KR200204652Y1 - Sensor using organic semiconducting composition - Google Patents

Sensor using organic semiconducting composition Download PDF

Info

Publication number
KR200204652Y1
KR200204652Y1 KR2020000014472U KR20000014472U KR200204652Y1 KR 200204652 Y1 KR200204652 Y1 KR 200204652Y1 KR 2020000014472 U KR2020000014472 U KR 2020000014472U KR 20000014472 U KR20000014472 U KR 20000014472U KR 200204652 Y1 KR200204652 Y1 KR 200204652Y1
Authority
KR
South Korea
Prior art keywords
base resin
sensor
organic compound
present
dispersant
Prior art date
Application number
KR2020000014472U
Other languages
Korean (ko)
Inventor
이종성
김철환
Original Assignee
이종성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020000026253A external-priority patent/KR20010104942A/en
Application filed by 이종성 filed Critical 이종성
Priority to KR2020000014472U priority Critical patent/KR200204652Y1/en
Application granted granted Critical
Publication of KR200204652Y1 publication Critical patent/KR200204652Y1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Oils, i.e. hydrocarbon liquids specific substances contained in the oil or fuel

Abstract

본 고안은 유기화합물의 종류 및 함량을 파악하기 위한 유기 반도전제 조성물을 이용한 센서에 관한 것이다.The present invention relates to a sensor using an organic semiconducting composition for grasping the type and content of an organic compound.

이러한 본 고안의 유기반도전제 조성물을 이용한 센서는 EEA 54 Wt%, 전도성카본블랙 39 Wt%, 산화방지제 0.25 Wt%, 분산제 6 Wt%, 가교제 0.75 Wt% 의 조성물로 이루어진 베이스 수지에 두개의 전극을 이격시켜 심어주고, 상기 전극사이에 걸리는 저항값을 시간별로 체크하도록 하므로써 이루어진다.The sensor using the organic semiconducting composition of the present invention comprises two electrodes in a base resin composed of EEA 54 Wt%, conductive carbon black 39 Wt%, antioxidant 0.25 Wt%, dispersant 6 Wt%, crosslinking agent 0.75 Wt%. It is made by planting at a distance and checking the resistance value between the electrodes by time.

Description

유기 반도전제 조성물을 이용한 센서{.}Sensor Using Organic Semiconducting Composition {.}

본 고안은 유기화합물의 종류 및 함량을 파악하기 위한 유기 반도전제 조성물을 이용한 센서에 관한 것이다.The present invention relates to a sensor using an organic semiconducting composition for grasping the type and content of an organic compound.

시중에서 나돌고 있는 가짜 휘발유는 육안이나 간단한 시료에 의한 확인이 불가능하므로 이를 정확히 확인하기 위해서는 먼저 시료를 채취하여 실험실로 옮긴 후 고가의 장비인 가스 크로마토그라피(gas chromatography)를 이용하여 판별하고 있는 실정이다.Since fake gasoline on the market cannot be identified by the naked eye or a simple sample, it is necessary to take a sample first, transfer it to a laboratory, and then use gas chromatography, which is expensive equipment, to identify it accurately. .

상기 방식은 첫째, 현장에서 확인이 안되어 확인기간이 오래 걸리고, 둘째,고가의 장비(gas chromatography)를 이용하여야 하며, 셋째, 고급인력이 투입되어야 하는 문제점이 있었다.The above method, first, the confirmation period takes a long time because it is not confirmed in the field, second, expensive equipment (gas chromatography) must be used, and third, there is a problem that a high-quality manpower should be input.

본 고안은 현장에서 짧은 시간에 간단히 가짜 휘발유를 확인할 수 있도록 한 것으로, 유기화합물의 종류 및 함량에 따라 부피가 변하는 유기반도전제를 만들고, 상기 유기반도전제의 늘어남 정도를 저항값으로 측정하여 유기화합물의 종류 및 함량을 확인하는 것이다.The present invention is to make it easy to identify fake gasoline in a short time in the field, to make an organic semiconducting agent whose volume is changed according to the type and content of the organic compound, the organic compound by measuring the increase of the organic semiconducting agent as a resistance value It is to check the type and content of the.

이러한 본 고안은 EEA 54 Wt%, 전도성카본블랙 39 Wt%, 산화방지제 0.25 Wt%, 분산제 6 Wt%, 가교제 0.75 Wt% 의 조성물로 이루어진 베이스 수지에 두개의 전극을 이격시켜 심어주고, 상기 전극사이에 걸리는 저항값을 시간별로 체크하도록 하므로써 이루어진다.The present invention is planted with two electrodes spaced apart from the base resin consisting of a composition of EEA 54 Wt%, conductive carbon black 39 Wt%, antioxidant 0.25 Wt%, dispersant 6 Wt%, crosslinking agent 0.75 Wt%, between the electrodes This is done by checking the resistance value over time.

도 1 은 본 고안 센서의 구성 사시도1 is a perspective view of the configuration of the subject innovation sensor

도 2 는 본 고안 센서의 단면도2 is a cross-sectional view of the sensor of the present invention

도 3 은 본 고안 센서의 시간대별 저항치 변화를 보인 그래프3 is a graph showing a change in resistance value according to the time zone of the present invention sensor

[도면의 주요부분에 대한 부호의 설명][Explanation of symbols on the main parts of the drawings]

1 : 베이스수지 2 : 전극1 Base resin 2 Electrode

본 고안의 유기반도전제 조성물은 EEA 54 Wt%, 전도성카본블랙 39 Wt%, 산화방지제 0.25 Wt%, 분산제1 1 Wt%, 분산제2 5 Wt%, 가교제 0.75 Wt% 를 혼합하여 베이스 수지로 제작한다.The organic semiconducting agent composition of the present invention is prepared as a base resin by mixing EEA 54 Wt%, conductive carbon black 39 Wt%, antioxidant 0.25 Wt%, dispersant 1 1 Wt%, dispersant 2 5 Wt%, crosslinking agent 0.75 Wt%. .

여기서 EEA는 poly(ethylene-co-ethacrylate)를 말하는 것으로 ethacrylate의 함량이 15%이고 MI(Melt index)가 0.7인 것으로 Mitui Dupont(일본)사에서 제조한 상품명 EEA A710을 사용한다.Here, EEA refers to poly (ethylene-co-ethacrylate). The content of ethacrylate is 15% and MI (Melt index) is 0.7. The trade name EEA A710 manufactured by Mitui Dupont (Japan) is used.

전도성 카본블랙(Conductive Carbon Black)은 Actylene Black 타입으로써 DENKA(일본)에서 판매하는 상품명 DENKA BLACK을 이용한다.Conductive Carbon Black is an Actylene Black type and uses the trade name DENKA BLACK sold by DENKA (Japan).

산화방지제는 화학명 4.4'-Thiobis(6-tertbutyl-m-cresol)으로써 Monsanto(미국)에서 제조한 상품명 Santonox R을 사용한다.Antioxidants use the trade name Santonox R manufactured by Monsanto (USA) under the chemical name 4.4'-Thiobis (6-tertbutyl-m-cresol).

분산제 1은 실리콘 왁스(Silicon wax)로써 Schill Seilacher(독일)에서 제조한 상품명 Struktol WS 180을 사용하고, 분산제 2는 폴리에칠렌 왁스(Polyethylene wax)로써 라이온케미칼사에서 제조한 상품명 LC 102N을 사용한다.Dispersant 1 uses the trade name Struktol WS 180 manufactured by Schill Seilacher (Germany) as the silicone wax, and Dispersant 2 uses the trade name LC 102N manufactured by Lion Chemicals as the polyethylene wax.

가교제는 화학명 1,4-Bis(t-butyl peroxy isopropyl)benzone를 말하는 것으로 Nippon Oils & Fats Co. 에서 제조한 Perbutyl-P(PBP)를 사용한다.The crosslinking agent refers to the chemical name 1,4-Bis (t-butyl peroxy isopropyl) benzone. Perbutyl-P (PBP) manufactured by

본 고안은 상기된 EEA 54 Wt%, 전도성카본블랙 39 Wt%, 산화방지제 0.25 Wt%, 분산제1 1 Wt%, 분산제2 5 Wt%, 가교제 0.75 Wt% 를 이용하여 유기반도전제인 베이스 수지를 만들게 되며, 상기 베이스수지는 유기화합물에 담갔을 때 유기화합물의 종류 및 함량에 따라 부피가 늘어나는 정도가 다르게 된다.The present invention uses the above-described EEA 54 Wt%, conductive carbon black 39 Wt%, antioxidant 0.25 Wt%, dispersant 1 1 Wt%, dispersant 2 5 Wt%, crosslinking agent 0.75 Wt% to make a base resin which is an organic semiconducting agent When the base resin is immersed in the organic compound, the volume increases depending on the type and content of the organic compound.

본 고안의 조성물 중 EEA는 EVA, EMA 등의 극성관능기(Polar Functional Group)을 가지는 고분자 또는 고무(rubber)등을 이용할 수 있으며, 또한 밀도 0.85∼0.90;MI(Melt index)0.5∼10을 가지는 VLDPE나 메탈로센 촉매로 제조할 수도 있고, 상기된 고분자 단독 또는 2가지 이상의 고분자로도 베이스 수지를 만들 수 있다.In the composition of the present invention, EEA may use a polymer or rubber having a polar functional group such as EVA and EMA, and a VLDPE having a density of 0.85 to 0.90 and a MI (Melt index) of 0.5 to 10. It may also be prepared with a metallocene catalyst, the base resin may be made of the above-described polymer alone or two or more polymers.

구체적으로 EEA와 EVA를 들자면 EA 또는 VA 함량의 범위는 10∼30%, MI=0.5∼10 이고 전도성 카본블랙으로는 아세틸렌블랙과 Furnace 블랙 2종류를 모두 사용할 수 있다.Specifically, the EEA and EVA content ranges from 10 to 30%, MI = 0.5 to 10, and the conductive carbon black may include both acetylene black and furnace black.

아세틸렌블랙의 경우 불순물이 적어 사용에 적합하나, Furnace 블록도 사용할 수 있으며, 상기 두종류의 카본블랙을 혼합 사용할 수도 있다.Acetylene black is suitable for use due to less impurities, but Furnace blocks may also be used, and the above two types of carbon black may be mixed.

이밖에 Metal Oxide(MgO)등을 첨가할 수 있으며 가교제로는 Dicumyl Peoxide(DCP)등도 사용할 수 있다.In addition, Metal Oxide (MgO) can be added, and Dicumyl Peoxide (DCP) can be used as a crosslinking agent.

본 고안은 상기된 조성물로 이루어진 베이스수지를 유기화합물에 넣을 경우 베이스수지의 늘어남 정도가 종류 및 함량에 따라 달라지므로 베이스수지의 늘어남 정도를 저항값으로 측정하여 유기화합물의 종류 및 함량을 확인하는 것이다.The present invention is to confirm the type and content of the organic compound by measuring the degree of increase of the base resin in the resistance value because the degree of expansion of the base resin is different depending on the type and content when the base resin of the composition described above is added to the organic compound .

이러한 베이스수지를 이용하여 유기화합물의 종류 및 함량을 확인하는 본고안의 센서에 대하여 살펴본다.The sensor of the present invention for identifying the type and content of organic compounds using the base resin will be described.

본 고안은 상기된 조정물을 이용하여 도 1 과 같은 베이스수지(1)를 만들되 그 크기는 적합히 조절할 수 있으나, 본 고안의 실시예 설명을 위하여 가로, 세로 각 2cm 이고 두께가 3mm로 제작한다.The subject innovation is to make the base resin (1) as shown in Figure 1 by using the above-described adjustment, but the size can be adjusted appropriately, for the description of an embodiment of the subject innovation is made of 2cm in width and 3mm in thickness .

상기된 베이스수지(1)에는 도 1 과 같이 길이 0.7cm의 SUS전극(2)을 1cm 이격시켜 일체로 형성시키고 상기 전극(2)에는 저항메터기를 연결하여 저항값을 측정할 수 있도록 한다.As shown in FIG. 1, the base resin 1 is integrally formed by separating a SUS electrode 2 having a length of 0.7 cm by 1 cm and connected to a resistance meter to measure the resistance value.

이러한 베이스수지(1)를 유기화합물에 담가 줄 경우 베이스수지(1)에는 전도성 카본블랙이 포함되어 있어 초기에는 전도성 카본블랙에 의한 전자이동패스(Pass)가 형성되므로 전극(2)에서 측정되는 저항치가 거의 0 에 가깝게 나타나게 된다.When the base resin (1) is immersed in an organic compound, the base resin (1) contains conductive carbon black, and initially an electron transfer pass is formed by the conductive carbon black, so the resistance measured at the electrode (2) is measured. Will appear near zero.

그러나 베이스수지(1)는 유기화합물의 종류에 따라 늘어나게 되므로 시간이 경과할수록 전극(2)에서 측정되는 저항치가 상승된다.However, since the base resin 1 increases depending on the type of organic compound, the resistance measured by the electrode 2 increases with time.

즉 초기와는 다르게 전도성 카본블랙 사이의 거리가 밀어지게 되므로 저항치가 증가되는 것이다.In other words, since the distance between the conductive carbon black is pushed differently from the initial time, the resistance value is increased.

이러한 본 고안에서 유기화합물의 종류 및 함량에 따라 전극(2)에서 검출되는 저항값은 도 3 과 같으며 이를 이용하여 유기화합물의 종류를 확인할 수 있다.In the present invention, the resistance value detected by the electrode 2 according to the type and content of the organic compound is as shown in FIG. 3, and the type of the organic compound can be confirmed using the same.

즉 휘발유의 경우 1000Kohm에 도달하는 시간이 7.5분인데 반하여, 20% 톨루엔이 섞인 휘발유는 1000Kohm에 도달하는 시간이 3분이고, 10% 톨루엔이 섞인 휘발유는 1000Kohm에 도달하는 시간이 6.2분이고, 5% 등유가 섞인 휘발유는 1000Kohm에 도달하는 시간이 8.5분이고, 10% 등유가 섞인 휘발유는 1000Kohm에 도달하는 시간이 9분이고, 20% 등유가 섞인 휘발유는 거의 10분이 걸리게 된다.In the case of gasoline, the time to reach 1000Kohm is 7.5 minutes, whereas the gasoline mixed with 20% toluene takes 3 minutes to reach 1000Kohm, and the time to reach 1000Kohm is 6.2 minutes and 5% kerosene to 10% toluene. The mixed gasoline reaches 8.5 Kohm for 8.5 minutes, the 10% kerosene mixed gasoline reaches 1000 Kohm for 9 minutes, and the 20% kerosene mixed gasoline takes almost 10 minutes.

따라서 특정 유기화합물에 본 고안의 베이스수지(1)를 넣은 시간부터 1000Kohm에 도달하는 시간을 체크하면 유기화합물의 종류 및 함량을 확인할 수 있으며, 확인시간을 줄이기 위해서는 500Kohm에 도달하는 시간을 체크하여도 된다.Therefore, if you check the time to reach 1000Kohm from the time when the base resin (1) of the present invention is put into the specific organic compound, you can check the type and content of the organic compound, and even if you check the time to reach 500Kohm to reduce the checking time. do.

이같이 본 고안은 유기화합물에 닿았을 때 부피가 늘어나는 베이스수지를 이용하여 정해진 저항치에 도달하는 시간으로 유기화합물의 종류 및 함량을 확인할 수 있는 것으로, 누구든 가짜 휘발유의 확인이 가능하고, 확인시간이 적게 걸리며, 고가의 장비를 이용치 않아도 되는 것이다.As such, the present invention can confirm the type and content of the organic compound at a time of reaching a predetermined resistance value by using a base resin that increases in volume when it touches the organic compound. Anyone can identify fake gasoline, and the confirmation time is small. It takes a lot of money and doesn't require expensive equipment.

본 고안은 베이스수지의 부피 늘어남을 측정하거나 늘어나는 길이를 측정해도 동일결과를 얻을 수 있으며, 변압기 오일의 변화정도 즉 산화정도를 측정할수 있으며 특히 토양을 오염시키는 토양 오염원과 오염정도를 확인할 수 있다.The present invention can obtain the same result by measuring the volume increase of the base resin or the length of the increase, and the change degree of the transformer oil, that is, the oxidation degree, can be measured, and in particular, the soil pollution source and the pollution level that pollute the soil can be identified.

본 고안은 유기화합물에 닿았을 때 부피가 팽창하여 저항치가 변하는 베이스수지를 EEA 54 Wt%, 전도성카본블랙 39 Wt%, 산화방지제 0.25 Wt%, 분산제1 1 Wt%, 분산제 5 Wt%, 가교제 0.75 Wt% 의 조성물로 제작하도록 하고, 상기 베이스수지를 유기화합물에 담갔을 때 유기화합물의 종류에 따라 팽창정도가 다름을 이용하여 저항치로 유기화합물의 종류와 함량을 확인할 수 있도록 한 것으로, 본 고안은 간단히 최단시간 내에 가짜 휘발유를 확인할 수 있는 것이며, 아울러 일정지역의 토양을 채취, 물에 희석시켜 토양속의 유기화합물의 유무, 함량 및 그 종류등을 파악할 수 있다.The present invention is based on EEA 54 Wt%, conductive carbon black 39 Wt%, antioxidant 0.25 Wt%, dispersant 1 Wt%, dispersant 5 Wt%, crosslinker 0.75 Wt% of the composition, and when the base resin is immersed in the organic compound, the degree of expansion is different depending on the type of organic compound to determine the type and content of the organic compound in the resistance value, the present invention It is possible to identify the fake gasoline in the shortest time, and to collect the soil in a certain area and dilute it with water to determine the presence, content and type of organic compounds in the soil.

Claims (1)

극성관능기를 갖는 고분자 54 Wt%, 전도성카본블랙 39 Wt%, 산화방지제 0.25 Wt%, 실리콘 왁스인 분산제1 1 Wt%, 폴리에틸렌 왁스인 분산제2 5 Wt%, 가교제 0.75 Wt% 로 베이스수지(1)를 만들고, 상기 베이스수지(1)에 일정거리를 이격시켜 전극(2)을 형성시켜 전극에 걸리는 저항값을 측정하는 유기 반도전제를 이용한 센서.Base resin (1) with 54 Wt% of polymer having polar functional group, 39 Wt% of conductive carbon black, 0.25 Wt% of antioxidant, dispersant 1 1 Wt% of silicone wax, dispersant 2 5 Wt% of polyethylene wax, 0.75 Wt% of crosslinking agent A sensor using an organic semiconducting agent to measure a resistance value applied to the electrode by forming an electrode (2) by spacing a predetermined distance from the base resin (1).
KR2020000014472U 2000-05-16 2000-05-22 Sensor using organic semiconducting composition KR200204652Y1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR2020000014472U KR200204652Y1 (en) 2000-05-16 2000-05-22 Sensor using organic semiconducting composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020000026253A KR20010104942A (en) 2000-05-16 2000-05-16 Organic Semiconducting Composition and Sensor Using the Same
KR2020000014472U KR200204652Y1 (en) 2000-05-16 2000-05-22 Sensor using organic semiconducting composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020000026253A Division KR20010104942A (en) 2000-05-16 2000-05-16 Organic Semiconducting Composition and Sensor Using the Same

Publications (1)

Publication Number Publication Date
KR200204652Y1 true KR200204652Y1 (en) 2000-12-01

Family

ID=26637573

Family Applications (1)

Application Number Title Priority Date Filing Date
KR2020000014472U KR200204652Y1 (en) 2000-05-16 2000-05-22 Sensor using organic semiconducting composition

Country Status (1)

Country Link
KR (1) KR200204652Y1 (en)

Similar Documents

Publication Publication Date Title
KR20010104942A (en) Organic Semiconducting Composition and Sensor Using the Same
CA2330524C (en) Battery with tester label and method for producing it
Li et al. Carbon black/polystyrene composites as candidates for gas sensing materials
US5231356A (en) Flexible battery tester with a variable length resistive heater
Jang et al. Studies of crosslinked styrene–alkyl acrylate copolymers for oil absorbency application. II. Effects of polymerization conditions on oil absorbency
Lill et al. Organic Electrochemical Transistors Based on the Conjugated Polyelectrolyte PCPDTBT‐SO3K (CPE‐K)
US6593843B1 (en) Electrical devices containing conductive polymers
KR200204652Y1 (en) Sensor using organic semiconducting composition
Nozaki et al. The α and the β relaxation processes in supercooled sorbitol
US9177185B2 (en) Passive wireless sensors for chemical and biological agents and wireless systems including the passive wireless sensors
Chung et al. Random styrenic copolymers with pendant pyrene moieties: Synthesis and applications in organic field‐effect transistor memory
KR102075775B1 (en) Monitoring device for hazardous chemicals
Mello et al. PANI/PPY blend thin films electrodeposited for use in EGFET sensors
Şahin et al. Electrochemical synthesis of poly (2‐iodoaniline) and poly (aniline‐co‐2‐iodoaniline) in acetonitrile
Liu et al. Portable Mbps point‐to‐point OOK‐NRZ visible light communication devices based on white light‐emitting diode illuminant
KR920704346A (en) How to determine the location of the P-n junction
Žura et al. Low-cost conductometric transducers for use in thin polymer film chemical sensors
Camaioni et al. Hall mobility in poly (4, 4′-dipentoxy-2, 2′ bithiophene) as a function of the doping level
Linden et al. High frequency impedance of poly (ethylene oxide) and related polymers doped with lithium perchlorate
KR102075773B1 (en) Monitoring device for hazardous chemicals
Leventis et al. Characterization of a" solid-state" microelectrochemical diode employing a poly (vinyl alcohol)/phosphoric acid solid-state electrolyte: rectification at Junctions between tungsten trioxide (WO3) and polyaniline
JP2903197B2 (en) Low molecular weight organic liquid detection sensor
Garcia-Camarero et al. On the electrical anisotropy of conducting polypyrrole
CA1225256A (en) Method for detecting and locating changes in ambient conditions
Caverly et al. The temperature dependence of PIN diode attenuators

Legal Events

Date Code Title Description
U107 Dual application of utility model
REGI Registration of establishment
T701 Written decision to grant on technology evaluation
FPAY Annual fee payment

Payment date: 20060127

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee