KR20020094121A - Nanocomposite of regenerated polypropylene and clay - Google Patents

Nanocomposite of regenerated polypropylene and clay Download PDF

Info

Publication number
KR20020094121A
KR20020094121A KR1020010032393A KR20010032393A KR20020094121A KR 20020094121 A KR20020094121 A KR 20020094121A KR 1020010032393 A KR1020010032393 A KR 1020010032393A KR 20010032393 A KR20010032393 A KR 20010032393A KR 20020094121 A KR20020094121 A KR 20020094121A
Authority
KR
South Korea
Prior art keywords
nanocomposite
clay
weight
parts
polypropylene
Prior art date
Application number
KR1020010032393A
Other languages
Korean (ko)
Inventor
남재도
장원영
Original Assignee
주식회사 나노텍코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노텍코리아 filed Critical 주식회사 나노텍코리아
Priority to KR1020010032393A priority Critical patent/KR20020094121A/en
Publication of KR20020094121A publication Critical patent/KR20020094121A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: A nanocomposite of a regenerated polypropylene and clay and a container for an aircraft unit loading container prepared by using the composition are provided to improve the flame retardancy and the lightweight of the container without deterioration of the strength. CONSTITUTION: The nanocomposite comprises 100 parts by weight of a regenerated polypropylene; 2-10 parts by weight of clay modified organic-friendly by being mixed with an organic modifier; and 2-20 parts by weight of a phenol resin. Preferably the organic modifier is selected from the group consisting of dimethyl dihydrogenated-tallow ammonium, dimethylbenzyl hydrogenated-tallow ammonium and dimethyl hydrogenated-tallow (2-ethylhexyl)ammonium. The clay comprises phyllosilicate comprising aluminum or magnesium silicate layers charted anionically; and a sodium ion or a potassium ion charging the space between the layers.

Description

재생 폴리프로필렌과 점토의 나노복합체{Nanocomposite of Regenerated Polypropylene and Clay}Nanocomposite of Regenerated Polypropylene and Clay

본 발명은 재생 폴리프로필렌과 점토의 나노복합체에 관한 것으로, 더욱 상세하게는 순수한 폴리프로필렌(virgin polypropylene)보다 약 100% 이상의 난연성이 우수한 재생 폴리프로필렌(regenerated polypropylene)과, 유기화제(organic modifier)에 의해 개질된 층상 구조(layered structure)의 실리케이트(silicate)가 혼합되어 이루어지는 나노복합체(nanocomposite)에 관한 것이다.The present invention relates to nanocomposites of recycled polypropylene and clay, and more particularly, to regenerated polypropylene and organic modifiers having excellent flame retardancy of about 100% or more than pure polypropylene. The present invention relates to a nanocomposite in which silicates of a layered structure modified by mixing are mixed.

이러한 본 발명에 따른 재생 폴리프로필렌과 점토의 나노복합체는 압출에 의한 층상 제품으로 제조되어 항공기의 단위탑재용기용 컨테이너에 사용된다.The nanocomposite of recycled polypropylene and clay according to the present invention is manufactured as a layered product by extrusion and used in a container for a unit-mounted container of an aircraft.

전자, 항공 및 자동차 산업 등과 같은 고기술 산업이 발전함에 따라, 이들산업적 특성에 적합하도록 독특한 물성을 가진 소재가 필요하게 되었다. 이러한 소재의 필요성에 부응하기 위하여 폭넓게 연구되고 있는 것이 복합재료 특히, 나노복합체이다.As high technology industries such as the electronics, aviation, and automotive industries develop, materials with unique properties are needed to meet these industrial characteristics. In order to meet the necessity of such materials, composite materials, in particular nanocomposites, have been widely studied.

이러한 나노복합체 중에서도 고분자와 점토의 나노복합체는 적은 양의 점토에 의해서도 우수한 인장강도, 인장 모듈러스, 치수안정성 및 내열성을 갖고, 여러 기체에 대한 투과도가 감소하는 특성을 갖는 잇점이 있다.Among these nanocomposites, nanocomposites of polymers and clays have advantages in that they have excellent tensile strength, tensile modulus, dimensional stability, and heat resistance even with a small amount of clay, and have a property of decreasing permeability to various gases.

따라서 과거 수십년 동안, 고분자와 특정 양의 점토를 혼합하여 나노복합체를 제조함으로써 고분자의 물성을 향상시키는 방법이 제안되어 왔는데, 고분자는 통상적으로 비극성의 유기물인데 반하여 점토는 훨씬 극성이 큰 무기물이기 때문에 이들의 혼합성은 불량했다.Therefore, in the past decades, a method of improving the properties of a polymer by preparing a nanocomposite by mixing a polymer and a specific amount of clay has been proposed. Since a polymer is generally a nonpolar organic material, a clay is a much polar inorganic material. Their mixing was poor.

이러한 어려움을 극복하기 위하여, 매트릭스를 형성하는 고분자를 점토의 존재하에서 단량체를 이용하여 중합하는 방법이 제안되었다. 이는 점토가 고분자보다는 단량체와 더 용이하게 혼합될 것이라고 생각되었기 때문이었다. 그러나 이 방법에 의해서는 바람직한 물성을 갖지 못하는 불균질한 나노복합체로 제조됨이 밝혀졌다. 왜냐하면 점토는 쉽게 부숴질 수 없는 층상 구조를 갖기 때문에 균질한 혼합을 얻는 것은 어려운 일이었다.In order to overcome this difficulty, a method of polymerizing a polymer forming a matrix using monomers in the presence of clay has been proposed. This was because clay was thought to be more easily mixed with monomers than polymers. However, it has been found that this method produces a heterogeneous nanocomposite that does not have desirable physical properties. Because clay has a layered structure that cannot be easily broken, it is difficult to obtain a homogeneous mixture.

폴리프로필렌과 점토의 나노복합체의 경우에는 폴리프로필렌과 점토의 친화성을 좋게 하기 위하여 먼저, 말레익 안하이드라이드로 개질된 폴리프로필렌 올리고머를 제조한 다음 이를 점토에 삽입하고 나서 폴리프로필렌과 혼합하는 방법에 의해 폴리프로필렌과 점토의 나노복합체를 제조하기도 하였는데, 이는 우수한 기계적 물성을 갖지 못했다.In the case of the nanocomposite of polypropylene and clay, in order to improve the affinity between polypropylene and clay, first, a polypropylene oligomer modified with maleic anhydride is prepared, and then inserted into clay and then mixed with polypropylene. It was also prepared a nanocomposite of polypropylene and clay, which did not have excellent mechanical properties.

한편, 전술한 단위탑재용기란 항공운송에만 사용되는 항공화물용 용기의 세트로, 대량의 항공화물을 수송할 때 항공기 화물칸의 모양에 적합하게 설계되어 있는 단위탑재용기를 사용하면 화물을 보호할 수 있고, 특수화물의 수송을 용이하게 할뿐만 아니라, 화물 운송 작업 및 취급이 신속하게 이루어지도록 함으로써 조업시간을 단축시킬 수 있고 항공기 가동율을 높일 수 있게 된다.On the other hand, the unit-mounted container described above is a set of containers for air cargo used only for air transportation, when using a unit-mounted container designed for the shape of the aircraft cargo compartment when transporting a large amount of air cargo can protect the cargo. In addition, the transportation of special cargoes can be facilitated, and freight transportation operations and handling can be performed quickly, thereby reducing operating time and increasing the operation rate of the aircraft.

그런데 종래에는 중량(重量)의 알루미늄 판에 의해 단위탑재용기가 제조되었기 때문에 컨테이너 자체의 하중(荷重)이 화물 하중의 10%나 차지하게 되는 단점이 있었다. 즉, 컨테이너의 무게가 많이 나갈수록 이에 해당하는 무게만큼의 화물을 더 운송할 수 없게 되어 운송효율이 떨어질 뿐만 아니라, 연료소비도 증가하는 단점이 있었다.However, in the related art, since the unit-mounted container was manufactured by a heavy aluminum plate, the load of the container itself occupies 10% of the cargo load. In other words, as the weight of the container increases, it is impossible to carry more cargo of the weight corresponding to the weight, thereby reducing the transportation efficiency and increasing fuel consumption.

또한 종래의 순수한 폴리프로필렌을 재료로 하는 층상 제품이 단위탑재용기로 사용되기에는 강도가 취약한 문제점이 있었기 때문에, 단위탑재용기의 성능저하를 가져오지 않도록 알루미늄의 강도와 대등한 강도를 가지면서도 경량화된 재료의 필요성이 대두되었다.In addition, the conventional layered products made of pure polypropylene had a problem that the strength was not enough to be used as a unit mounting container, so that the weight of the unit mounting container was reduced to lightness while being equivalent to the strength of aluminum. There is a need for materials.

이에 본 발명은 상기 종래의 문제점을 해결하기 위하여 재생 폴리프로필렌과, 유기화제에 의해 유기친화적으로 개질된 층상 구조의 실리케이트가 혼합되어 이루어지는 우수한 물성의 나노복합체를 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a nanocomposite having excellent physical properties in which regenerated polypropylene and silicate of a layered structure that is organically modified by an organic agent are mixed in order to solve the conventional problems.

도 1은 본 발명에 사용되는 재생 폴리프로필렌을 시차주사열량계로 측정한 열흐름 그래프.1 is a heat flow graph of the regenerated polypropylene used in the present invention measured by a differential scanning calorimeter.

도 2는 본 발명에 따른 나노복합체로부터 측정된 X선 회절 패턴.2 is an X-ray diffraction pattern measured from the nanocomposite according to the present invention.

도 3은 본 발명에 따른 나노복합체로부터 측정된 열 발생률 그래프.Figure 3 is a graph of heat generation rate measured from the nanocomposite according to the present invention.

본 발명에서는 상기 목적을 달성하기 위하여 재생 폴리프로필렌과 점토에 의해 형성되는 우수한 물성의 나노복합체를 제공한다.The present invention provides a nanocomposite having excellent physical properties formed by recycled polypropylene and clay in order to achieve the above object.

이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명의 나노복합체는 재생 폴리프로필렌, 점토 및 페놀수지로 이루어진다.The nanocomposites of the present invention consist of recycled polypropylene, clays and phenolic resins.

첫째, 본 발명에서 사용되는 재생 폴리프로필렌은 폐폴리프로필렌을 용해재생법으로 재활용한 것으로, 폐유 등의 용제를 사용하여 용해시킨 후 접착제를 첨가하고 충전제로서 모래, 점토 등을 섞어 가압성형하여 제조하는데 순수한 폴리프로필렌보다 약 100% 이상의 우수한 난연성을 가진다.First, the recycled polypropylene used in the present invention is recycled waste polypropylene by dissolution and regeneration method, and it is prepared by dissolving waste oil such as waste oil and then adding an adhesive and mixing it with sand, clay, etc. as a filler, and forming it under pressure. It has about 100% better flame retardancy than pure polypropylene.

하기의 표 1은 재생 폴리프로필렌의 물성을 측정한 결과를 나타낸 것이다.Table 1 below shows the results of measuring physical properties of the recycled polypropylene.

[표 1]TABLE 1

항목Item 단위unit 결과result 시험방법(발행연도)Test method (year of issue) 용융지수Melt index g/10ming / 10min 2.22.2 ASTM D1238(1999)ASTM D1238 (1999) 인장강도(항복점)Tensile Strength (Yield Point) kgf/㎠kgf / ㎠ 229229 ASTM D638(1999)ASTM D638 (1999) 신장률(항복점)Elongation Rate (Yield Point) %% 8.78.7 굴곡강도Flexural strength kgf/㎠kgf / ㎠ 319319 ASTM D790(2000)ASTM D790 (2000) 굴곡탄성률Flexural modulus kgf/㎠kgf / ㎠ 15,20015,200 Izod 충격강도Izod impact strength kgf·㎝/㎝kgfcm / cm 8.68.6 ASTM D256(1997)ASTM D256 (1997) 비중importance -- 1.2091.209 ASTM D792(1998)ASTM D792 (1998)

이러한 재생 폴리프로필렌은 도 1의 시차주사열량계로 측정한 열흐름 그래프에서 볼수 있듯이 130℃와 167℃에서 멜팅(melting)이 나타나기 때문에 본 발명의 나노복합체를 제조할 때의 가공온도는 순수한 폴리프로필렌을 사용하는 경우의 가공온도인 230 내지 250℃보다 약간 낮게 잡아야 한다.As the regenerated polypropylene is melted at 130 ° C. and 167 ° C. as shown in the heat flow graph measured by the differential scanning calorimeter of FIG. 1, the processing temperature when preparing the nanocomposite of the present invention is pure polypropylene. It should be slightly lower than the processing temperature of 230 to 250 ℃ when used.

둘째, 본 발명에 사용되는 점토는 나노 스케일의 층상 구조의 실리케이트에기초하는 것으로서, 천연점토 또는 합성점토일 수 있다.Second, the clay used in the present invention is based on silicate of nano-scale layered structure, and may be natural clay or synthetic clay.

그 형태를 보면, 7∼12Å 두께의 음이온적으로 하전된 알루미늄 또는 마그네슘 실리케이트 층으로 이루어진 필로실리케이트(phyllosilicate)와, 이 음이온적으로 하전된 알루미늄 또는 마그네슘 실리케이트 층들의 사이를 채우고 있는 나트륨 이온(Na+)또는 칼륨 이온(K+)과 같은 작은 양이온으로 이루어져 있다.In its form, a phyllosilicate consisting of an anionically charged aluminum or magnesium silicate layer having a thickness of 7 to 12 microns and a sodium ion (Na +) filling between these anionically charged aluminum or magnesium silicate layers. Or small cations such as potassium ions (K + ).

본 발명에서 따른 필로실리케이트의 구체적인 예를 들면, 몬모릴로나이트 (montmorillonite), 헥토라이트(hectorite), 사포나이트(saponite), 베이델라이트 (beidellite), 논트로나이트(nontronite), 버미큘라이트(vermiculite) 또는 할로이사이트(halloysite) 등이 있는데, 이들은 매우 바람직한 기계적 물성과 내열성을 나노복합체에 부여한다.Specific examples of the phyllosilicates according to the present invention include montmorillonite, hectorite, saponite, beadellite, nontronite, vermiculite or halosite. halloysite and the like, which impart very desirable mechanical properties and heat resistance to the nanocomposite.

그러나 본 발명에 사용되는 점토는 개질시키지 않은 상태에서는 강한 극성을 갖기 때문에, 비극성 유기고분자와 잘 혼합되도록 하기 위해서는 어느 정도 극성을 가지도록 해야 한다.However, since the clay used in the present invention has a strong polarity in the unmodified state, in order to mix well with the non-polar organic polymer, it has to be somewhat polarized.

이를 위해 본 발명에서는 점토에 유기화제를 혼합하여 유기친화적으로 개질시킴으로써 점토가 어느 정도 극성을 가지도록 하여 비극성 유기고분자인 재생 폴리프로필렌과의 상용성을 부여한다.To this end, in the present invention, the clay is mixed to an organic affinity and mixed with an organic agent to give the clay a certain degree of polarity, thereby providing compatibility with non-polar organic polymer regenerated polypropylene.

이때 유기화제로는 디메틸 디하이드로지네이티드-탤로우 암모늄(Dimethyl dihydrogenated-tallow ammonium), 디메틸벤질 하이드로지네이트-탤로우 암모늄 (Dimethyl benzyl hydrogenated-tallow ammonium) 또는 디메틸하이드로지네이티드-탤로우 (2-에틸헥실) 암모늄(Dimethyl hydrogenated-tallow (2-ethylhexyl) ammonium) 등을 사용하여 점토를 유기친화적으로 개질시킨다.The organic agent may be dimethyl dihydrogenated-tallow ammonium, dimethyl benzyl hydrogenated-tallow ammonium, or dimethyl hydrogenated-tallow (2-ethyl Hexyl) ammonium (Dimethyl hydrogenated-tallow (2-ethylhexyl) ammonium) is used to organically modify the clay.

즉 본 발명에 따른 유기친화적으로 개질된 점토는 점토의 기본 단위로서 강력한 반데르발스 인력을 가지는 필로실리케이트에 저분자량의 유기화제를 삽입시켜 필로실리케이트의 내부에 위치하는 나트륨 이온 또는 칼륨 이온을 하이드로지네이티드-탤로우 알킬(hydrogenated-tallow alkyl)로 치환함으로써, 점토가 유기친화적으로 되고 필로실리케이트의 층간거리(d-spacing)가 넓어지게 된다.In other words, the organically-modified clay according to the present invention has a low molecular weight organizing agent inserted into a phyllosilicate having a strong van der Waals attraction as a basic unit of clay, so that sodium or potassium ions located inside the phyllosilicate are hydrogenated. By substitution with hydrogenated-tallow alkyl, the clay becomes organic-friendly and the d-spacing of phyllosilicates is widened.

이러한 유기친화적으로 개질된 점토의 특성은 음이온적 표면전하 즉, meq/100g으로 표현되는 양이온 교환능(cation exchange capacity)로써 특정지을 수 있다.The characteristics of such organically modified clays can be characterized by anionic surface charge, that is, cation exchange capacity expressed in meq / 100g.

본 발명에서의 유기친화적으로 개질된 점토는 30 내지 250meq/100g의 양이온 교환능을 갖는 것이 바람직한데, 그 이유는 250meq/100g 보다 큰 값의 양이온 교환능을 갖게 되면 필로실리케이트와 유기화제의 강한 상호작용 때문에 필로실리케이트를 나노 스케일의 시트상으로 박리시키기 어려워지고, 30meq/100g 보다 작은 값의 양이온 교환능을 갖게 되면 필로실리케이트와 유기화제의 상호작용이 작아지기 때문이다.The organically-modified clay in the present invention preferably has a cation exchange capacity of 30 to 250 meq / 100 g because of the strong interaction of the phyllosilicate and the organic agent if it has a cation exchange capacity of greater than 250 meq / 100 g. This is because it becomes difficult to peel off the phyllosilicate into the nanoscale sheet, and when the cation exchange capacity is less than 30 meq / 100 g, the interaction between the phyllosilicate and the organic agent is reduced.

아울러, 수분함량은 1 내지 3%인 것이 바람직하고, 발화시 무게손실율은 30 내지 50%인 것이 바람직하다.In addition, the moisture content is preferably 1 to 3%, the weight loss rate when igniting is preferably 30 to 50%.

따라서, 이상에서 설명한 재생 폴리프로필렌에 유기친화적으로 개질된 점토를 분산시키면, 층간거리가 넓어진 필로실리케이트의 공간에 재생 폴리프로필렌이삽입(intercalation)되고, 또한 재생 폴리프로필렌의 삽입에 의해 층간거리가 더욱 증가하게 되면 필로실리케이트는 나노 스케일의 시트상으로 박리(exfoliation)되어 재생 폴리프로필렌에 불규칙적으로 분산될 수 있다.Therefore, when the organically modified clay is dispersed in the regenerated polypropylene described above, the regenerated polypropylene is intercalated into the space of the phyllosilicate having an increased interlayer distance, and the interlayer distance is further increased by the insertion of the regenerated polypropylene. When increased, phyllosilicates can be exfoliated onto nanoscale sheets and irregularly dispersed in recycled polypropylene.

셋째, 본 발명에서 사용되는 페놀수지는 그 자체의 난연성이 우수한 수지로, 우선 가교되어 재생 폴리프로필렌과 페놀의 상분리 현상에 의해 각각의 파티클(particle)로써 존재하게 됨으로써, 전체적인 난연성을 올릴 수 있는 효과를 가져온다.Third, the phenolic resin used in the present invention is a resin having excellent flame retardancy, which is first crosslinked to exist as individual particles by phase separation of regenerated polypropylene and phenol, thereby increasing the overall flame retardancy. Bring it.

본 발명에서는 재생 폴리프로필렌 100중량부와 유기화제에 의해 개질된 점토가 2 내지 10중량부 및 페놀수지 2 내지 20중량부가 사용되어 나노복합체가 제조된다.In the present invention, 100 parts by weight of regenerated polypropylene, 2 to 10 parts by weight of clay modified by an organic agent, and 2 to 20 parts by weight of phenol resin are used to prepare a nanocomposite.

본 발명에 따른 나노복합체의 제조방법을 보면, 먼저 점토를 유기화제로 유기화시켜 유기친화적으로 개질된 점토를 준비한 다음, 재생 폴리프로필렌 100중량부와 유기친화적으로 개질된 점토 2 내지 10 중량부 및 페놀수지 2 내지 20중량부를 트윈 스쿠루 압출기를 사용하여 칼럼 온도 210 내지 250℃, 속도 180 내지 350rpm의 조건하에서 멜트-믹싱(melt mixing)함으로써 얻어지는 가닥(strand)을 펠렛으로 만들고, 이 펠렛을 78 내지 82℃의 진공하에서 건조시킨 다음, 건조된 펠렛을 실린더의 온도 180 내지 200℃, 몰드의 온도 25 내지 35℃의 조건하에서 사출시켜 나노복합체로 제조하는 것이다.According to the method for preparing a nanocomposite according to the present invention, first, an organic clay is organically prepared by organizing clay with an organic agent, and then 100 parts by weight of recycled polypropylene and 2 to 10 parts by weight of organically modified clay and phenol 2 to 20 parts by weight of a pellet obtained by melt mixing under conditions of a column temperature of 210 to 250 ° C. and a speed of 180 to 350 rpm using a twin screw extruder is pelletized, and the pellet is 78 to After drying under vacuum at 82 ° C., the dried pellet is injected into a nanocomposite under conditions of a cylinder temperature of 180 to 200 ° C. and a mold temperature of 25 to 35 ° C.

본 발명에서는 또한 상기 나노복합체를 재료로 하는 층상 제품에 의해 제조되는 항공기 단위탑재용기용 컨테이너를 제공한다.The present invention also provides a container for an aircraft unit-mounted container manufactured by a layered product using the nanocomposite as a material.

이러한 본 발명의 항공기 단위탑재용기용 컨테이너는 통상의 방법에 의해 국제항공운송협회(IATA)에서 명시하는 규격과 사양에 적합하도록 리벳, 볼트 및 용접을 이용하여 1.0 내지 4.0㎜의 두께를 가지는 육면체로 제조된다.Such container unit container for aircraft of the present invention is a hexahedron having a thickness of 1.0 to 4.0 mm using rivets, bolts and welding to meet the standards and specifications specified by the International Air Transport Association (IATA) by a conventional method. Are manufactured.

이하 본 발명을 실시예에 의거하여 상세히 설명한다. 단 실시예는 발명을 예시하는 것일 뿐 본 발명이 하기 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples. However, the examples are only to illustrate the invention and the present invention is not limited by the following examples.

실시예 1. 유기친화적으로 개질된 점토 제조Example 1 Preparation of Organo-Friendly Modified Clay

Na+-몬모릴로나이트를 3차 탈이온 증류수에 분산시켜 3일동안 방치한 후 얻은 분말 형태의 Na+-몬모릴로나이트에 염화나트륨(NaCl)을 가하고 75℃에서 24시간동안 교반하고 10,000rpm의 속도로 원심분리하였다. 원심분리 후 분리액에 0.1N 질산은(AgNO3) 용액을 가하여 염소이온(Cl-)이 검출되지 않을 때까지 증류세척과 원심분리를 반복하여 Na+-몬모릴로나이트를 얻었다.Na + -montmorillonite was dispersed in distilled water with tertiary deionization and left for 3 days. Sodium chloride (NaCl) was added to Na + -montmorillonite in powder form, stirred at 75 ° C for 24 hours, and centrifuged at 10,000 rpm. . Was added to 0.1N of silver nitrate (AgNO 3) solution was then centrifuged to separate the liquid chlorine ion (Cl -) repeatedly washed with distilled centrifuged until no detection Na + - montmorillonite was obtained.

이 Na+-몬모릴로나이트를 교반기를 사용하여 약 80℃의 물에 분산시켜 Na+-몬모릴로나이트과 물의 혼합물을 만든 다음, 유기화제인 디메틸 디하이드로지네이티드-탤로우 암모늄과 염산(HCl)을 물에 녹인 것을 상기 Na+-몬모릴로나이트과 물의 혼합물에 넣어주면서 하얀 침전물이 생성될 때까지 약 5분 정도 격렬하게 교반시켰다. 이때 생기는 침전물을 유리 필터(glass filter)를 사용하여 제거하고 약 80℃의 물에 세번 세척하고 동결건조하여, 95meq/100g의 양이온 교환능, 2%의 수분함량및 발화시 38%의 무게손실이 되는 특성을 갖는 유기친화적으로 개질된 점토를 제조하였다.The Na + -montmorillonite was dispersed in water at about 80 DEG C using a stirrer to form a mixture of Na + -montmorillonite and water, and then dissolved in water, an organic dimethyl dihydrogenated-tallow ammonium and hydrochloric acid (HCl). The mixture was mixed with Na + -montmorillonite and water, and stirred vigorously for about 5 minutes until a white precipitate formed. The precipitate produced at this time was removed using a glass filter, washed three times in water at about 80 ° C., and lyophilized, resulting in 95 meq / 100 g of cation exchange capacity, 2% water content, and 38% weight loss upon ignition. Organo-friendly modified clays having properties were prepared.

실시예 2. 본 발명의 나노복합체 제조Example 2 Preparation of Nanocomposites of the Invention

재생 폴리프로필렌 100중량부와 상기 실시예 1에서 제조한 유기친화적으로 개질된 점토 3.5중량부 및 페놀수지 3중량부를 트윈 스쿠루 압출기를 사용하여 칼럼 온도 210 내지 250℃, 속도 300rpm의 조건하에서 멜트-믹싱(melt mixing)함으로써 얻어지는 가닥(strand)을 펠렛으로 만들고, 이 펠렛을 80℃의 진공하에서 건조시킨 다음, 건조된 펠렛을 실린더의 온도 200℃, 몰드의 온도 30℃의 조건하에서 사출시켜 본 발명의 나노복합체를 제조하였다.100 parts by weight of regenerated polypropylene, 3.5 parts by weight of organically-modified clay prepared in Example 1, and 3 parts by weight of phenol resin were melted under the conditions of a column temperature of 210 to 250 ° C. and a speed of 300 rpm using a twin screw extruder. The strand obtained by melting mixing is made into pellets, the pellets are dried under vacuum at 80 ° C, and then the dried pellets are injected under conditions of a cylinder temperature of 200 ° C and a mold temperature of 30 ° C. Nanocomposites were prepared.

실시예 3. 본 발명의 나노복합체 제조Example 3. Preparation of Nanocomposites of the Present Invention

페놀수지를 3중량부 대신 6중량부를 사용하는 것을 제외하고는 상기 실시예 2와 동일한 방법으로 본 발명의 나노복합체를 제조하였다.A nanocomposite of the present invention was prepared in the same manner as in Example 2, except that 6 parts by weight of phenol resin was used instead of 3 parts by weight.

실시예 4. 본 발명의 나노복합체 제조Example 4 Preparation of Nanocomposites of the Invention

페놀수지를 3중량부 대신 9중량부를 사용하는 것을 제외하고는 상기 실시예 2와 동일한 방법으로 본 발명의 나노복합체를 제조하였다.A nanocomposite of the present invention was prepared in the same manner as in Example 2, except that 9 parts by weight of phenol resin was used instead of 3 parts by weight.

실험예 1. X선 회절시험Experimental Example 1. X-ray Diffraction Test

상기 실시예 2 내지 실시예 4의 나노복합체의 X선 회절시험 결과를 도 2에 나타내었고, 이들에 대한 첫 번째 피크(2θ) 및 층간거리(d-spacing)의 결과를 하기 표 2에 나타내었다.The X-ray diffraction test results of the nanocomposites of Examples 2 to 4 are shown in FIG. 2, and the results of the first peak (2θ) and the interlayer distance (d-spacing) for them are shown in Table 2 below. .

비교를 위해 실시예 1의 유기친화적으로 개질된 점토를 사용하여 X선 회절시험을 하여 그 결과를 도 2에 함께 나타내었다.For comparison, the X-ray diffraction test was performed using the organically modified clay of Example 1, and the results are shown together in FIG. 2.

이때 X선 회절시험은 CuKa(λ= 0.154nm) 방사선(radiation)과 곡면형 흑연 결정 모노크로메이터(curved graphite crystal monochromator)가 부착된 일본 MAC Science사의 M18-X-ray를 이용하였다. 40kV, 50mA, 1℃/min으로 θ= 1∼10까지 측정하여 나노복합체의 특성 피크 변화를 관찰하였다.At this time, X-ray diffraction test was performed using M18-X-ray of MAC Science of Japan with CuKa (λ = 0.154 nm) radiation and curved graphite crystal monochromator. The change in the characteristic peak of the nanocomposite was observed by measuring θ = 1 to 10 at 40 kV, 50 mA, and 1 ° C./min.

[표 2]TABLE 2

첫 번째 피크(2θ)First peak (2θ) 층간거리(d-spacing)D-spacing 실시예 1의 점토Clay of Example 1 3.62°3.62 ° 24.4Å24.4 Å 실시예 2의 나노복합체Nanocomposites of Example 2 2.16°2.16 ° 40.9Å40.9Å 실시예 3의 나노복합체Nanocomposites of Example 3 2.24°2.24 ° 39.4Å39.4Å 실시예 4의 나노복합체Nanocomposites of Example 4 2.08°2.08 ° 42.5Å42.5Å

상기 표 2에 나타낸 바와 같이 실시예 1의 점토의 2θ는 3.62°로 층간거리가 24.4Å으로 나타났다. 이에 반하여 실시예 2의 나노복합체의 2θ는 2.16°로 층간거리가 40.9Å으로 나타났고, 실시예 3의 나노복합체의 2θ는 2.24°로 층간거리가 39.4Å으로 나타났으며, 실시예 4의 나노복합체의 2θ는 2.08°로 층간거리가 42.5Å으로 나타났다.As shown in Table 2, 2θ of the clay of Example 1 was 3.62 °, and the interlayer distance was 24.4Å. On the contrary, the 2θ of the nanocomposite of Example 2 was 2.16 ° and the interlayer distance was 40.9Å, the 2θ of the nanocomposite of Example 3 was 2.24 ° and the interlayer distance was 39.4Å, and the nano of Example 4 2θ of the composite was 2.08 ° and the interlayer distance was 42.5Å.

이로부터 재생 폴리프로필렌이 유기친화적으로 개질된 점토에 삽입(intercalation)됨으로써 나노복합체가 제조되었음을 추정할 수 있다.From this, it can be inferred that the nanocomposite was prepared by intercalation of the regenerated polypropylene into the organic affinity-modified clay.

실험예 2. 난연성 분석Experimental Example 2 Flame Retardant Analysis

상기 실시예 2 및 실시예 4의 나노복합체의 난연성을 분석하기 위하여, 콘 칼로리미터 측정(Fire Testing Technology Ltd.)은 열흐름 50kW/㎡ 및 속도 0.024㎥/초의 조건으로 ASTM E1354 규격 조건으로 시간의 경과에 따른 열발생률을 측정하여, 그 결과를 도 3에 나타내고, 또한, 비교를 위해 재생 폴리프로필렌을 단독으로 사용하여 열 발생률을 측정하였다.In order to analyze the flame retardancy of the nanocomposites of Examples 2 and 4, the measurement of cone calorimeter (Fire Testing Technology Ltd.) was performed under ASTM E1354 standard conditions under conditions of 50 kW / m 2 heat rate and 0.024 m 3 / sec. The heat generation rate over time was measured, and the result is shown in FIG. 3, and the heat generation rate was measured using regeneration polypropylene alone for comparison.

재생 폴리프로필렌의 경우 순수한 폴리프로필렌의 경우보다 난연성에 있어서 약 100% 이상 향상되는 것으로 알려져 있기 때문에, 도 3에 의하면 본 발명의 나노복합체의 난연성이 재생 폴리프로필렌의 난연성에 비해 약 60% 정도 향상된 값을 나타내므로 결국 본 발명의 나노복합체의 난연성은 순수한 폴리프로필렌와 비교하면 약 200% 정도 향상되었음을 알수 있다.In the case of recycled polypropylene, since it is known that the flame retardancy is improved by about 100% or more than that of pure polypropylene, according to FIG. 3, the flame retardancy of the nanocomposite of the present invention is improved by about 60% compared to the flame retardancy of the recycled polypropylene. As a result, the flame retardancy of the nanocomposite of the present invention can be seen to be improved by about 200% compared to pure polypropylene.

이상에서 설명한 바와 같이, 본 발명에서는 재생 폴리프로필렌이 유기화제에 의해 유기친화적으로 개질된 점토에 삽입됨으로써 강도 및 난연성의 우수한 향상을 보이는 나노복합체가 제조된다.As described above, in the present invention, a nanocomposite exhibiting excellent improvement in strength and flame retardancy is produced by inserting regenerated polypropylene into an organically modified clay by an organic agent.

또한 본 발명에 따른 재생 폴리프로필렌과 점토의 나노복합체를 재료로 하는 층상 제품에 의해 제조된 단위탑재용기는 종래의 재생 폴리프로필렌만을 재료로 하는 층상 제품에 의해 제조된 단위탑재용기에 비해 우수한 강도를 갖게 되고 난연성이 향상되며, 또한 종래의 알루미늄 판에 의해 제조된 단위탑재용기에 비해 상당히 경량화됨으로써 연료효율 및 운송효율이 향상되는 장점을 가진다.In addition, the unit-mounted container manufactured by the layered product made of the nanocomposite of recycled polypropylene and clay according to the present invention has superior strength compared to the unit-mounted container manufactured by the layered product made of only the conventional recycled polypropylene. It has the advantage that the flame retardancy is improved, and also significantly lighter than the unit-mounted container manufactured by the conventional aluminum plate to improve fuel efficiency and transportation efficiency.

따라서 단위탑재용기 제조시 모서리에만 알루미늄 프레임을 그대로 사용하고 그 외의 부분은 본 발명의 나노복합체를 재료로 하는 층상 제품을 사용하여 제조할 수 있다.Therefore, when manufacturing a unit-mounted container, the aluminum frame is used as it is only at the corners, and other parts can be manufactured using a layered product made of the nanocomposite of the present invention.

Claims (5)

재생 폴리프로필렌(regenerated polypropylene) 100중량부와 유기화제 (organic modifier)가 혼합되어 유기친화적으로 개질된 점토 2 내지 10중량부 및 페놀수지 2 내지 20중량부를 포함하는 것을 특징으로 하는 나노복합체(nanocomposite).Nanocomposite comprising 100 parts by weight of regenerated polypropylene and 2 to 20 parts by weight of organically modified clay and 2 to 20 parts by weight of phenol resin by mixing an organic modifier. . 제 1 항에 있어서,The method of claim 1, 상기 유기화제는 디메틸 디하이드로지네이티드-탤로우 암모늄(Dimethyl dihydrogenated-tallow ammonium), 디메틸벤질 하이드로지네이티드-탤로우 암모늄(Dimethyl benzyl hydrogenated-tallow ammonium) 및 디메틸 하이드로지네이티드-탤로우 (2-에틸헥실) 암모늄(Dimethyl hydrogenated-tallow (2-ethylhexyl) ammonium)으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 나노복합체.The organicating agent is dimethyl dihydrogenated-tallow ammonium, dimethylbenzyl hydrogenated-tallow ammonium and dimethyl hydrogenated-tallow (2-ethyl Hexyl) ammonium (Dimethyl hydrogenated-tallow (2-ethylhexyl) ammonium) nanocomposite, characterized in that it is selected from the group consisting of. 제 1 항에 있어서,The method of claim 1, 상기 점토는 음이온적으로 하전된 알루미늄 또는 마그네슘 실리케이트 층으로 이루어진 필로실리케이트(phyllosilicate)와, 이 음이온적으로 하전된 알루미늄 또는 마그네슘 실리케이트 층들의 사이를 채우고 있는 나트륨 이온(Na+) 또는 칼륨 이온(K+)으로 이루어지는 것을 특징으로 하는 나노복합체.The clay is a phyllosilicate consisting of anionically charged aluminum or magnesium silicate layers and sodium ions (Na + ) or potassium ions (K + ) filling between these anionically charged aluminum or magnesium silicate layers. Nanocomposite, characterized in that consisting of. 제 3 항에 있어서,The method of claim 3, wherein 상기 필로실리케이트는 몬모릴로나이트(montmorillonite), 헥토라이트 (hectorite), 사포나이트(saponite), 베이델라이트(beidellite), 논트로나이트 (nontronite), 버미큘라이트(vermiculite) 및 할로이사이트(halloysite)로 이루어진 군으로부터 선택되는 것을 특징으로 하는 나노복합체.The phyllosilicate is selected from the group consisting of montmorillonite, hectorite, saponite, baydellite, nontronite, vermiculite and halloysite Nanocomposite, characterized in that. 제 1 항 기재의 나노복합체를 재료로 하는 층상 제품에 의해 제조되는 것을 특징으로 하는 항공기 단위탑재용기용 컨테이너.A container for an aircraft unit mounting container, which is manufactured by a layered product using the nanocomposite of claim 1 as a material.
KR1020010032393A 2001-06-11 2001-06-11 Nanocomposite of regenerated polypropylene and clay KR20020094121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010032393A KR20020094121A (en) 2001-06-11 2001-06-11 Nanocomposite of regenerated polypropylene and clay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010032393A KR20020094121A (en) 2001-06-11 2001-06-11 Nanocomposite of regenerated polypropylene and clay

Publications (1)

Publication Number Publication Date
KR20020094121A true KR20020094121A (en) 2002-12-18

Family

ID=27708474

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010032393A KR20020094121A (en) 2001-06-11 2001-06-11 Nanocomposite of regenerated polypropylene and clay

Country Status (1)

Country Link
KR (1) KR20020094121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447944B1 (en) * 2001-09-03 2004-09-08 한국화학연구원 An Preparation Method of Polymer-kaolinite Nanocomposite
KR100684929B1 (en) * 2005-12-01 2007-02-22 호남석유화학 주식회사 Polypropylene-clay nanocomposite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447944B1 (en) * 2001-09-03 2004-09-08 한국화학연구원 An Preparation Method of Polymer-kaolinite Nanocomposite
KR100684929B1 (en) * 2005-12-01 2007-02-22 호남석유화학 주식회사 Polypropylene-clay nanocomposite

Similar Documents

Publication Publication Date Title
JP4646352B2 (en) Layered composition having multi-charged onium ions as exchange ions, and application of the composition to prepare monomer, oligomer and polymer intercalation products, and nano-preparation prepared using the layered composition of the intercalation products Complex
Someya et al. Nanocomposites based on poly (butylene adipate‐co‐terephthalate) and montmorillonite
EP1144500B1 (en) Process for preparing an exfoliated, high i.v. polymer nanocomposite with an oligomer resin precursor and an article produced therefrom
US11661497B2 (en) Flame-retardant polymer composition
US20080176980A1 (en) Exfoliated polymer-clay nanocomposite
Shibata et al. Thermal and mechanical properties of plasticized poly (l‐lactide) nanocomposites with organo‐modified montmorillonites
WO2000078540A9 (en) High performance nanocomposites
CA2115255A1 (en) Melt process formation of polymer nanocomposite of exfoliated layered material
Paz et al. Mechanical and thermomechanical properties of polyamide 6/Brazilian organoclay nanocomposites
Kusmono et al. Effect of clay modification on the morphological, mechanical, and thermal properties of polyamide 6/polypropylene/montmorillonite nanocomposites
Li et al. High performance linear low density polyethylene nanocomposites reinforced by two-dimensional layered nanomaterials
US7884152B2 (en) Manufacturing method of organic modifer-free exfoliated nano clay-polymer composite
Ahmadi et al. Synthesis of EPDM-organoclay nanocomposites: Effect of the clay exfoliation on structure and physical properties
AU2168100A (en) A polymer/clay nanocomposite comprising a clay mixture and a process for making same
Nayak et al. Dynamic mechanical, rheological, and thermal properties of intercalated polystyrene/organomontmorillonite nanocomposites: effect of clay modification on the mechanical and morphological behaviors
KR20020094121A (en) Nanocomposite of regenerated polypropylene and clay
Dasan Nanoclay/polymer composites: recent developments and future prospects
Mazrouaa Polypropylene nanocomposites
Abdelaal et al. An overview on polysulphone/clay nanocomposites
Mascarenhas et al. Electrically conductive polymer-Clay nanocomposites
Pozsgay et al. Polypropylene/montmorillonite nanocomposites prepared by the delamination of the filler
CN1178985C (en) Process for preparing nano-class polyester/laminated silicate composition
Zhu et al. SYNTHESIS AND CHARACTERIZATION OF ORGANOMONTMORILLONITE AND POLYAMIDE 66/MONTMORILLONITE NANOCOMPOSITES.
KR20020094122A (en) Nanocomposite of Unsaturated Polyester Resin and Clay, and Composition of Sheet Molding Compound Contaning It
JPH11228817A (en) Highly gas-barriering polyamide resin composition, its production, and film and container using the same

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination