 많은 양의 NH3가 필요하다. 반응과정을 좀 더 상세히 설명하면, 우선 MR3가 반응기 내에서 반응기체인 암모니아와 만나서 반응하게 되어 질화막을 형성하고 반응 생성물인 HR은 진공으로 배기된다. 그러나, 13족 원소의 알킬 화합물인 MR3은 물질 특성상 발화성이 매우 강하기 때문에 취급시 매우 세심한 주의가 필요하고 장비의 안전장치가 필요하다.In order to form a nitride film by reacting the MR 3 and the NH 3 , strong MR and NH bonds must be broken, and therefore, a high reaction temperature of 900 ° C. or more and a large amount of NH 3 are required. The reaction process will be described in more detail. First, MR 3 reacts with ammonia, which is a reactant, in the reactor to form a nitride film, and the reaction product HR is evacuated to vacuum. However, an alkyl compound of Group 13 element MR 3 is a very close attention is required in handling due to the pyrophoric nature of material very strong and requires a safety device of the machine.

또한 암모니아는 휘발성이 강하기 때문에 상대적으로 많은 양이 소모되고 그 중 일부만 반응하게 된다.In addition, because ammonia is highly volatile, a relatively large amount is consumed and only a part of it is reacted.

또 증착 효율을 높이기 위해서 반응기 용적을 작게 해야 하는데 고온의 증착온도는 반응기 재질에 많은 문제를 주게 될 뿐만 아니라 반응기 벽의 높은 온도는 원하지 않는 기상 분해 반응을 촉진시킨다.In addition, to increase the deposition efficiency, the reactor volume must be small, and the high temperature deposition temperature not only causes a lot of problems for the reactor material, but also the high temperature of the reactor wall promotes the unwanted gas phase decomposition reaction.

이에 따라 반응물질의 취급안정성이 증대되고, 파티클 발생이 줄어들면서도 불순물 함량이 낮은 질화막의 제조방법이 요구되고 있는 실정이다.Accordingly, there is a demand for a method of preparing a nitride film having a low impurity content while increasing the handling stability of the reactants and reducing particles.

본 발명은 상기와 같은 문제점을 해결할 수 있는 새로운 질화막의 제조방법을 제공하는 데에 그 목적이 있다.It is an object of the present invention to provide a method for producing a new nitride film that can solve the above problems.

도 1은 본 발명에 따른 질화막 형성방법의 각 단계의 순서 및 시간을 개략적으로 나타내는 그래프.1 is a graph schematically showing the sequence and time of each step of the nitride film forming method according to the present invention.

도 2a 및 도 2c는 본 발명의 일실시예에 따른 질화막 형성과정을 개략적으로 나타내는 도면.2A and 2C schematically illustrate a nitride film forming process according to an embodiment of the present invention.

* 도면의 주요부분의 부호의 설명 *Explanation of symbols of main parts of drawings

201: 기판201: substrate

202: 13족 원소의 아미드 화합물202: Amide compound of group 13 element

203: 반응 기체203: reaction gas

204: 13족 원소의 질화막층204: nitride layer of group 13 element

상기와 같은 기술적 과제를 달성하기 위하여 본 발명자는 예의 연구를 거듭한 결과, 본 발명을 완성하게 되었다.MEANS TO SOLVE THE PROBLEM In order to achieve the technical subject mentioned above, this inventor repeated earnest research and completed this invention.

본 발명은 하부 구조가 형성된 반도체 기판의 상부에 13족 원소(M; B, Al, Ga, In, Tl 중 선택된 하나)의 아미드 화합물을 사용한 원자층 증착법에 의한 질화막(M2O3) 형성 방법을 제공한다.The present invention provides a method of forming a nitride film (M 2 O 3 ) by an atomic layer deposition method using an amide compound of Group 13 elements (M; B, Al, Ga, In, Tl) on the upper portion of the semiconductor substrate on which the lower structure is formed. To provide.

본 발명에 따른 질화막 형성방법은 하부 구조가 형성된 반도체 기판의 상부에 질화막을 형성하는 방법에 있어서, 운반기체를 사용하여 13족 원소(M)의 아미드 화합물을 기판 상부에 공급하여 기판 표면에 흡착시키는 제1 단계; 이후 퍼지 기체를 공급하여 흡착되지 않은 물질을 제거하는 제2 단계; 이후 반응기체를 공급하여 기판 표면에 흡착된 아미드 화합물과 반응시키는 제3 단계; 및 이후 퍼지기체를 공급하여 반응생성물 및 미반응물을 제거하는 제4 단계의 제1 단계 내지 제4 단계를 포함하여 이루어진 원자층 증착법에 의한 질화막 형성방법을 제공한다. 상기 제1 단계 내지 제4 단계를 두 번이상 반복하여 원하는 두께를 얻을 수 있다. 본 발명에 따른 질화막의 형성방법에 있어서, 상기 13족 원소의 아미드 화합물은 M(NR2)3(R은 H, C1-C10의 알킬, C2-C10의 알케닐, C1-C8의 알콕시, C6-C12의 아릴 및 이들의 할로겐 유도체로 이루어진 그룹에서 선택된 것임)인 것이 바람직하다.In the method of forming a nitride film according to the present invention, in the method of forming a nitride film on an upper portion of a semiconductor substrate on which a lower structure is formed, a carrier gas is used to supply an amide compound of group 13 element (M) to the upper surface of the substrate and adsorb onto the substrate surface. First step; A second step of supplying a purge gas to remove unadsorbed material; A third step of supplying a reactant to react with the amide compound adsorbed on the substrate surface; And thereafter provides a method for forming a nitride film by the atomic layer deposition method comprising the first step to the fourth step of supplying a purge gas to remove the reaction product and the unreacted product. The first to fourth steps may be repeated two or more times to obtain a desired thickness. In the method for forming a nitride film according to the present invention, the amide compound of a Group 13 element is M (NR 2) 3 (R is alkenyl of H, C 1 -C 10 alkyl, C 2 -C 10 a, C 1 - Preferably selected from the group consisting of C 8 alkoxy, C 6 -C 12 aryl and halogen derivatives thereof.

또한 상기 반응기체는 H2, NH3, NHR2, NR3및 히드라진, C1-C10의 알킬히드라진, C1-C10의 디알킬히드라진 중 선택된 하나 또는 둘 이상의 혼합기체인 것이 바람직하며, 상기 퍼지기체는 N2, He, Ne, Ar 중 선택된 하나 이상인 것이 바람직하다. 또한 상기 형성방법에 있어서, 제1 단계의 반응온도는 100 내지 900℃인 것이 바람직하며, 각 단계에서의 기체 공급시간은 0.1 내지 5초인 것이 바람직하다.In addition, the reactor is preferably one or two or more mixed gas selected from H 2 , NH 3 , NHR 2 , NR 3 and hydrazine, C 1 -C 10 alkylhydrazine, C 1 -C 10 dialkylhydrazine. The purge gas is preferably at least one selected from N 2 , He, Ne, and Ar. In addition, in the forming method, the reaction temperature of the first step is preferably 100 to 900 ℃, the gas supply time in each step is preferably 0.1 to 5 seconds.

본 발명의 구성을 첨부된 도면을 참조하여 좀 더 상세히 설명하기로 한다.The configuration of the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 질화막 형성방법에 있어서의 각 단계의 처리시간을개략적으로 도시한 그래프이다. 우선 그래프(a)는 아미드 화합물의, 그래프(b)는 반응 기체의, 그래프(c)는 퍼지 기체의 처리 순서와 시간을 나타낸다. 도 1에서 나타나 있듯이, 본 발명에 따른 질화막의 형성은 (아미드 화합물)-(퍼지기체)-(반응기체)-(퍼지기체)로 이루어진 사이클을 원하는 두께가 얻어질 때까지 반복한다.1 is a graph schematically showing the processing time of each step in the nitride film forming method according to the present invention. First, graph (a) shows the amide compound, graph (b) shows the reaction gas, and graph (c) shows the processing sequence and time of the purge gas. As shown in Fig. 1, the formation of the nitride film according to the present invention is repeated until the desired thickness is obtained by the cycle consisting of (amide compound)-(fuge gas)-(reactor gas)-(fuge gas).

반응과정은 원자층 증착법의 일반적인 과정과 동일하다.The reaction process is the same as the general process of atomic layer deposition.

첨부한 도 2a 내지 도 2c를 참고로 일실시예를 통하여 본 발명을 좀 더 상세히 설명한다. 우선 도 1에서와 같이, Ar, N2등의 운반기체(도시되지 않음)를 사용하여 기화된 13족 원소의 아미드 화합물(202)을 반응기 내로 공급하여 기판(201) 표면에 흡착시킨다. 이후 아미드 화합물(202)의 공급을 중단하고 퍼지 기체(도시되지 않음)인 N2등을 공급하여 기판 표면에 흡착되어 있는 아미드 화합물 외에 기상에 존재하는 화합물을 진공으로 제거한다. 이후 반응 기체(203)인 암모니아 등을 공급하여 기판 표면에 흡착되어 있는 아미드 화합물(202)과 반응시킨다. 반응 기체(203)의 공급을 중단하고 다시 퍼지 기체(도시되지 않음) N2등을 공급하여 반응 생성물(HNR2)(도시되지 않음) 및 반응하지 않은 반응 기체를 제거한다.With reference to the accompanying Figures 2a to 2c will be described in more detail the present invention through one embodiment. First, as shown in FIG. 1, an amide compound 202 of a Group 13 element vaporized using a carrier gas (not shown) such as Ar and N 2 is supplied into the reactor and adsorbed onto the surface of the substrate 201. Thereafter, the supply of the amide compound 202 is stopped and N 2 , which is a purge gas (not shown), is supplied to remove a compound present in the gas phase in a vacuum in addition to the amide compound adsorbed on the substrate surface. Thereafter, ammonia or the like, which is the reaction gas 203, is supplied to react with the amide compound 202 adsorbed on the substrate surface. The supply of the reaction gas 203 is stopped and a purge gas (not shown) N 2 or the like is supplied again to remove the reaction product (HNR 2 ) (not shown) and the unreacted reaction gas.

이상과 같은 순서로 각 단계를 연속적으로 진행하는 것을 1 사이클로 설정하고 사이클을 연속적으로 실행하여 원하는 두께의 질화막을 형성할 수 있다.It is possible to set a nitride film having a desired thickness by setting each cycle to be continuously performed in the above-described sequence to one cycle and executing the cycle continuously.

본 발명의 일실시예에 따른 아미드 화합물과 반응 기체로서의 암모니아의 반응은 하기 반응식 2와 같이 이루어진다.Reaction of the amide compound and ammonia as a reaction gas according to an embodiment of the present invention is carried out as in Scheme 2 below.

M(NR2)3+ NH3--> MN + 3HNR2 M (NR 2 ) 3 + NH 3- > MN + 3HNR 2

(상기 식에서, M은 13족 원소 중 하나이며, R은 H, C1-C10의 알킬, C2-C10의 알케닐, C1-C8의 알콕시, C6-C12의 아릴기 및 이들의 할로겐 유도체로 이루어진 그룹에서 선택된 것)Wherein M is one of Group 13 elements, R is H, alkyl of C 1 -C 10 , alkenyl of C 2 -C 10 , alkoxy of C 1 -C 8 , aryl group of C 6 -C 12 And halogen derivatives thereof)

상기와 같은 본 발명에 따른 질화막의 형성방법에 따르면, 높은 온도와 많은 양의 암모니아를 소모해야 하는 기존 방법과 달리, 아미드 화합물을 선구물질로 사용함에 따라 낮은 온도에서도 반응이 가능한 점과 상대적으로 적은 양의 암모니아를 사용할 수 있다는 장점을 나타낸다.According to the method for forming the nitride film according to the present invention as described above, unlike the existing method that requires high temperature and consume a large amount of ammonia, the reaction is possible at a low temperature and relatively low by using the amide compound as a precursor The advantage is that an amount of ammonia can be used.

상기한 바와 같이 본 발명에 따른 제조방법을 사용할 경우, 우선 선구물질의 취급안정성이 크게 증가된다. 즉, 종래 기술에서 사용하는 알킬 화합물은 높은 발화성으로 인해 대기와의 접촉으로 인하여 큰 사고가 발생할 수 있지만 본 발명에서 사용하는 아미드 화합물은 알킬 화합물에 비하여 안정성이 매우 큰 화합물이기 때문에 위험성을 크게 낮출 수 있다.When using the production method according to the invention as described above, first of all the handling stability of the precursor material is greatly increased. That is, the alkyl compound used in the prior art may cause a big accident due to contact with the atmosphere due to high ignition property, but the amide compound used in the present invention may greatly reduce the risk because the compound is very stable compared to the alkyl compound. have.

또한 본 발명에 따르면 저온증착이 가능하게 된다. 즉 종래기술에서는 결합세기가 큰 M-C 결합이 끊어져야 하므로 높은 반응 온도가 필요했으나, 본 발명에서는 비교적 약한 결합인 M-N 결합이 끊어지는 반응이므로 보다 저온에서 증착이 가능하다는 장점이 있다.In addition, according to the present invention it is possible to low-temperature deposition. That is, in the prior art, a high reaction temperature was required because M-C bonds having a high bond strength were to be broken, but in the present invention, since M-N bonds, which are relatively weak bonds, are broken, the deposition is possible at a lower temperature.

Claims (8)

하부 구조가 형성된 반도체 기판의 상부에 운반기체를 사용하여 13족 원소(M)의 아미드 화합물을 기판 상부에 공급하여 기판 표면에 흡착시키는 제1 단계;A first step of supplying an amide compound of Group 13 element (M) to the upper surface of the substrate by using a carrier gas on the upper surface of the semiconductor substrate on which the lower structure is formed and adsorbing on the surface of the substrate; 이후 퍼지기체를 공급하여 흡착되지 않은 물질을 제거하는 제2 단계;A second step of supplying a purge gas to remove unadsorbed material; 이후 반응기체를 공급하여 기판 표면에 흡착된 아미드 화합물과 반응시키는 제3 단계; 및A third step of supplying a reactant to react with the amide compound adsorbed on the substrate surface; And 이후 퍼지기체를 공급하여 반응생성물 및 미반응물을 제거하는 제4 단계를 포함하는 원자층 증착법에 의한 질화막 형성방법.And a fourth step of removing the reaction product and the unreacted product by supplying a purge gas. 제1 항에 있어서,According to claim 1, 상기 제1 단계 내지 제4 단계를 두 번 이상 반복하는 것을 특징으로 하는Characterized in that the first to fourth steps are repeated two or more times. 질화막의 제조방법.Method of manufacturing nitride film. 제1 항에 있어서,According to claim 1, 상기 13족 원소의 아미드 화합물은 M(NR2)3(R은 H, C1-C10의 알킬, C2-C10의알케닐, C1-C8의 알콕시, C6-C12의 아릴 및 이들의 할로겐 유도체로 이루어진 그룹에서 선택된 것임)인 것을 특징으로 하는The amide compound of the Group 13 element is M (NR 2 ) 3 (R is H, alkyl of C 1 -C 10 , Alkenyl of C 2 -C 10 , alkoxy of C 1 -C 8 , aryl of C 6 -C 12 And it is selected from the group consisting of halogen derivatives thereof) 질화막 형성방법.Nitride film formation method. 제1 항에 있어서,According to claim 1, 반응기체는 H2, NH2R, NHR2, NR3, 히드라진, C1-C10의 알킬히드라진, C1-C10의 디알킬히드라진으로 이루어진 그룹에서 선택된 하나 또는 둘 이상의 혼합기체인 것을 특징으로 하는Reaction gas to the H 2, NH 2 R, NHR 2, NR 3, hydrazine, C 1 -C 10 alkyl hydrazine, or one wherein at least two mixers chain selected from the group consisting of C 1 -C 10 dialkyl hydrazine of doing 질화막 형성방법.Nitride film formation method. 제1 항에 있어서,According to claim 1, 상기 퍼지기체는 N2, He, Ne, Ar 중 선택된 하나 이상인 것을 특징으로 하는The purge gas is characterized in that at least one selected from N 2 , He, Ne, Ar 질화막 형성방법.Nitride film formation method. 제1 항에 있어서,According to claim 1, 제1 단계의 반응온도가 100 내지 900℃인 것을 특징으로 하는Reaction temperature of the first step is characterized in that 100 to 900 ℃ 질화막 형성방법.Nitride film formation method. 제1 항에 있어서,According to claim 1, 상기 제1 단계 내지 제4 단계의 각 단계의 기체 공급시간은 0.1 내지 5초인 것을 특징으로 하는The gas supply time of each step of the first to fourth steps is 0.1 to 5 seconds, characterized in that 질화막 형성방법.Nitride film formation method. 하부 구조가 형성된 반도체 기판의 상부에 질화막을 형성하는 방법에 있어서,In the method of forming a nitride film on top of a semiconductor substrate having a lower structure, 13족 원소(M; B, Al, Ga, In, Tl 중 선택된 하나)의 아미드 화합물을 사용한 원자층 증착법에 의한 질화막(MN) 형성방법.A method of forming a nitride film (MN) by atomic layer deposition using an amide compound of a Group 13 element (M; one selected from B, Al, Ga, In, and Tl).
KR1020010036356A 2001-06-25 2001-06-25 Formation method for nitride layer using atomic layer deposition KR20030001579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010036356A KR20030001579A (en) 2001-06-25 2001-06-25 Formation method for nitride layer using atomic layer deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010036356A KR20030001579A (en) 2001-06-25 2001-06-25 Formation method for nitride layer using atomic layer deposition

Publications (1)

Publication Number Publication Date
KR20030001579A true KR20030001579A (en) 2003-01-08

Family

ID=27711002

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010036356A KR20030001579A (en) 2001-06-25 2001-06-25 Formation method for nitride layer using atomic layer deposition

Country Status (1)

Country Link
KR (1) KR20030001579A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488694B2 (en) 2004-01-08 2009-02-10 Samsung Electronics Co., Ltd. Methods of forming silicon nitride layers using nitrogenous compositions
US8036705B2 (en) 2006-05-18 2011-10-11 Samsung Electronics Co., Ltd Apparatus and method of a mobile communication terminal for accessing a portal site

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488694B2 (en) 2004-01-08 2009-02-10 Samsung Electronics Co., Ltd. Methods of forming silicon nitride layers using nitrogenous compositions
US8036705B2 (en) 2006-05-18 2011-10-11 Samsung Electronics Co., Ltd Apparatus and method of a mobile communication terminal for accessing a portal site

Similar Documents

Publication Publication Date Title
KR101560755B1 (en) Methods of preparing titanium containing thin films by atomic layer deposition using monocyclopentadienyl titanium-based precursors
JP4951202B2 (en) Method for manufacturing silicon-on-insulator structure
KR101230697B1 (en) Method for producing silicon nitride films
JP5334377B2 (en) Method for laminating a group III nitride material on a silicon substrate
Gaskill et al. Growth of GaN films using trimethylgallium and hydrazine
US9281180B2 (en) Method for producing gallium trichloride gas and method for producing nitride semiconductor crystal
Miehr et al. The first monomeric, volatile bis‐azide single‐source precursor to Gallium nitride thin films
TW201331987A (en) Composite substrate, manufacturing method thereof and light emitting device having the same
Nishizawa et al. Doping in molecular layer epitaxy
KR20030001579A (en) Formation method for nitride layer using atomic layer deposition
JPH09295890A (en) Apparatus for producing semiconductor and production of semiconductor
US20060288933A1 (en) Chemical vapor deposition reactor
TW200707813A (en) Process for forming an as-grown active p-type III-V nitride compound
JP3386302B2 (en) N-type doping method for compound semiconductor, chemical beam deposition method using the same, compound semiconductor crystal formed by these crystal growth methods, and electronic device and optical device constituted by this compound semiconductor crystal
JPH03203228A (en) Semiinsulating garium arsenic formation
KR20190020148A (en) Organometallic Precursor Compounds for Vapor Deposition for the Formation of Oxide Thin Films and Their Preparation
JPH09134881A (en) Manufacture of nitride compound semiconductor
JP2965653B2 (en) Organic metal growth method
KR20030001578A (en) Formation method for oxide layer using atomic layer deposition
JP4201969B2 (en) Method for producing group III nitride film
JP4211201B2 (en) Sliding member for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
JPH04212478A (en) Growth method for organic metal and semiconductor light-emitting element
KR101155060B1 (en) Method of manufacturing single crystal gallium nitride substrate
KR100346015B1 (en) MOCVD for the Growth of III-Group Metal Nitride Thin Films Using Activated-Nitrogen as Nitrogen Source
KR20100134035A (en) Method for developing thin film from oxide or silicate of hafnium nitride, coordination compound used in said method, and method for producing integrated electronic circuit

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination