KR20020096181A - Producing method of pteridine compounds using recombinant bacteria - Google Patents

Producing method of pteridine compounds using recombinant bacteria Download PDF

Info

Publication number
KR20020096181A
KR20020096181A KR1020010034466A KR20010034466A KR20020096181A KR 20020096181 A KR20020096181 A KR 20020096181A KR 1020010034466 A KR1020010034466 A KR 1020010034466A KR 20010034466 A KR20010034466 A KR 20010034466A KR 20020096181 A KR20020096181 A KR 20020096181A
Authority
KR
South Korea
Prior art keywords
pet
transformant
gtpch
gene
ptps
Prior art date
Application number
KR1020010034466A
Other languages
Korean (ko)
Other versions
KR100456062B1 (en
Inventor
박영식
이수웅
이희우
정현재
김영아
김연정
최용기
황윤경
우현주
강지윤
Original Assignee
박영식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박영식 filed Critical 박영식
Priority to KR10-2001-0034466A priority Critical patent/KR100456062B1/en
Publication of KR20020096181A publication Critical patent/KR20020096181A/en
Application granted granted Critical
Publication of KR100456062B1 publication Critical patent/KR100456062B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/182Heterocyclic compounds containing nitrogen atoms as the only ring heteroatoms in the condensed system

Landscapes

  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: A method for producing pteridine compounds using a recombinant Escherichia coli is provided, thereby mass producing the pteridine compounds easily in Escherichia coli. CONSTITUTION: The method for producing pteridine compounds using a recombinant Escherichia coli comprises the steps of: constructing a recombinant vector containing an enzyme gene producing the pteridine compound; transforming Escherichia coli with the recombinant vector to prepare transformed E. coli; and culturing the transformed E. coli, wherein the enzyme gene is selected from GTPCH (GTP cyclohydrolase I) gene, PTPS gene (6-pyruvoyltetrahydropterin synthase), SR gene (sepiapterin reductase), GHluT gene (BH4:UDP-glucose-alpha -glucosyltransferase), Chlorobium tepidum SR gene and pteridine glucotransferase; the pteridine compound is sepiapterin, BH4(6R)-5,6,7,8- tetrahydro-L -biopterin, BH4-alpha -glucoside, L-threo -BH4 and BH4-(alpha or beta)-saccharide; the recombinant vector is pET-GTPCH/PTPS, pET-BH4 or pET-BH4/BGluT; and the transformed E. coli is pET-GTPCH/PTS E. coli(KCTC 1020BP), pET-BH4 E. coli, or pET-BH4/BGluT E. coli.

Description

재조합 대장균에 의한 테리딘 화합물의 제조방법{PRODUCING METHOD OF PTERIDINE COMPOUNDS USING RECOMBINANT BACTERIA}Production method of terridine compound by recombinant E. coli {PRODUCING METHOD OF PTERIDINE COMPOUNDS USING RECOMBINANT BACTERIA}

본 발명은 재조합 대장균에 의한 테리딘 화합물의 제조방법에 관한 것으로서, 더욱 상세하게는 GTPCH(GTP cyclohydrolase I), PTPS(6-pyruvoyltetrahydropterin synthase), SR(sepiapterin reductase) 또는 BGluT(BH4:UDP-glucose-α-glucosyltransferase) 유전자를 대장균에서 발현시켜, 세피아테린, 바이오테린(biopterin) 및 바이오테린-α-글리코사이드를 생산하는 방법에 관한 것이다.The present invention relates to a method for preparing a terridine compound by recombinant E. coli, and more particularly, GTPCH (GTP cyclohydrolase I), PTPS (6-pyruvoyltetrahydropterin synthase), SR (sepiapterin reductase) or BGluT (BH4: UDP-glucose- The present invention relates to a method of producing α-glucosyltransferase gene in E. coli to produce sepiaterin, bioopterin and bioterin-α-glycoside.

테리딘(pteridine) 화합물이란 2-아미노-4-옥소-피리미딘을 기본구조로 가지는 고리화합물로서 다양한 종류의 유도체들이 있다. 테리딘은 생체 내에서 주로 테트라하이드로의 완전히 환원된 형태로 활성을 가지며 공기에 노출되었을 경우 쉽게 디하이드로(dihydro) 또는 완전히 산화된 형태로 전환된다(Nichol, C.A., G. K. Smith, and D. S. Duch. 1985. Ann. Rev. Biochem. 54, 729-764). 또한 테리딘은 산화된 상태에서 형광을 가지는 특성이 있다.Pteridine compounds are cyclic compounds having 2-amino-4-oxo-pyrimidine as a basic structure and there are various kinds of derivatives. Terridine is active in vivo in the fully reduced form of tetrahydro and readily converts to dihydro or fully oxidized form when exposed to air (Nichol, CA, GK Smith, and DS Duch. 1985). Ann. Rev. Biochem. 54, 729-764). In addition, terridine is characterized by fluorescence in an oxidized state.

테리딘 화합물들 중 가장 잘 알려진 것은 테트라하이드로 바이오테린(biopterin의 완전한 환원형으로 (6R)-5,6,7,8-tetrahydro-L-biopterin; 이하 'BH4'라 함)이다. BH4의 기능, 생합성, 관련된 효소와 유전자들에 대한 내용은 알려져 있다(Thony B, Auerbach, G, Blau N (2000) Biochem. J. 347, 1-16). BH4는 방향성 아미노산 하이드로실레이즈들의 조효소로 작용한다. 상기 조효소가 결핍되면 신생아의 간 내에 페닐알라닌 하이드로실레이즈의 활성이 저하되어 혈액내 페닐알라닌의 농도가 증가되고, 그 결과 중추신경계의 발달이 저하되어 정박아가 되는 부정형의 페닐케톤요증(atypical phenylketonuria; PKU) 질환이 발생될수 있다(Duch DS, Smith GK (1991) J. Nutr. Biochem. 2, 411-423). 타이로신 하이드로실레이즈와 트립토판 하이드로실레이즈는 뇌에서 도파민, 세로토닌과 같은 신경전달물질들의 생합성에 작용하므로, BH4의 결핍은 여러 가지 신경질환을 유발할 수 있다. 또한 BH4의 결핍은 유전성 신경질환인 도파-민감성 발육이상(Dopa-responsive dystonia)을 야기한다(Ichinose H, Ohye T, Takahashi E, Seki N, Hori T, Segawa M, Nomura Y, Endo K, Tanaka H, Tsuji S, Fujita K, Nagatsu T (1994) Nat. Genet. 8, 236-242). 이외에도 파킨슨 질환, 알쯔하이머 질환, 우울증 등의 환자에서 체액 내의 BH4 농도가 정상인보다 낮은 것으로 알려져 연구가 진행되고 있다.A, (hereinafter referred to as 'BH4' and full reduction of biopterin (6 R) -5,6,7,8-tetrahydro -L-biopterin) The most well-known of the terry Compound tetrahydro bio aminopterin. The function, biosynthesis and related enzymes and genes of BH4 are known (Thony B, Auerbach, G, Blau N (2000) Biochem. J. 347, 1-16). BH4 acts as a coenzyme of aromatic amino acid hydrosilases. The deficiency of the coenzyme decreases the activity of phenylalanine hydrosilase in the liver of newborns, increasing the concentration of phenylalanine in the blood, and as a result, atypical phenylketonuria (PKU), which leads to decreased development of the central nervous system. Disease may occur (Duch DS, Smith GK (1991) J. Nutr. Biochem. 2, 411-423). Because tyrosine hydrosilase and tryptophan hydrosilase act on the biosynthesis of neurotransmitters such as dopamine and serotonin in the brain, deficiency of BH4 can lead to various neurological diseases. Deficiency of BH4 also leads to dopa-responsive dystonia, an inherited neurological disorder (Ichinose H, Ohye T, Takahashi E, Seki N, Hori T, Segawa M, Nomura Y, Endo K, Tanaka H). , Tsuji S, Fujita K, Nagatsu T (1994) Nat. Genet. 8, 236-242). In addition, research on the BH4 concentration in the body fluids in patients with Parkinson's disease, Alzheimer's disease, depression, etc. is known to be lower than normal.

BH4 결핍과 관련된 또다른 질환으로는 상피세포에서 멜라닌색소가 결핍되는 백색증이 있으며(Schallreuter KU, Wood JM, Pittelkow MR, Gulich M, Lemke KR, Rodl W, Swanson NN, Hitzemann K, Ziegler I (1994) Science 263, 1444-1446), BH4는 심혈관계에서 중요한 역할을 하는 산화질소합성효소(nitric oxide synthase; NOS)의 조효소로서도 작용하므로(Kaufman S (1993) Annu. Rev. Nutr. 13, 261-286) 다른 질환을 유발할 것으로 추정된다.Another disease associated with BH4 deficiency is melanoma, which is deficient in melanocytes in epithelial cells (Schallreuter KU, Wood JM, Pittelkow MR, Gulich M, Lemke KR, Rodl W, Swanson NN, Hitzemann K, Ziegler I (1994)). Science 263, 1444-1446), BH4 also acts as a coenzyme of nitric oxide synthase (NOS), which plays an important role in the cardiovascular system (Kaufman S (1993) Annu. Rev. Nutr. 13, 261-286). ) Is believed to cause other diseases.

생체 내에서 테리딘 화합물의 신생합성은 구아노신 트리포스페이트 (guanosine triphosphate; 이하 'GTP'라 함)로부터 출발한다.(도 1) GTP는 GTP 사이크로하이드로레이즈 I(GTP cyclohydrolase I; 이하 'GTPCH'라 함)에 의해 디하이드로네오테린 트리포스페이트(dihydroneopterin triphosphate; 이하 'H2-NTP라 함)로 전환되고, 이것은 다시 6-피루브일테트라하이드로테린 합성효소(6-pyruvoyltetrahydropterin synthase; 이하 'PTPS'라 함)에 의해 6-피루브일테트라하이드로테린(6-pyruvoyltetrahydropterin; 이하 'PPH4'라 함)로 전환된다. PPH4는 알도스 환원효소(aldose reductase; AR, 또는 PPH4 reductase라 함)와 세피아테린 환원효소(sepiapterin reductase; 이하 'SR'라 함)의 협동작용이나 SR 효소 단독에 의해 BH4로 전환된다. SR이 없이 AR만 존재할 때는 PPH4의 곁사슬에 존재하는 C2'만이 환원된 6-락토일테트라하이드로테린(6-lactoyltetrahydropterin; 이하 'LPH4'라 함)로 전환되고, LPH4는 용존산소에 의해 쉽게 디하이드로(dihydro) 상태의 세피아테린으로 산화된다. BH4는 재생경로에 의해 세피아테린으로부터도 생성된다. 세피아테린은 생체 내에서 SR에 의해 7,8-디하이드로바이로테린으로 환원된 후 디하이드로폴레이트 환원효소(dihydrofolate reductase; 이하 'DHFR'라 함)에 의해 BH4로 전환될 수 있다. 때문에 동물조직배양에서 BH4 대신에 첨가되었을 경우 BH4를 투여한 것과 동일한 효과를 발휘하는 것으로 알려져 있다.The in vivo biosynthesis of the terrydine compound starts from guanosine triphosphate (hereinafter referred to as 'GTP'). (FIG. 1) GTP is GTP cyclohydrolase I (hereinafter referred to as 'GTPCH'). Is converted to dihydroneopterin triphosphate (hereinafter referred to as "H2-NTP"), which in turn is called 6-pyruvoyltetrahydropterin synthase (hereinafter referred to as "PTPS"). ) To 6-pyruvoyltetrahydropterin (hereinafter referred to as 'PPH4'). PPH4 is converted to BH4 by the coordination of aldose reductase (AR, or PPH4 reductase) and sepiaterin reductase (hereinafter referred to as SR), or by the SR enzyme alone. When only AR is present without SR, only C2 'in the side chain of PPH4 is converted to reduced 6-lactoyltetrahydropterin (hereinafter referred to as' LPH4'), and LPH4 is easily dehydrogenated by dissolved oxygen. It is oxidized to (dihydro) sepiaterin. BH4 is also produced from sepiaterin by regeneration pathways. Sepiaterin can be reduced to 7,8-dihydrobiroterin by SR in vivo and then converted to BH4 by dihydrofolate reductase (hereinafter referred to as 'DHFR'). Therefore, when added in place of BH4 in animal tissue culture, it is known to exert the same effect as the administration of BH4.

또한 BH4에 당이 결합되는 반응을 통해 BH4-글리코사이드(당화합물)들이 합성된다. BH4-당화합물들은 일부 혐기성 광합성 세균과 남세균(cyanobacteria)에서 발견되었다(Forrest HS, Van Baalen C (1970) Ann. Rev. Microbiol. 24, 91-108;Cha KW, Pfleiderer W, Yim J (1995). Helv. Chim. Acta 78, 600-614; Cho SH, Na JU, Youn H, Hwang CS, Lee CH, Kang SO. (1998) Biochim. Biophys. Acta 1379, 53-60; Chung HJ, Kim Y, Kim YJ, Choi YK, Hwang YK, Park YS (2000) Biochim. Biophys. Acta 1524, 183-18). BH4에 UDP-글루코스의 당을 전달하는 BH4:UDP-글루코스 α-글루코실트랜스퍼레이즈(BH4:UDP-glucose-α-glucosyltransferase; 이하 'BGluT'라 함)는 남세균의 일종인 시네코코커스 속(Synechococcussp.) PCC 7942에서 정제되었으며, 유전자도 클로닝되었다(Choi YK (2001) 시아노박테리아Synechococcussp. PCC 7942에서 테리딘 당전이효소 유전자의 클로닝. MS thesis, Inje University ; Choi YK, Hwang YK, Park YS (2001) FEBS Lett. in submission). BH4-당화합물 (glycoside)들의 생리활성은 밝혀지지 않았으며, BH4와 동일한 활성을 가지는 지의 여부도 확인되지 않았으나 당이 결합하였을 경우 수용성과 안정성의 증가와 같은 약리적인 장점이 있을 것으로 추정되고 있다.In addition, BH4-glycosides (sugar compounds) are synthesized through a reaction in which sugars are bonded to BH4. BH4-sugar compounds have been found in some anaerobic photosynthetic bacteria and cyanobacteria (Forrest HS, Van Baalen C (1970) Ann. Rev. Microbiol. 24, 91-108; Cha KW, Pfleiderer W, Yim J (1995) Helv. Chim.Acta 78, 600-614; Cho SH, Na JU, Youn H, Hwang CS, Lee CH, Kang SO. (1998) Biochim. Biophys.Acta 1379, 53-60; Chung HJ, Kim Y, Kim YJ, Choi YK, Hwang YK, Park YS (2000) Biochim. Biophys. Acta 1524, 183-18). BH4: UDP-glucose-α-glucosyltransferase (BH4: UDP-glucose-α-glucosyltransferase, hereinafter referred to as 'BGluT'), which transfers UDP-glucose sugars to BH4, is a genus of Synechococcus sp.) purified from PCC 7942 and cloned (Choi YK (2001) Cyanobacteria Synechococcus sp. Cloning of the teridine glycotransferase gene in PCC 7942. MS thesis, Inje University; Choi YK, Hwang YK, Park YS (2001) FEBS Lett. In submission). The physiological activity of BH4-glycosides has not been revealed and it is not confirmed whether they have the same activity as BH4, but it is assumed that there are pharmacological advantages such as increased water solubility and stability when sugars are bound.

BH4는 부정형 PKU 질환의 치료약으로 사용되고 있으며(Blau N, Barnes I, Dhondt JL (1996) J. Inherit. Metab. Dis. 19, 8-14), 파킨슨씨병, 자폐증, 우울증, 알쯔하이머 질환과 같은 몇가지 정신질환(Thony B, Auerbach, G, Blau N (2000) Biochem. J. 347, 1-16)과 동맥경화, 고혈압, 고콜레스테롤증, 당뇨병과 같은 다양한 질환에서 비롯되는 혈관장애 질환에 대한 치료약으로서의 가능성이 연구되고 있고(Tiefenbacher CP (2001) Am. J. Physiol. Heart Circ. Physiol. 280, H2484-H2488), BH4는 상기 질환들의 연구용 시약으로 판매되고 있다.BH4 is used as a treatment for atypical PKU disease (Blau N, Barnes I, Dhondt JL (1996) J. Inherit. Metab. Dis. 19, 8-14), and several mental illnesses such as Parkinson's disease, autism, depression, and Alzheimer's disease. Potential as a therapeutic for vascular disorders resulting from diseases (Thony B, Auerbach, G, Blau N (2000) Biochem. J. 347, 1-16) and various diseases such as atherosclerosis, hypertension, hypercholesterolemia, diabetes Tiefenbacher CP (2001) Am. J. Physiol. Heart Circ. Physiol. 280, H2484-H2488), and BH4 is sold as a research reagent for these diseases.

세피아테린도 생체 내에서 BH4로 전환될 수 있어 혈관장애와 관련된 조직배양이나 동물실험 수준에서의 연구결과는 BH4와 동일한 효과를 발휘하는 것으로 보고되었다(Tiefenbacher CP (2001) Am. J. Physiol. Heart Circ. Physiol. 280, H2484-H2488). 아직까지 세피아테린이 혈관장애 질환이나 부정형 PKU 질환에 대한 임상목적으로 사용되었다는 보고는 없다. 그렇지만 세피아테린은 BH4보다 안정성이 탁월하다는 장점을 가지고 있어 BH4보다 저렴한 생산이 가능해진다면 BH4를 대체할 수 있는 가능성을 가지고 있다. BH4와 세피아테린은 유기합성에 의해 생산되고 있으며, 미생물을 이용한 대량생산은 보고된 바 없다. BH4 당화합물이 존재하는 일부 시아노박테리아를 비롯한 세균을 제외하고는 대장균과 같은 대부분의 세균에서는 BH4의 생합성은 일어나지 않는다.Sepiaterin can also be converted into BH4 in vivo, and results from tissue culture or animal experiments related to vascular disorders have been reported to have the same effect as BH4 (Tiefenbacher CP (2001) Am. J. Physiol. Heart Circ.Physiol. 280, H2484-H2488). There are no reports that sepiaterin has been used for clinical purposes for vascular or malformed PKU disease. However, sepiaterin has the advantage of being more stable than BH4, so if it is possible to produce cheaper than BH4, it has the potential to replace BH4. BH4 and sepiaterin are produced by organic synthesis, and mass production using microorganisms has not been reported. BH4 biosynthesis does not occur in most bacteria, such as E. coli, except for some cyanobacteria including bacteria in which BH4 sugar compounds are present.

또한 테리딘 화합물은 의약품과 시약용으로 사용되는 화합물로서 유기합성에 의해 생산된다. 그렇지만 입체이성질체들로 존재하는 테리딘 화합물을 유기합성으로 제조하여 유용한 한가지 형태만을 정제하기가 쉽지 않아 고가에 판매되고 있으며, 당화합물의 경우는 유기합성으로 제조하기도 쉽지 않은 실정이다.The terridine compound is also produced by organic synthesis as a compound used for medicines and reagents. However, it is not easy to purify only one useful form of the terridine compound present as stereoisomers by organic synthesis, and it is sold at a high price, and the sugar compound is not easy to prepare by organic synthesis.

따라서, 상기한 문제를 생물공학적으로 해결하고자 테리딘 생합성에 관여하는 유전자들을 삽입한 재조합벡터를 제조하고 그 대장균 형질전환체도 제조하였다.Therefore, in order to solve the above problems biotechnologically, recombinant vectors into which genes involved in terridine biosynthesis were inserted were prepared, and E. coli transformants were also prepared.

본 발명은 테리딘 화합물을 대장균에서 대량으로 생산할 수 있는 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for producing a large amount of a terridine compound in E. coli.

또한 본 발명은 테리딘 화합물을 생성하는 생리효소를 포함하는 재조합벡터를 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a recombinant vector containing a physiological enzyme for producing a terridine compound.

또한 본 발명은 테리딘 화합물을 생산할 수 있는 형질전환체를 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a transformant capable of producing a terridine compound.

또한 본 발명은 대장균에서 발현시켜 제조한 재조합 테리딘 화합물을 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a recombinant terridine compound prepared by expression in E. coli.

도 1은 BH4와 BH4-α-글루코시드의 생합성경로이고,1 is a biosynthetic pathway of BH4 and BH4-α-glucoside,

도 2는 pET-GTPCH/PTPS 벡터의 제조과정을 도시한 것이고,Figure 2 shows the manufacturing process of the pET-GTPCH / PTPS vector,

도 3은 pET-BH4 벡터의 제조과정을 도시한 것이고,Figure 3 shows the manufacturing process of the pET-BH4 vector,

도 4는 pET-BH4/BGluT 벡터의 제조과정을 도시한 것이고,Figure 4 shows the manufacturing process of the pET-BH4 / BGluT vector,

도 5는 BL21(DE3)(A), pET-GTPCH/PTPS 형질전환체(B), pET-BH4 형질전환체(C), 및 pET-BH4/BGluT 형질전환체(D)의 고체배양물 사진이고,5 is a solid culture photograph of BL21 (DE3) (A), pET-GTPCH / PTPS transformant (B), pET-BH4 transformant (C), and pET-BH4 / BGluT transformant (D) ego,

도 6은 BL21(DE3)(A), pET-GTPCH/PTPS 형질전환체(B), pET-BH4 형질전환체(C), 및 pET-BH4/BGluT 형질전환체(D)의 액체배양물 사진이고,6 is a liquid culture photograph of BL21 (DE3) (A), pET-GTPCH / PTPS transformant (B), pET-BH4 transformant (C), and pET-BH4 / BGluT transformant (D) ego,

도 7은 pET-GTPCH/PTPS 형질전환체의 액체배지를 HPLC하여 분석한 그래프이고,7 is a graph analyzed by HPLC of the liquid medium of the pET-GTPCH / PTPS transformant,

도 8은 pET-GTPCH/PTPS 형질전환체의 액체배지상의 세피아테린을 분석한 HPLC그래프이고,8 is an HPLC graph of the sepiaterin on the liquid medium of the pET-GTPCH / PTPS transformant.

도 9는 pET-BH4 형질전환체의 액체배지를 HPLC하여 분석한 그래프이고,9 is a graph analyzing the liquid medium of the pET-BH4 transformant by HPLC,

도 10은 pET-BH4/BGluT 형질전환체의 액체배지를 HPLC하여 분석한 그래프이고,10 is a graph analyzed by HPLC of the liquid medium of the pET-BH4 / BGluT transformant,

도 11은 pET-GTPCH/PTPS 형질전환체의 생장에 따른 세피아테린의 생산율을 흡광도로 나타낸 것이다.Figure 11 shows the absorbance of the production of sepiaterin according to the growth of the pET-GTPCH / PTPS transformant.

상기의 목적을 달성하기 위하여 본 발명은 테리딘 화합물을 생성하는 생리효소 유전자를 포함하는 재조합벡터를 제공한다. 바람직하게는 pET-GTPCH/PTPS, pET-BH4, 및 pET-BH4/BGluT를 제공한다.In order to achieve the above object, the present invention provides a recombinant vector comprising a physiological enzyme gene for producing a terridine compound. Preferably pET-GTPCH / PTPS, pET-BH4, and pET-BH4 / BGluT are provided.

또한 본 발명은 상기의 재조합 벡터로 형질전환된 형질전환체, pET-GTPCH/PTPS 형질전환체(KCTC 1020BP), pET-BH4 형질전환체, 및 pET-BH4/BGluT 형질전환체를 제공한다.The present invention also provides a transformant transformed with the recombinant vector, pET-GTPCH / PTPS transformant (KCTC 1020BP), pET-BH4 transformant, and pET-BH4 / BGluT transformant.

또한 본 발명은 상기의 형질전환체에서 생산되는 테리딘 화합물 또는 재조합 효소를 제공한다.The present invention also provides a terridine compound or recombinant enzyme produced by the transformant.

또한 본 발명은 벡터에 테리딘 화합물을 생성하는 생체효소유전자를 삽입하여 재조합벡터를 제조하고, 상기 재조합벡터를 포함하는 형질전환체에서 생체효소를 동시에 발현시켜 재조합 생리화합물을 생산하는 것을 특징으로 하는 대장균을 이용한 테리딘 화합물 생산방법을 제공한다.In another aspect, the present invention is characterized by producing a recombinant vector by inserting a bioenzyme gene for producing a terridine compound in the vector, and by producing a recombinant physiological compound by simultaneously expressing the bioenzyme in a transformant containing the recombinant vector Provided is a method for producing a teridine compound using E. coli.

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서는 테리딘 화합물을 대장균에서 생산하기 위하여 재조합벡터를 제조하였다. 본 발명의 재조합 벡터는 pET-GTPCH/PTPS, pET-BH4, 및 pET-BH4/BGluT 이다.In the present invention, a recombinant vector was prepared to produce a terridine compound in E. coli. Recombinant vectors of the invention are pET-GTPCH / PTPS, pET-BH4, and pET-BH4 / BGluT.

상기 pET-GTPCH/PTPS는 GTP를 H2-NTP로 전환시키는 GTPCH 효소 유전자와 H2-NTP를 PPH4로 전환시키는 PTPS 효소 유전자를 포함하고 있으며, pMal-hPTPS의 PTPS cDNA(서열번호 1)와 pET15b-GTPCH의 프로모터 및 GTPCH(서열번호 2)를 pET-28a 벡터에 삽입하여 pET-GTPCH/PTPS를 제조하였다. pET-GTPCH/PTPS의 구조는 도 2에 나타난 바와 같이 GTPCH 및 PTPS가 각각의 프로모터에 발현되도록 되어있다.The pET-GTPCH / PTPS includes a GTPCH enzyme gene for converting GTP to H2-NTP and a PTPS enzyme gene for converting H2-NTP to PPH4, and PTPS cDNA (SEQ ID NO: 1) and pET15b-GTPCH of pMal-hPTPS. PET-GTPCH / PTPS was prepared by inserting the promoter and GTPCH (SEQ ID NO: 2) into the pET-28a vector. The structure of pET-GTPCH / PTPS is such that GTPCH and PTPS are expressed in each promoter as shown in FIG.

상기 pET-BH4는 GTP를 H2-NTP로 전환시키는 GTPCH 효소 유전자, H2-NTP를 PPH4로 전환시키는 PTPS 효소 유전자 및 PPH4를 BH4로 전환시키는 SR 유전자를 포함하고 있으며, 상기 pET-GTPCH/PTPS 벡터에 pET15b-mSR의 SR유전자(서열번호 3)를 더욱 삽입하여 pET-BH4를 제조하였다. pET-BH4의 구조는 도 3에 나타난 바와 같이 GTPCH, PTPS 및 SR가 각각의 프로모터에 발현되도록 되어있다.The pET-BH4 includes a GTPCH enzyme gene for converting GTP to H2-NTP, a PTPS enzyme gene for converting H2-NTP to PPH4, and an SR gene for converting PPH4 to BH4, and the pET-GTPCH / PTPS vector pET-BH4 was prepared by further inserting the SR gene (SEQ ID NO: 3) of pET15b-mSR. The structure of pET-BH4 is such that GTPCH, PTPS and SR are expressed in each promoter as shown in FIG.

상기 pET-BH4/BGluT는 GTP를 H2-NTP로 전환시키는 GTPCH 효소 유전자, H2-NTP를 PPH4로 전환시키는 PTPS 효소 유전자, PPH4를 BH4로 전환시키는 SR 유전자 및 BH4를 BH4-α-글루코시드로 전환시키는 BGluT를 포함하고 있으며, 상기 pET-BH4에 pET28a-BGluT의 BGluT 유전자(서열번호 4)를 삽입하여 pET-BH4/BGluT를 제조하였다. pET-BH4/BGluT의 구조는 도 4에 나타난 바와 같이 GTPCH, PTPS, SR 및 BGluT가 각각의 프로모터에 발현되도록 되어있다.The pET-BH4 / BGluT is a GTPCH enzyme gene for converting GTP to H2-NTP, a PTPS enzyme gene for converting H2-NTP to PPH4, an SR gene for converting PPH4 to BH4, and BH4 to BH4-α-glucoside BGluT was included, and pET-BH4 / BGluT was prepared by inserting the BGluT gene (SEQ ID NO: 4) of pET28a-BGluT into pET-BH4. The structure of pET-BH4 / BGluT is such that GTPCH, PTPS, SR and BGluT are expressed in each promoter as shown in FIG.

상기 재조합 벡터는 대장균에 형질도입하여 형질전환체를 제조하였다. 상기 대장균은 XL-1 blue, JM101, DH5F', TG1, M5219, G1724, BL21(DE3), B834(DE3), BLR(DE3), HMS174(DE3), AD494(DE3), NovaBlue(DE3), Origami(DE3), OrigamiB(DE3), Rosetta(DE3) 및 Tuner(DE3)로 이루어진 군으로부터 선택하는 것이 바람직하고, 더욱 바람직하게는 (DE3)를 포함하는 것들이고, 가장 바람직하게는 BL21(DE3)이다. The recombinant vector was transduced into E. coli to prepare a transformant. E. coli XL-1 blue, JM101, DH5F ', TG1, M5219, G1724, BL21 (DE3), B834 (DE3), BLR (DE3), HMS174 (DE3), AD494 (DE3), NovaBlue (DE3), Origami (DE3), OrigamiB (DE3), Rosetta (DE3) and Tuner (DE3) is preferably selected from the group consisting of, more preferably those containing (DE3), most preferably BL21 (DE3) .

본 발명에서는 pET-GTPCH/PTPS 형질전환체(KCTC 1020BP), pET-BH4 형질전환체, 및 pET-BH4/BGluT 형질전환체를 제조하였다.In the present invention, pET-GTPCH / PTPS transformant (KCTC 1020BP), pET-BH4 transformant, and pET-BH4 / BGluT transformant were prepared.

상기 pET-GTPCH/PTPS 형질전환체(KCTC 1020BP)는 GTPCH와 PTPS를 생성한다. GTPCH는 GTP를 H2-NTP로 전환시키고, PTPS는 H2-NTP를 PPH4로 전환시킨다. 따라서 pET-GTPCH/PTPS 형질전환체(KCTC 1020BP)는 PPH4를 생산하는 것이 바람직하나, pET-GTPCH/PTPS 형질전환체는 세피아테린을 생산하였다. 세피아테린은 PPH4가 AR의 효소반응에 의해 변형된 형태이므로, pET-GTPCH/PTPS 형질전환체내의 기작에 의해 LPH4가 생성되고 이것이 산화되면서 세피아테린이 생성되는 것으로 추정되고 있다.The pET-GTPCH / PTPS transformant (KCTC 1020BP) produces GTPCH and PTPS. GTPCH converts GTP to H2-NTP and PTPS converts H2-NTP to PPH4. Therefore, the pET-GTPCH / PTPS transformant (KCTC 1020BP) preferably produces PPH4, but the pET-GTPCH / PTPS transformant produced sepiaterin. Since sepiaterin is a form in which PPH4 is modified by the enzymatic reaction of AR, it is estimated that LPH4 is produced by the mechanism in the pET-GTPCH / PTPS transformant, and the sepiaterin is produced as it is oxidized.

또한 pET-GTPCH/PTPS 형질전환체는 배지 1 리터당 32.66 mg의 세피아테린을 생산하는 유용한 균주일 뿐만 아니라 테리딘 유도체를 생산하는 발현시스템으로 최적화되어 있다. 즉, 상기 pET-GTPCH/PTPS 벡터에 테리딘 유도체 생성에 관여하는 다수의 효소들을 동시에 발현시키므로써 발현된 효소들의 기작에 의해 최종 테리딘 유도체를 생산할 수 있게 된 것이다.The pET-GTPCH / PTPS transformants are also useful strains that produce 32.66 mg of sepiaterin per liter of medium, as well as optimized expression systems for producing terridine derivatives. That is, by simultaneously expressing a number of enzymes involved in the generation of the terridine derivative in the pET-GTPCH / PTPS vector it is possible to produce the final terridine derivative by the mechanism of the expressed enzymes.

또한 본 발명의 pET-BH4 형질전환체는 GTPCH, PTPS 및 SR을 각각 발현시킨다. 따라서, 상기 pET-GTPCH/PTPS 형질전환체가 세피아테린을 생산하는것에 그친 반면 pET-BH4 형질전환체는 발현된 SR을 이용하여 세피아테린을 BH4로 전환시킬 수있다. 실험결과 pET-BH4 형질전환체는 세피아테린과 더불어 BH4를 생산하였다.In addition, the pET-BH4 transformant of the present invention express GTPCH, PTPS and SR, respectively. Thus, the pET-GTPCH / PTPS transformant only produces sepiaterin while the pET-BH4 transformant can convert sepiaterin to BH4 using the expressed SR. As a result, the pET-BH4 transformant produced BH4 together with sepiaterin.

또한 본 발명의 pET-BH4/BGluT 형질전환체는 GTPCH, PTPS, SR 및 BGluT을 각각 발현시킨다. 따라서 pET-BH4/BGluT 형질전환체는 대장균의 GTP를 GTPCH, PTPS, SR 및 BGluT 효소작용으로 최종산물 BH4-α-글루코시드를 생산하고, 중간산물인 세피아테린도 생산하였다.In addition, the pET-BH4 / BGluT transformant of the present invention express GTPCH, PTPS, SR and BGluT, respectively. Therefore, the pET-BH4 / BGluT transformant produced the final product BH4-α-glucoside by GTPCH, PTPS, SR and BGluT enzymatic action of E. coli GTP, and also produced the intermediate sepiaterin.

또한 본 발명은 벡터에 다수의 생리효소를 동시발현시켜 재조합 화합물을 대장균에서 생산하는 방법을 제공한다. 바람직하기로는 pET 벡터에 생체내에서 화합물을 생성하는데 관여하는 생리효소들의 유전자를 삽입하여 재조합벡터를 제조하고, 상기 재조합벡터를 포함하는 형질전환체를 선별한 다음 상기 형질전환체에서 각각 효소들을 발현시키고, 발현된 효소들에 의해 재조합 화합물이 생성되도록 하는 것이다. 즉, 재조합 화합물의 초기물질은 대장균의 생체물질을 사용하고, 효소는 재조합벡터로 삽입한 유전자들을 발현시켜 사용하여 원하는 화합물을 생산하는 것이다. 바람직하게는 테리딘 화합물, BH4, 세피아테린, BH4-α-글루코시드, 클로로비움 테피둠(Chlorobium tepidum) SR 유전자, L-threo-BH4, 및 BH4 당화합물(BH4-(α또는 β)-당)들을 생산하기 위하여 GTPCH, PTPS, SR, 및 BGluT(BH4:UDP-glucose-α-glucosyltransferase)를 비롯한 기타 테리딘 당전이 효소로 이루어진 군으로부터 1종이상 선택되어지는 효소유전자를 재조합벡터로 발현시켜 형질전환체에서 생산하는 것이다.The present invention also provides a method for producing recombinant compounds in E. coli by co-expressing a plurality of physiological enzymes in the vector. Preferably, a recombinant vector is prepared by inserting a gene of physiological enzymes involved in generating a compound in vivo into a pET vector, selecting a transformant including the recombinant vector, and then expressing each of the enzymes in the transformant. And recombinant compounds are produced by the expressed enzymes. That is, the initial material of the recombinant compound is a biomaterial of E. coli, and the enzyme is used to express the gene inserted into the recombinant vector to produce the desired compound. Preferably terridine compound, BH4, sepiaterin, BH4-α-glucoside, Chlorobium tepidum SR gene, L-threo-BH4, and BH4 sugar compounds (BH4- (α or β) -sugars To produce one or more enzyme genes selected from the group consisting of GTPCH, PTPS, SR, and BGluT (BH4: UDP-glucose-α-glucosyltransferase) and other theridine glycotransferases by recombinant vectors. It is produced by transformants.

또한 본 발명은 재조합 테리딘 화합물 및 재조합 생리효소를 제공한다. 상기 재조합 테리딘 화합물은 BH4, 세피아테린 및 BH4-α-글루코시드가 바람직하고,재조합 생리효소는 GTPCH, PTPS, SR, 및 BGluT이다. 상기 BH4, 세피아테린 및 BH4-α-글루코시드는 질병치료 등의 의약적인 용도 또는 건강식품등에 사용될 수 있다.The present invention also provides a recombinant terridine compound and a recombinant physiological enzyme. The recombinant terridine compound is preferably BH4, sepiaterin and BH4-α-glucoside, and the recombinant physiases are GTPCH, PTPS, SR, and BGluT. The BH4, sepiaterin and BH4-α-glucoside can be used for medical use, health foods, and the like for the treatment of diseases.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are provided only to more easily understand the present invention, and the present invention is not limited to the following examples.

[실시예 1]Example 1

(1) 벡터와 균주(1) vectors and strains

PCR 산물의 클로닝에는 pGEM-T Easy 벡터(Promega)를 사용하였고, 과발현벡터로는 pET-28a(Novagen)을 사용하였다. 플라스미드 증폭을 위한 클로닝 균주로는 XL-1 Blue를 사용하였으며, 숙주로는 BL21(DE3) 균주를 사용하였다.PGEM-T Easy vector (Promega) was used for the cloning of PCR products, and pET-28a (Novagen) was used as the overexpression vector. As a cloning strain for plasmid amplification, XL-1 Blue was used and BL21 (DE3) strain was used as a host.

XL-1 Blue와 BL21 균주는 LB 배지에서 배양하였으며, XL-1 Blue의 형질전환체는 암피실린(ampicillin; Am)이 50 ㎍/ml의 농도로 첨가된 배지에서, BL21의 형질전환체는 카나마이신(kanamycin; Km)이 50 ㎍/ml의 농도로 첨가된 배지에서 배양하였다.XL-1 Blue and BL21 strains were cultured in LB medium, and the transformant of XL-1 Blue was added to ampicillin (Am) at a concentration of 50 µg / ml, and the transformant of BL21 was kanamycin ( kanamycin; Km) was incubated in medium added at a concentration of 50 μg / ml.

(2) 유전자와 cDNA 클론들(2) genes and cDNA clones

GTPCH, PTPS, SR, BGluT 효소들의 유전자와 cDNA 클론들은 이미 그 염기서열이 보고된 것들로 대장균 과발현 벡터인 pET(Novagen) 또는 pMal-c2(New England Biolabs)에 클로닝되어 그 재조합 단백질의 활성도 확인된 것으로, 하기 표 1에 각 효소 유전자를 포함하는 벡터를 나타내었다.Genes and cDNA clones of GTPCH, PTPS, SR, and BGluT enzymes have already been reported and cloned into E. coli overexpression vectors pET (Novagen) or pMal-c2 (New England Biolabs) to confirm the activity of the recombinant protein. In Table 1, the vector containing each enzyme gene is shown.

효소enzyme 과발현벡터 클론Overexpression vector clone 기원origin 참고문헌references 비고Remarks GTPCHGTPCH pET15b-cGTPCHpET15b-cGTPCH Synechocystissp. PCC6803(ORF slr0426) Synechocystis sp. PCC6803 (ORF slr0426) Lee SW, Lee HW, Chung HJ, Kim YA, Kim YJ, Chung JH, Park YS (1999) FEMS Microbiol. Lett.176(1), 169-176.Lee SW, Lee HW, Chung HJ, Kim YA, Kim YJ, Chung JH, Park YS (1999) FEMS Microbiol. Lett. 176 (1), 169-176. PTPSPTPS pMal-hPTPSpMal-hPTPS 사람섬유아세포 cDNAHuman fibroblast cDNA Burgisser DM, Thony B, Redweik U, Hunziker P, Heizmann, Blau N (1994) Eur. J. Biochem. 219, 497-502.Burgisser DM, Thony B, Redweik U, Hunziker P, Heizmann, Blau N (1994) Eur. J. Biochem. 219, 497-502. 스위스 쥬리히대학 Nenad Blau 박사Dr. Nenad Blau, University of Zurich, Switzerland SRSR pET15b-mSRpET15b-mSR 마우스 간 cDNAMouse Liver cDNA Seong C, Kim YA, Chung HJ, Park D, Yim J, Baek K, Park YS, Han K, Yoon J (1998) Biochim. Biophys. Acta, 1443, 239-244; Kim, YA, Chung HJ, Kim YJ, Choi YK, Hwang YK, Lee SW, Park YS (2000) Mol. Cells 10, 405-410Seong C, Kim YA, Chung HJ, Park D, Yim J, Baek K, Park YS, Han K, Yoon J (1998) Biochim. Biophys. Acta, 1443, 239-244; Kim, YA, Chung HJ, Kim YJ, Choi YK, Hwang YK, Lee SW, Park YS (2000) Mol. Cells 10, 405-410 BGluTBGluT pET28a-BGluTpET28a-BGluT Synechococcussp. PCC 7942 Synechococcus sp. PCC 7942 Choi YK (2001) 시아노박테리아 Synechococcus sp. PCC 7942에서 테리딘 당전이효소 유전자의 클로닝. MS thesis, Inje University; Choi YK, Hwang YK, Park YS (2001) FEBS Lett. in submission.Choi YK (2001) Cyanobacteria Synechococcus sp. Cloning of the Terriin Glycotransferase Gene in PCC 7942. MS thesis, Inje University; Choi YK, Hwang YK, Park YS (2001) FEBS Lett. in submission. GenBank Accession No. AF331846GenBank Accession No. AF331846

실시예 1-1. pET-GTPCH/PTPS 제조 Example 1-1 . pET-GTPCH / PTPS Manufacturing

세피아테린 단백질을 생산하는 벡터는 GTP를 H2-NTP로 전환시키는 GTPCH 효소 유전자와 H2-NTP를 PPH4로 전환시키는 PTPS 효소 유전자를 포함하도록 제조하였다.The vector producing the sepiaterin protein was prepared to include a GTPCH enzyme gene that converts GTP to H2-NTP and a PTPS enzyme gene that converts H2-NTP to PPH4.

도 2에 pET-GTPCH/PTPS 벡터의 제조과정을 나타내었다.2 shows the preparation of the pET-GTPCH / PTPS vector.

pMal-hPTPS의 PTPS cDNA는 서열번호 5의 프라이머(Forward primer)와 서열번호 6의 프라이머(Reverse primer)로 PCR하였다. PCR 반응은 10X 반응 완충용액(100 mM Tris-HCl, pH 9.0, 25 ℃, 500 mM KCl, 1.0 % Triton X-100), 1.5 mM MgCl2,0.2 mM dNTP, 각각 0.5 pmol의 프라이머, pMal-hPTPS DNA, 및 2.5 unit의 DNA 중합효소로 최종 부피 50 ㎕으로 하였다. PCR 조건은 전처리변성단계(Pre-denaturation: 95 ℃, 4분), 변성(Denaturation: 95 ℃, 1분), 어닐링(Annealing:55-57 ℃, 1분), 증폭(Extension: 72 ℃, 1분)으로 25-30회를 수행하였으며, 마지막으로 72 ℃에서 10분간 최종연장을 하여 PCR 반응을 종결하였다. 반응물은 1-2 %의 아가로즈젤에서 전기영동하여 확인하였다. 증폭된 PTPS 유전자는 pGEM-T Easy 벡터 (Promega)에 클로닝한 다음 NdeI/BamHI으로 잘라 pET-28a 벡터에 클로닝하여 pET28a-hPTPS를 제조하였다.The PTPS cDNA of pMal-hPTPS was PCR by using a primer of SEQ ID NO: 5 and a primer of Reverse 6. PCR reactions were performed using 10 × reaction buffer (100 mM Tris-HCl, pH 9.0, 25 ° C., 500 mM KCl, 1.0% Triton X-100), 1.5 mM MgCl 2, 0.2 mM dNTP, 0.5 pmol primer each, pMal-hPTPS The final volume was 50 μl with DNA and 2.5 units of DNA polymerase. PCR conditions were pre-denaturation (pre-denaturation: 95 ° C, 4 min), denaturation (Denaturation: 95 ° C, 1 min), annealing (55-57 ° C, 1 min), amplification (Extension: 72 ° C, 1 min) 25-30 times), and finally, the PCR reaction was terminated by final extension at 72 ° C. for 10 minutes. The reaction was confirmed by electrophoresis on 1-2% agarose gel. The amplified PTPS gene was cloned into pGEM-T Easy vector (Promega) and then cut into NdeI / BamHI to clone into pET-28a vector to prepare pET28a-hPTPS.

pET15b-GTPCH를 BglII/HindIII로 잘라 프로모터 부위를 포함한 cGTPCH 절편을 회수한 후 BamHI/HindIII로 자른 pET28a-PTPS 플라스미드에 삽입하여 pET-GTPCH/PTPS를 제조하였다.pET15b-GTPCH was cut with BglII / HindIII to recover the cGTPCH fragment containing the promoter site and then inserted into the pET28a-PTPS plasmid cut with BamHI / HindIII to prepare pET-GTPCH / PTPS.

실시예 1-2. pET-BH4의 제조 Example 1-2 . Preparation of pET-BH4

상기의 pET-GTPCH/PTPS 벡터에 pET15b-mSR의 SR유전자를 더욱 삽입하여 pET-BH4를 제조하였다. pET-BH4 제조과정은 도 3과 같다.PET-BH4 was prepared by further inserting the SR gene of pET15b-mSR into the pET-GTPCH / PTPS vector. pET-BH4 manufacturing process is shown in FIG.

pET15b-mSR를 BglII/HindIII로 잘라 프로모터 부위를 포함한 mSR 절편을 회수한 후 BamHI/HindIII로 자른 pET-GTPCH/PTPS에 삽입하여 pET-BH4를 제조하였다. 상기 pET-BH4는 XL-1 Blue에서 확인하고, BL21(DE3)에 형질전환하여 pET-BH4 형질전환체를 수득하였다.pET15b-mSR was cut with BglII / HindIII to recover mSR fragments containing the promoter site, and then inserted into pET-GTPCH / PTPS cut with BamHI / HindIII to prepare pET-BH4. The pET-BH4 was identified in XL-1 Blue, and transformed into BL21 (DE3) to obtain a pET-BH4 transformant.

실시예 1-3. pET-BH4/BGluT의 제조 Example 1-3 . Preparation of pET-BH4 / BGluT

상기 pET-BH4 벡터에 pET28a-BGluT의 BGluT 유전자를 삽입하여 pET-BH4/BGluT를 제조하였다. 그 제조 과정은 도 4와 같다.PET-BH4 / BGluT was prepared by inserting the BGluT gene of pET28a-BGluT into the pET-BH4 vector. The manufacturing process is as shown in FIG.

pET28a-BGluT를 BglII/HindIII로 잘라 프로모터 부위를 포함한 BGluT 절편을 회수한 후 BamHI/HindIII로 자른 pET-BH4에 삽입하여 pET-BH4/BGluT를 제조하였다.pET28a-BGluT was cut into BglII / HindIII to recover the BGluT fragment including the promoter site, and then inserted into pET-BH4 cut with BamHI / HindIII to prepare pET-BH4 / BGluT.

[실시예 2]Example 2

(1) pET-GTPCH/PTPS 형질전환체 제조(1) pET-GTPCH / PTPS transformant preparation

상기 실시예 1-1에서 제조한 pET-GTPCH/PTPS를 XL-1 Blue에 형질전환(Sambrook et al., 2001)하고 37 ℃에서 16시간동안 배양한 후 IPTG와 X-Gal이 도말된 LB-Amp+(50 ㎍/ml) 고체 배지에서 흰색 콜로니들을 선별하였다. 선별된 세포는 정제키트(QIAprep spin miniprep kit, QIAGEN)로 벡터 DNA를 정제한 후 염기서열을 확인하고, BL21(DE3) 균주에 형질도입하여 pET-GTPCH/PTPS 형질전환체를 제조하였다.PET-GTPCH / PTPS prepared in Example 1-1 was transformed into XL-1 Blue (Sambrook et al., 2001) and incubated at 37 ° C. for 16 hours, followed by IPB and X-Gal plated LB- White colonies were selected in Amp + (50 μg / ml) solid medium. Selected cells were purified by vector purification kit (QIAprep spin miniprep kit, QIAGEN) and then confirmed the nucleotide sequence, and transduced to the BL21 (DE3) strain to prepare a pET-GTPCH / PTPS transformant.

(2) pET-BH4 형질전환체 제조(2) pET-BH4 transformant preparation

상기 실시예 1-2에서 제조한 pET-BH4를 XL-1 Blue에 형질전환하고, 37 ℃에서 16시간동안 배양한 후 IPTG와 X-Gal이 도말된 LB-Amp+(50 ㎍/ml) 고체 배지에서 흰색 콜로니들을 선별하였다. 선별된 세포는 정제키트(QIAprep spin miniprep kit, QIAGEN)로 벡터 DNA를 정제한 후 염기서열을 확인하고, BL21(DE3) 균주에 형질도입하여 pET-BH4 형질전환체를 제조하였다.PET-BH4 prepared in Example 1-2 was transformed into XL-1 Blue, incubated at 37 ° C. for 16 hours, and then IPB and X-Gal smeared LB-Amp + (50 μg / ml) solid White colonies were selected in the medium. Selected cells were purified by vector purification kit (QIAprep spin miniprep kit, QIAGEN) and then confirmed the nucleotide sequence, and transduced to the BL21 (DE3) strain to prepare a pET-BH4 transformant.

(3) pET-BH4/BGluT 형질전환체 제조(3) pET-BH4 / BGluT transformant preparation

상기 실시예 1-3에서 제조한 pET-BH4/BGluT를 XL-1 Blue에 형질전환하고, 37 ℃에서 16시간동안 배양한 후 IPTG와 X-Gal이 도말된 LB-Amp+(50 ㎍/ml) 고체 배지에서 흰색 콜로니들을 선별하였다. 선별된 세포는 정제키트(QIAprep spin miniprep kit, QIAGEN)로 벡터 DNA를 정제한 후 염기서열을 확인하고, BL21(DE3)균주에 형질도입하여 pET-BH4/BGluT 형질전환체를 제조하였다.PET-BH4 / BGluT prepared in Example 1-3 was transformed into XL-1 Blue, cultured at 37 ° C. for 16 hours, and then LB-Amp + (50 μg / ml smeared with IPTG and X-Gal). ) White colonies were selected in solid medium. Selected cells were purified by the purification kit (QIAprep spin miniprep kit, QIAGEN) vector DNA and then confirmed the base sequence, and transduced to the BL21 (DE3) strain to prepare a pET-BH4 / BGluT transformant.

[실험예 1]Experimental Example 1

pET-GTPCH/PTPS 형질전환체, pET-BH4 형질전환체 및 pET-BH4/BGluT 형질전환체를 각각 배양하여 재조합 단백질 생성여부를 확인하였다.pET-GTPCH / PTPS transformant, pET-BH4 transformant and pET-BH4 / BGluT transformant were cultured to confirm whether recombinant protein was produced.

pET-GTPCH/PTPS 형질전환체, pET-BH4 형질전환체 및 pET-BH4/BGluT 형질전환체를 LB-Km+고체배지에서 각각 키운 결과 IPTG의 첨가가 없이도 24시간 이내에서는 콜로니 색깔이 노란색을 띠었다가 나중에는 배지의 색깔이 노랗게 변하는 것을 관찰하였다. 이것은 노란색의 화합물이 배지로 방출되는 것을 가리키는 것으로 액체배양 시에도 동일한 결과가 나타났다. 반면 형질전환되지 않은 BL21 균주의 배양에서는 아무런 색깔도 관찰되지 않았고, pET-BH4 형질전환체와 pET-BH4/BGluT 형질전환체는 약한 노란색을 나타내었다. 세피아테린은 노란색의 화합물로 상기 형질전환체 콜로니가 노란색을 나타내는 것은 세피아테린을 생성하기 때문인 것으로 추정된다.pET-GTPCH / PTPS transformants, pET-BH4 transformants, and pET-BH4 / BGluT transformants were grown in LB-Km + solid medium, respectively, and colonies became yellow within 24 hours without addition of IPTG. Later on, the color of the medium was observed to turn yellow. This indicates that the yellow compound is released into the medium, and the same result was obtained in the liquid culture. On the other hand, no color was observed in the culture of the untransformed BL21 strain, and the pET-BH4 transformant and the pET-BH4 / BGluT transformant showed weak yellow color. Sepiaterin is a yellow compound, and it is assumed that the transformant colony is yellow because it produces sepiaterin.

도 5는 고체배양한 BL21 균주(a), pET-GTPCH/PTPS 형질전환체(b), pET-BH4 형질전환체(c) 및 pET-BH4/BGluT 형질전환체(d)를 나타낸 것으로, BL21 균주를 제외한 pET-GTPCH/PTPS 형질전환체(b), pET-BH4 형질전환체(c) 및 pET-BH4/BGluT 형질전환체가 노랑색을 나타냄을 나타낸 것이다.5 shows solid cultured BL21 strain (a), pET-GTPCH / PTPS transformant (b), pET-BH4 transformant (c) and pET-BH4 / BGluT transformant (d). PET-GTPCH / PTPS transformant (b), pET-BH4 transformant (c) and pET-BH4 / BGluT transformant except for the strain are yellow.

도 6은 액체배양한 BL21 균주(a), pET-GTPCH/PTPS 형질전환체(b), pET-BH4 형질전환체(c) 및 pET-BH4/BGluT 형질전환체(d)를 나타낸 것으로, BL21 균주를 제외한 pET-GTPCH/PTPS 형질전환체(b), pET-BH4 형질전환체(c) 및 pET-BH4/BGluT 형질전환체가 노랑색을 나타냄을 나타낸 것이다.6 shows liquid cultured BL21 strain (a), pET-GTPCH / PTPS transformant (b), pET-BH4 transformant (c) and pET-BH4 / BGluT transformant (d). PET-GTPCH / PTPS transformant (b), pET-BH4 transformant (c) and pET-BH4 / BGluT transformant except for the strain are yellow.

[실험예 2] 형질전환체의 테리딘 화합물 발현여부 확인Experimental Example 2 Confirmation of the expression of the terridine compound of the transformant

(1) pET-GTPCH/PTPS 형질전환체(1) pET-GTPCH / PTPS transformants

형질전환체 배양액에 존재하는 테리딘 화합물들은 HPLC와 분광광도계를 사용하여 분석하였다. 테리딘 화합물은 산성요오드에 의해 형광을 나타내지만, 세피아테린은 산성요오드에 의해 형광을 나타내지 않는다. 형질전환체 배양액내의 테리딘화합물을 확인하기 위하여 산성요오드를 처리하여 형광파장내에서 HPLC를 실시하였고, 형광을 내지 않는 세피아테린은 SR과 반응시켜 수득되는 바이오테린을 다시 산성요오드를 처리한 다음 HPLC 분석하여 확인하였다.The terridine compounds present in the transformant culture were analyzed using HPLC and spectrophotometer. The terridine compound is fluorescent by acidic iodine while the sepiaterin is not fluorescent by acidic iodine. In order to identify the terridine compound in the transformant culture, acid iodine was treated and HPLC was performed in fluorescence wavelength. Sepiaterin which does not fluoresce reacted with SR and acidified iodine was again treated with acid iodine. Analysis confirmed.

pET-GTPCH/PTPS 형질전환체을 액체배지에 접종하고 24시간 경과 후에 배양액을 원심분리하고 상등액을 동일 부피의 산성 요오드 용액 (2 % KI/1 % I2in 1 N HCl)과 혼합한 후 1 시간 동안 암소에서 실온에 방치하였다. 이것을 원심분리하여 비타민 C 용액을 최종농도 0.5 %가 되도록 상등액에 첨가한 후 HPLC 분석을 실시하였다. HPLC 분석에는 C18 컬럼(Inertsil ODS-3, 5 ㎛, 150 x 2.3 mm, GL Sci., Japan)이 사용되었으며, 10 mM 포타슘 포스페이트(pH 6.0) 용매를 분당 1.2 ml의 속도로 흘려주었다. 용출되는 테리딘 화합물들은 형광분석기(HP Model 1046A fluorescence detector) 350 nm/450 nm (Ex/Em)의 파장에서 측정하였다. 세피아테린 및 BH4의 농도는 구입한 표준 시료 (Schircks Lab., Switzerland)로 결정하였고, 바이오테린-α-글루코사이드는 연구실에서 정제된 것(Chung et al., 2000)을 사용하였다.After 24 hours of inoculation of the pET-GTPCH / PTPS transformant into the liquid medium, the culture was centrifuged and the supernatant was mixed with an equal volume of acidic iodine solution (2% KI / 1% I 2 in 1 N HCl) for 1 hour. It was left at room temperature in the dark for a while. After centrifugation, the vitamin C solution was added to the supernatant to a final concentration of 0.5%, followed by HPLC analysis. For HPLC analysis, a C18 column (Inertsil ODS-3, 5 μm, 150 × 2.3 mm, GL Sci., Japan) was used and 10 mM potassium phosphate (pH 6.0) solvent was flowed at a rate of 1.2 ml per minute. The eluted terridine compounds were measured at a wavelength of 350 nm / 450 nm (Ex / Em) with an HP Model 1046A fluorescence detector. The concentrations of sepiaterin and BH4 were determined from standard samples purchased (Schircks Lab., Switzerland), and bioterin-α-glucoside was purified from the laboratory (Chung et al., 2000).

또한 배지에 존재하는 세피아테린의 확인은 김(Kim, YA, Chung HJ, Kim YJ, Choi YK, Hwang YK, Lee SW, Park YS (2000) Mol. Cells 10, 405-410)에 기술된 방법에 따라 정제된 생쥐의 재조합 SR과 반응시킨 후 산성요오드 용액으로 산화시켜 HPLC를 사용하여 바이오프테린의 존재로서 분석하였다. 산성요오드는 테리딘 화합물을 산화시켜 테리딘 화합물을 산화상태에서 형광을 발하게 한다. 정량분석은 배지를 직접 420 nm에서의 흡광도로서 분석하거나, HPLC로 분석하였다. HPLC에는 상기와 동일한 컬럼을 사용하였으며 12 % 메탄올 용매를 분당 1.2 ml의 속도로 흘려주고 420 nm에서 분석하였다.The identification of sepiaterin present in the medium is also described in the method described in Kim (YA, Chung HJ, Kim YJ, Choi YK, Hwang YK, Lee SW, Park YS (2000) Mol. Cells 10, 405-410). Following reaction with recombinant SR of purified mice, they were oxidized with acidic iodine solution and analyzed as presence of biopterin using HPLC. Acidic iodine oxidizes the terrydine compound, causing the terrydine compound to fluoresce in the oxidized state. Quantitative analysis media was analyzed directly as absorbance at 420 nm or by HPLC. HPLC was used for the same column as above and 12% methanol solvent was flowed at a rate of 1.2 ml / min and analyzed at 420 nm.

도 7은 pET-GTPCH/PTPS 형질전환체의 배양액을 HPLC 한 그래프로, A는 표준 테리딘 화합물의 HPLC 그래프이고, B는 산성요오드 용액을 처리한 배양액 HPLC 그래프이고, C는 SR 효소와 반응시킨 후 산성 요오드 용액을 처리한 배양액의 HPLC 그래프이다. 또한 a는 네오테린(neopterin)이고, b는 테린(pterin)이고, c는 바이오테린(biopterin)이고, d는 6-하이드로시메틸테린이고(6-hydroxymethylpterin), e는 딕티오테린(dictyopterin)이고, 화살표는 바이로테린 위치를 가리킨다.FIG. 7 is a graph of HPLC of a culture of a pET-GTPCH / PTPS transformant, A is a HPLC graph of a standard terridine compound, B is a HPLC chart of a culture solution treated with an acidic iodine solution, and C is reacted with an SR enzyme. After is an HPLC graph of the culture treated with acidic iodine solution. A is neoopterin, b is pterin, c is biopterin, d is 6-hydroxymethylpterin, e is dictyopterin And the arrow points to the virotherin position.

도 7에서 나타난 바와 같이, pET-GTPCH/PTPS 형질전환체의 배지를 산성요오드 용액으로 처리한 후 HPLC로 분석한 결과, 별다른 테리딘 화합물의 피크는 관찰되지 않았으나 배지에 직접 생쥐의 SR 효소와 NADPH를 첨가하여 반응시킨 결과 배양액의 노란색이 없어지고, 바이오테린에 해당하는 피크가 높게 나타났다. 이는배양액에 세피아테린이 존재하는 것을 의미하는 것이다.As shown in FIG. 7, the medium of the pET-GTPCH / PTPS transformant was treated with acidic iodine solution and analyzed by HPLC. As a result, no peak of the other terridine compound was observed, but the SR enzyme and NADPH of the mouse were directly added to the medium. As a result of the reaction, the yellow color of the culture solution disappeared, and the peak corresponding to bioterin was high. This means the presence of sepiaterin in the culture fluid.

재확인하기 위하여 배양액을 산성요오드 용액으로 처리하지 않고 직접 HPLC로 분석하였다. 도 8은 pET-GTPCH/PTPS 형질전환체의 액체배지에 존재하는 세피아테린을 분석한 HPLC 그래프로, A는 표준 세피아테린을 분석한 그래프이고, B는 pET-GTPCH/PTPS 형질전환체의 액체배지를 분석한 그래프이다. 그 결과 420 nm에서 흡광도를 가지는 화합물이 많이 검출되었으며, 그 용출위치는 표준 세피아테린과 동일한 위치임이 확인되어 pET-GTPCH/PTPS 형질전환체가 재조합 세피아테린을 생산함을 확인할 수 있었다.To reconfirm the culture was analyzed directly by HPLC without treatment with acidic iodine solution. FIG. 8 is an HPLC graph of the sepiaterin present in the liquid medium of the pET-GTPCH / PTPS transformant, A is a graph of the standard sepiaterin, and B is the liquid medium of the pET-GTPCH / PTPS transformant. This is a graph analyzed. As a result, many compounds having absorbance at 420 nm were detected, and the elution position was confirmed to be the same position as that of the standard sepiaterin, indicating that the pET-GTPCH / PTPS transformant produced recombinant sepiaterin.

(2) pET-BH4 형질전환체(2) pET-BH4 transformants

상기 테리딘 화합물을 확인하기 위한 실험을 동일하게 pET-BH4 형질전환체에 대하여 실시하였다.Experiments for identifying the terridine compound were performed in the same manner for the pET-BH4 transformant.

도 9는 pET-BH4 형질전환체 배양액을 HPLC한 그래프로, A는 표준 테리딘 화합물의 HPLC 그래프이고, B는 산성요오드 용액을 처리한 배양액 HPLC 그래프이고, C는 SR 효소와 반응시킨 후 산성 요오드 용액을 처리한 배양액의 HPLC 그래프이다. 또한 a는 네오테린(neopterin)이고, b는 테린(pterin)이고, c는 바이오테린(biopterin)이고, d는 6-하이드로시메틸테린이고(6-hydroxymethylpterin), e는 딕티오테린(dictyopterin)이고, 화살표는 바이로테린 위치를 가리킨다. 그 결과, pET-BH4 형질전환체 배양액은 산성요오드 용액을 처리하였을 때 바이오테린 피크를 보여주었다.(도 9B) 이는 pET-BH4 형질전환체가 GTPCH, PTPS 및 SR을 모두 발현하여 BH4가 생성되었음을 의미하는 것이다.9 is a graph of HPLC of pET-BH4 transformant culture, A is HPLC graph of standard terridine compound, B is HPLC chart of culture solution treated with acidic iodine solution, and C is acidic iodine after reaction with SR enzyme HPLC graph of the solution treated solution. A is neoopterin, b is pterin, c is biopterin, d is 6-hydroxymethylpterin, e is dictyopterin And the arrow points to the virotherin position. As a result, the pET-BH4 transformant culture showed a bioterin peak when the acidic iodine solution was treated (FIG. 9B). This means that the pET-BH4 transformant expressed all GTPCH, PTPS and SR to generate BH4. It is.

또한 pET-BH4 형질전환체 배양액을 SR 효소와 반응시켜 HPLC로 분석한 결과 바이오테린의 피크가 증가하는 것을 확인할 수 있었다.(도 9C) 이는 pET-GTPCH/PTPS 형질전환체가 대부분 세피아테린을 분비하기 때문에 분비된 세피아테린이 첨가한 SR과 반응하여 바이오테린을 형성한 것이다. 따라서 pET-GTPCH/PTPS 형질전환체 배지의 노란색은 세피아테린에 기인하는 것임을 확인하였다.In addition, it was confirmed that the peak of the bioterin was increased by HPLC by reacting the pET-BH4 transformant culture with the SR enzyme (FIG. 9C). This indicates that most of the pET-GTPCH / PTPS transformants secrete sepiaterin. Therefore, the secreted sepiaterin reacts with the added SR to form bioterin. Therefore, it was confirmed that the yellow color of the pET-GTPCH / PTPS transformant medium was due to sepiaterin.

(3) pET-BH4/BGluT 형질전환체(3) pET-BH4 / BGluT transformants

BGluT는 BH4의 6번 곁사슬의 C2'-OH 기에 글루코스를 α-배위로 붙여주는 효소로서, BGluT 유전자의 발현에 의해 BH4-α-글루코스가 생성될 수 있는지 알아보았다. 실험은 상기 테리딘 화합물을 확인하기 위한 실험과 동일하게 실시하였다.BGluT is an enzyme that attaches glucose in α-coordination to the C2'-OH group of the 6th side chain of BH4 and examined whether BH4-α-glucose can be produced by expression of the BGluT gene. The experiment was performed in the same manner as the experiment for identifying the terridine compound.

도 10은 pET-BH4/BGluT 형질전환체의 배양액을 HPLC한 그래프로, A는 표준 테리딘 화합물의 HPLC 그래프이고, B는 산성요오드 용액을 처리한 배양액 HPLC 그래프이고, C는 바이오테린-α-글루코시드를 산성요오드 용액을 처리한 배양액과 혼합한 시료의 HPLC 그래프이고, D는 SR 효소와 반응시킨 후 산성 요오드 용액으로 산화시킨 배양액의 HPLC 그래프이다. 또한 a는 네오테린(neopterin)이고, b는 테린(pterin)이고, c는 바이오테린(biopterin)이고, d는 6-하이드로시메틸테린이고(6-hydroxymethylpterin), e는 딕티오테린(dictyopterin)이고, 화살표 a는 바이오테린을, 화살표 b는 바이오테린-α-글루코시드의 위치를 가리킨다.FIG. 10 is a graph of HPLC of a culture medium of a pET-BH4 / BGluT transformant, A is an HPLC graph of a standard terridine compound, B is a culture HPLC chart of an acidic iodine solution, and C is a bioterin-α- An HPLC graph of a sample in which glucoside was mixed with a culture solution treated with an acidic iodine solution. D is an HPLC graph of a culture solution oxidized with an acidic iodine solution after reacting with an SR enzyme. A is neoopterin, b is pterin, c is biopterin, d is 6-hydroxymethylpterin, e is dictyopterin Arrow a indicates bioterin and arrow b indicates the location of bioterin-α-glucoside.

도 10에서 나타난 보와 같이, pET-BH4/BGluT 형질전환체의 배양액을 산성요오드 용액으로 처리한 후 HPLC로 분석한 결과 바이오테린 피크는 거의 없고, 18분정도의 용출위치에 적은 양의 새로운 화합물(화살표 b)이 나타났다.(도 10B) pET-BH4/BGluT 형질전환체의 배양액을 산성요오드 용액처리하고, 바이오테린-α-글루코시드를 혼합하였을 때 도 10C로 나타났다. 이는 화살표 b가 바이오테린-α-글루코시드임을 입증하는 것이다. 또한 배양액에 SR을 처리한 경우 바이오테린이 용출되는 것으로 보아(도 10D), pET-BH4/BGluT 형질전환체 역시 pET-BH4 형질전환체와 같이 세피아테린을 발현함을 알 수 있었다. 따라서, pET-BH4/BGluT 형질전환체 콜로니의 노란색은 세피아테린에 의한 것이다.As shown in FIG. 10, after the culture of the pET-BH4 / BGluT transformant was treated with an acidic iodine solution, the result of analysis by HPLC showed little bioterin peak and a small amount of new compound at the elution site of about 18 minutes. (Arrow b) is shown. (FIG. 10B) The culture solution of the pET-BH4 / BGluT transformant was treated with acidic iodine solution, and shown in FIG. 10C when bioterin-α-glucoside was mixed. This proves that arrow b is bioterin-α-glucoside. In addition, when treated with SR in the culture broth bioterin eluted (Fig. 10D), pET-BH4 / BGluT transformant was also found to express sepiaterin like the pET-BH4 transformant. Thus, the yellow color of the pET-BH4 / BGluT transformant colonies is due to sepiaterin.

[실시예 3]Example 3

상기 실시예 2에서 제조된 각 형질전환체는 LB-Km+액체배지에 접종하여 섭씨 37도에서 200rpm의 속도로 진탕배양하여 재조합단백질을 과발현시키고, 이를 정제하였다. pET-GTPCH/PTPS 형질전환체, pET-BH4 형질전환체 및 pET-BH4/BGluT 형질전환체의 재조합 단백질의 발현방법은 동일하다.Each transformant prepared in Example 2 was inoculated in LB-Km + liquid medium and shaken at 37 rpm to culture at 200 rpm to overexpress the recombinant protein and purify it. The expression method of the recombinant protein of the pET-GTPCH / PTPS transformant, the pET-BH4 transformant and the pET-BH4 / BGluT transformant is the same.

형질전환체를 LB-Km+(50 ㎍/ml) 액체배지에 접종하여 O.D600의 값이 0.6에서 1 사이가 될 때까지 배양한 뒤 최종농도가 50 uM이 되도록 IPTG를 첨가하여 재조합 단백질의 발현을 유도하였다. 재조합 단백질들의 과발현 여부는 SDS-PAGE로 분석되었다. 그 결과 His-tag을 포함하는 분자량 이 GTPCH는 27.5 kD, PTPS는 18.6 kD, SR는 30 kD, BGluT는 40.2 kD였으며, SDS-PAGE로 재조합단백질들의 발현량을 분석하였을 때 IPTG를 첨가하지 않았을 때 발현율이 좋은 것으로 나타났다.Transformants were LB-Km+(50 ㎍ / ml) O.D. by inoculating liquid medium600After culturing until the value is between 0.6 and 1, the expression of recombinant protein was induced by adding IPTG to a final concentration of 50 uM. Overexpression of recombinant proteins was analyzed by SDS-PAGE. As a result, the molecular weight including His-tag was 27.5 kD for GTPCH, 18.6 kD for PTPS, 30 kD for SR, and 40.2 kD for BGluT. When the expression levels of recombinant proteins were analyzed by SDS-PAGE, the expression rate was good when IPTG was not added.

또한 pET-GTPCH/PTPS 형질전환체의 생장에 따른 세피아테린의 생성량을 600nm와 420 nm의 흡광도로 분석하였다. 대조군으로 BL21(DE3) 균주와 pET-GTPCH/PTPS 형질전환체 각각을 LB-Km+액체 배지에서 접종하여 37도에서 진탕배양하면서 매 30-60분 마다 600 nm와 420 nm에서의 흡광도를 측정하였다. 또한 pET-GTPCH/PTPS 형질전환체가 OD6000.6일 때 50 uM IPTG를 첨가한 실험군도 동일하게 실험하였다. 그 결과는 도 11에 그래프로 나타내었다. ●는 BL21 균주이고, ○는 pET-GTPCH/PTPS 형질전환체이고, ▼는 pET-GTPCH/PTPS 형질전환체+ 50 uM IPTG이고, 점선은 600 nm에서 측정한 흡광도이고, 실선은 420 nm에서 세피아테린의 노란색 흡광도를 측정한 것이다.In addition, the amount of sepiaterin produced by the growth of the pET-GTPCH / PTPS transformant was analyzed by absorbance at 600 nm and 420 nm. As a control, the BL21 (DE3) strain and the pET-GTPCH / PTPS transformant were inoculated in LB-Km + liquid medium, respectively, and the absorbance at 600 nm and 420 nm was measured every 30-60 minutes while shaking at 37 ° C. . Also, when the pET-GTPCH / PTPS transformant was OD 600 0.6, the experimental group to which 50 uM IPTG was added was also tested. The results are shown graphically in FIG. Is a BL21 strain, ○ is a pET-GTPCH / PTPS transformant, ▼ is a pET-GTPCH / PTPS transformant + 50 uM IPTG, dotted line is absorbance measured at 600 nm, solid line is sepia at 420 nm The yellow absorbance of terrin was measured.

도 11에 따르면, pET-GTPCH/PTPS 형질전환체 생장에 따른 세피아테린의 생성량은 IPTG의 첨가없이도 생성되어 24시간 이내에 포화상태에 도달하여 2.0에 가까운 흡광도 값을 보여주었다.(도 11-실선○) IPTG를 첨가하였을 경우는 오히려 낮은 값을 보여주었다.(도 11-실선▼) 또한 23시간에서의 흡광도 값은 BL21 대조군의 흡광도 값을 제하였을 때 1.84이었고, 1.84는 420 nm에서 세피아테린의 흡광계수값 10400을 적용하였을 때 177 uM 농도에 해당하는 값이다. HPLC로 분석하였을 때 177 uM의 77 % 수준에 해당하는 농도의 세피아테린 피크가 나타났었다. 따라서 보정된 값을 적용하더라도 배지에 존재하는 세피아테린의 농도는 137.7 uM에 해당하는 높은 농도로 계산되었다. 137.7 uM은 세피아테린의 분자량 237.2를 적용하였을 때 pET-GTPCH/PTPS 형질전환체 배지 1 리터당 32.66 mg의 수율로 계산되었다.According to FIG. 11, the amount of sepiaterin produced by the growth of the pET-GTPCH / PTPS transformant was generated without addition of IPTG, reaching saturation within 24 hours, and showing absorbance values close to 2.0. (FIG. 11-solid line ○) (Fig. 11-solid line) The absorbance value at 23 hours was 1.84 when the absorbance value of the BL21 control was subtracted, and 1.84 was the absorbance of sepiaterin at 420 nm. The value corresponds to a concentration of 177 uM when the count value 10400 is applied. HPLC analysis showed a sepiaterin peak at a concentration corresponding to 77% level of 177 uM. Therefore, even if the corrected value was applied, the concentration of sepiaterin in the medium was calculated to be a high concentration corresponding to 137.7 uM. 137.7 uM was calculated with a yield of 32.66 mg per liter of pET-GTPCH / PTPS transformant medium when molecular weight 237.2 of sepiaterin was applied.

상기에 언급한 바와 같이, 본 발명은 테리딘 화합물을 대장균을 이용하여 생산하는 방법을 확립하여 대량의 세피아테린을 대장균에서 쉽게 수득할 수 있다. 또한 본 발명의 pET-GTPCH/PTPS 형질전환체(KCTC 1020BP), pET-BH4 형질전환체 및 pET-BH4/BGluT 형질전환체로 세피아테린, BH4 및 BH4-α-글루코시드를 대량으로 제조하여 의약적의 용도로 사용할 수 있다.As mentioned above, the present invention establishes a method for producing a terridine compound using E. coli, so that a large amount of sepiaterin can be easily obtained from E. coli. In addition, a large amount of sepiaterin, BH4 and BH4-α-glucoside was prepared using the pET-GTPCH / PTPS transformant (KCTC 1020BP), the pET-BH4 transformant and the pET-BH4 / BGluT transformant of the present invention. Can be used for purposes.

Claims (8)

테리딘 화합물을 생성하는 생리효소 유전자를 포함하는 재조합벡터.Recombinant vector comprising a physiase gene for producing a terridine compound. 제 1항에 있어서, 상기 재조합 벡터는 pET-GTPCH/PTPS, pET-BH4, 또는 pET-BH4/BGluT인 것을 특징으로 하는 재조합벡터.The recombinant vector of claim 1, wherein the recombinant vector is pET-GTPCH / PTPS, pET-BH4, or pET-BH4 / BGluT. 제 1항 내지 2항의 재조합 벡터로 형질전환된 형질전환체.A transformant transformed with the recombinant vector of claim 1. 제 3항에 있어서, 상기 형질전환체는 pET-GTPCH/PTPS 형질전환체(KCTC 1020BP), pET-BH4 형질전환체, 또는 pET-BH4/BGluT 형질전환체인 것을 특징으로 하는 형질전환체.The transformant of claim 3, wherein the transformant is a pET-GTPCH / PTPS transformant (KCTC 1020BP), a pET-BH4 transformant, or a pET-BH4 / BGluT transformant. 제 3항 내지 4항의 형질전환체에서 생산되는 테리딘 화합물 또는 재조합 효소.A terridine compound or recombinant enzyme produced by the transformant of claim 3. 벡터에 테리딘 화합물을 생성하는 생리효소유전자를 삽입하여 재조합벡터를 제조하고, 상기 재조합벡터를 포함하는 형질전환체에서 생리효소를 동시에 발현시켜 재조합 생리화합물을 생산하는 것을 특징으로 하는 대장균을 이용한 테리딘 화합물 생산방법.A terry using E. coli to produce a recombinant vector by inserting a physiological enzyme gene to generate a terridine compound in the vector, and to produce a recombinant physiological compound by simultaneously expressing the physiological enzyme in the transformant containing the recombinant vector Method for producing din compound. 제 6항에 있어서, 상기 생리효소유전자는 GTPCH(GTP cyclohydrolase I) 유전자, PTPS 유전자(6-pyruvoyltetrahydropterin synthase), SR 유전자(sepiapterin reductase), BGluT 유전자(BH4:UDP-glucose-α-glucosyltransferase), 클로로비움 테피둠(Chlorobium tepidum) SR 유전자 및 테리딘 당전이효소 유전자로 이루어진 군으로부터 1종이상 선택되어지는 것을 특징으로 하는 대장균을 이용한 테리딘 화합물 생산방법.According to claim 6, wherein the physiological enzyme gene is GTPCH (GTP cyclohydrolase I) gene, PTPS gene (6-pyruvoyltetrahydropterin synthase), SR gene (sepiapterin reductase), BGluT gene (BH4: UDP-glucose-α-glucosyltransferase), chloro Method for producing a teridine compound using E. coli, characterized in that at least one selected from the group consisting of chlorotepium (Chlorobium tepidum) SR gene and the teridine glycotransferase gene. 제 6항에 있어서, 상기 테리딘 화합물은 세피아테린(sepiapterin), BH4((6R)-5,6,7,8-tetrahydro-L-biopterin), BH4-α-글루코시드(BH4-α- glucoside), L-threo-BH4 및 당이 결합된 BH4(BH4-(α또는 β)-당)으로 이루어지는 것을 특징으로 하는 대장균을 이용한 테리딘 화합물 생산방법.The method of claim 6, wherein the terry Compound sepia aminopterin (sepiapterin), BH4 ((6 R) -5,6,7,8-tetrahydro-L-biopterin), BH4-α- glucoside (BH4-α- glucoside), L-threo-BH4 and a method of producing a terridine compound using E. coli, characterized in that the sugar-binding BH4 (BH4- (α or β) -sugar).
KR10-2001-0034466A 2001-06-18 2001-06-18 Producing method of pteridine compounds using recombinant bacteria KR100456062B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0034466A KR100456062B1 (en) 2001-06-18 2001-06-18 Producing method of pteridine compounds using recombinant bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0034466A KR100456062B1 (en) 2001-06-18 2001-06-18 Producing method of pteridine compounds using recombinant bacteria

Publications (2)

Publication Number Publication Date
KR20020096181A true KR20020096181A (en) 2002-12-31
KR100456062B1 KR100456062B1 (en) 2004-11-08

Family

ID=27709768

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0034466A KR100456062B1 (en) 2001-06-18 2001-06-18 Producing method of pteridine compounds using recombinant bacteria

Country Status (1)

Country Link
KR (1) KR100456062B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1314782A1 (en) * 2000-08-31 2003-05-28 Suntory Limited Process for producing biopterins
KR101229912B1 (en) * 2011-04-06 2013-02-05 강원대학교산학협력단 Method for production of sepiapterin with recombinant E. coli
KR101324212B1 (en) * 2011-11-02 2013-11-06 강원대학교산학협력단 Medium for production of sepiapterin with rice protein and method for production of sepiapterin therefrom
CN108136048A (en) * 2015-08-03 2018-06-08 米奥多巴有限公司 The system synthesis of levodopa and adjusting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137333B2 (en) * 1990-07-21 2001-02-19 サントリー株式会社 Method for producing tetrahydrobiopterin and enzyme used therefor
WO1997018319A1 (en) * 1995-11-14 1997-05-22 Somatix Therapy Corporation Joint expression of gtp cyclohydrolase and tyrosine hydroxylase
US5846775A (en) * 1997-04-22 1998-12-08 Incyte Pharmaceuticals, Inc. GTP cyclohydrolase I regulatory protein

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1314782A1 (en) * 2000-08-31 2003-05-28 Suntory Limited Process for producing biopterins
EP1314782A4 (en) * 2000-08-31 2005-01-12 Daiichi Suntory Pharma Co Ltd Process for producing biopterins
US7807421B2 (en) 2000-08-31 2010-10-05 Asubio Pharma Co., Ltd. Process for production of biopterin compound
KR101229912B1 (en) * 2011-04-06 2013-02-05 강원대학교산학협력단 Method for production of sepiapterin with recombinant E. coli
KR101324212B1 (en) * 2011-11-02 2013-11-06 강원대학교산학협력단 Medium for production of sepiapterin with rice protein and method for production of sepiapterin therefrom
CN108136048A (en) * 2015-08-03 2018-06-08 米奥多巴有限公司 The system synthesis of levodopa and adjusting
JP2018522595A (en) * 2015-08-03 2018-08-16 ミョドパ・リミテッド Systemic synthesis and regulation of L-DOPA

Also Published As

Publication number Publication date
KR100456062B1 (en) 2004-11-08

Similar Documents

Publication Publication Date Title
Schoedon et al. Biosynthesis and metabolism of pterins in peripheral blood mononuclear cells and leukemia lines of man and mouse
US10876099B2 (en) Preparation and application of cyclodextrin glucosyltransferase mutant
JP7044860B2 (en) Genetic engineering bacteria
Stadtman Specific occurrence of selenium in enzymes and amino acid tRNAs 1
KR101814888B1 (en) 5-aminolevulinic acid high-yield bacterial strain, preparation method and uses thereof
JP5689104B2 (en) Enzymes involved in equol synthesis
CN109722402A (en) A kind of method of resting cell production γ-aminobutyric acid
Akita et al. Efficient synthesis of D-branched-chain amino acids and their labeled compounds with stable isotopes using D-amino acid dehydrogenase
ES2425756T3 (en) Modified transketolase and use thereof
Kannangara et al. Enzymic and mechanistic studies on the conversion of glutamate to 5‐aminolaevulinate
KR100456062B1 (en) Producing method of pteridine compounds using recombinant bacteria
Perkins et al. Biosynthesis of riboflavin, biotin, folic acid, and cobalamin
Tanioka et al. Occurrence of pseudovitamin B12 and its possible function as the cofactor of cobalamin-dependent methionine synthase in a cyanobacterium Synechocystis sp. PCC6803
JP6194251B2 (en) Enzymatic synthesis of active pharmaceutical ingredients and their intermediates
Kannangara Biochemistry and molecular biology of chlorophyll synthesis
JP6652757B2 (en) Mutant protein having flavin adenine dinucleotide-dependent glucose dehydrogenase activity
CN112442518A (en) Method for producing spermidine by using cheap substrate and engineering bacteria
CN114763518B (en) Construction and application of yeast engineering bacteria for producing heparin by fermentation
KR102212488B1 (en) A Novel Enzyme for Production of D-threonine, and A Method for Sterospecific Preparing D-threonine Using The Same
CHING et al. Selenium-containing transfer RNAs
CN110607335A (en) Biosynthesis method of nicotinamide adenine dinucleotide compound
WO2020258896A1 (en) Strain and method for producing rosmarinic acid
CN115427422A (en) Compound comprising beta-nicotinamide mononucleotide or pharmacologically acceptable salt thereof, method for evaluating quality thereof, and method for determining enzymatic reactivity
Beale Biosynthesis of chlorophylls and hemes
KR20160144258A (en) Enzyme Complex of Succinic Acid Synthetases and Producing Method of Succinic Acid Using the Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111010

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee