KR20020088245A - Sonochemical preparation of VOPO4·2H2O and the use for cathode of rechargeable lithium battery - Google Patents

Sonochemical preparation of VOPO4·2H2O and the use for cathode of rechargeable lithium battery Download PDF

Info

Publication number
KR20020088245A
KR20020088245A KR1020010027458A KR20010027458A KR20020088245A KR 20020088245 A KR20020088245 A KR 20020088245A KR 1020010027458 A KR1020010027458 A KR 1020010027458A KR 20010027458 A KR20010027458 A KR 20010027458A KR 20020088245 A KR20020088245 A KR 20020088245A
Authority
KR
South Korea
Prior art keywords
vopo
lithium secondary
present
prepared
discharge
Prior art date
Application number
KR1020010027458A
Other languages
Korean (ko)
Other versions
KR100424674B1 (en
Inventor
박남규
장순호
류광선
박용준
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to KR10-2001-0027458A priority Critical patent/KR100424674B1/en
Priority to JP2001353551A priority patent/JP4275881B2/en
Publication of KR20020088245A publication Critical patent/KR20020088245A/en
Application granted granted Critical
Publication of KR100424674B1 publication Critical patent/KR100424674B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: A preparation method of VOPO4.2H2O used as a cathode material for lithium secondary batteries by ultrasonication is provided, which offers much shortened reaction time and fined particles compared with conventional method. CONSTITUTION: The preparation method of VOPO4.2H2O comprises the steps of: mixing V2O5, H3PO4 and H2O in a molar ratio of 1 : 40-50 : 500-610; ultrasonicating the mixture in a strength of 70-100W/cm¬2 for 10-15min; washing and decompression filtering; drying at room temperature. The resultant VOPO4.2H2O has 1-3micrometer size, 3.6V voltage and 135mAh/g discharge capacity. Also, the composition for a cathode material for lithium secondary batteries is prepared by mixing VOPO4.2H2O, acetylene black and polyethylene tetrachloride in a weight ratio of 60-80 : 15-25 : 5-15.

Description

VOPO₄·2H₂O의 초음파 화학적 제조방법 및 리튬 2차 전지 양극물질로의 용도{Sonochemical preparation of VOPO4·2H2O and the use for cathode of rechargeable lithium battery}Ultrasonic preparation of VOPO₄ · 2H₂O and its use as cathode material for lithium secondary battery {Sonochemical preparation of VOPO4 · 2H2O and the use for cathode of rechargeable lithium battery}

본 발명은 VOPO4·2H2O 제조방법, 특히 초음파화학적 방법에 의한VOPO4·2H2O 제조방법에 관한 것이다.The present invention relates to a method for preparing VOPO 4 .2H 2 O, in particular a method for producing VOPO 4 .2H 2 O by ultrasonic chemical methods.

리튬이차전지는 충방전이 가능한 에너지 저장 디바이스로서, 소형의 전자기기의 전원으로 사용되고 있다. 최근에는 충방전 용량은 크고 중량은 가벼운 이차전지의 개발에 주력하고 있다. 현재 리튬이차전지의 양극물질로는 주로 LiCoO2를 사용하고 있으나, 재료비가 매우 비싼 것이 문제점이다. 이러한 문제점을 해결하기 위한 대안으로 LiNiO2또는 LiMn2O4물질이 제시된 바 있으나, 합성이 용이하지 못하다는 문제, 또는 충방전 회수에 따라 충방전 용량이 감소한다는 등의 새로운 문제점이 발생되고 있다. 따라서 높은 전압을 가지면서 충방전 특성이 우수한 저가의 새로운 물질의 개발의 필요성이 대두되고 있다.Lithium secondary batteries are energy storage devices capable of charging and discharging, and are used as power sources for small electronic devices. Recently, it is focusing on the development of secondary batteries having a large charge and discharge capacity and light weight. Currently, LiCoO 2 is mainly used as a cathode material of a lithium secondary battery, but the material cost is very high. LiNiO 2 or LiMn 2 O 4 material has been suggested as an alternative to solve this problem, but a new problem such as a problem that synthesis is not easy or charge / discharge capacity decreases with the number of charge / discharge cycles has been generated. Therefore, there is a need to develop a new low-cost material having high voltage and excellent charge / discharge characteristics.

이와 관련하여 최근 연구되고 있는 비정질 V2O5제로젤(xerogel)은 고용량 특성을 보이지만 평균전압이 낮다는 문제점을 가지고 있다. 이에 대해 금속-산소간 이온결합 특성을 강화시킬 경우 평균전압을 향상시키는 것이 가능하다는 연구 결과가 보고된 바 있다(K.S. Nanjundaswamy, A.K. Padhi, J.B. Goodenough, S. Okada, H. Ohtsuka, H. Arai, and J. Yamaki,Solid State Ionics, 92, 1 (1996); C. Masquelier, A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough,J. Solid State Chem., 135, 228 (1998)).In this regard, the recently studied amorphous V 2 O 5 zero gel (xerogel) shows a high capacity characteristics, but has a problem that the average voltage is low. On the other hand, studies have shown that it is possible to improve the average voltage when enhancing the metal-oxygen ion-bonding properties (KS Nanjundaswamy, AK Padhi, JB Goodenough, S. Okada, H. Ohtsuka, H. Arai, and J. Yamaki, Solid State Ionics , 92, 1 (1996); C. Masquelier, AK Padhi, KS Nanjundaswamy, and JB Goodenough, J. Solid State Chem. , 135, 228 (1998)).

금속-산소간 이온결합 특성을 강화시키는 방법 중 하나로는 (PO4)3-, (SO4)2-,(AsO4)3-와 같은 공유결합 특성을 가진 물질을 치환하는 것이다. 이 중 (SO4)2-가 바나디움 산화물에 치환된 VOSO4를 리튬이차전지에 적용할 경우 V4+/V3+산화-환원에 의한 낮은 전압이 예상되며, VOAsO4는 V5+/V4+산화-환원으로 높은 전압이 예상되나 높은 질량으로 인한 이론용량의 감소와 비소의 유해성과 같은 단점을 가지고 있다. 이에 반하여, VOPO4는 환경적으로 안정하며, 높은 전압과 상대적으로 낮은 질량에 따른 높은 이론용량이 기대된다는 장점 또한 가지고 있다.One of the methods for strengthening the metal-oxygen ionic bonding properties is to substitute a material having a covalent bond such as (PO 4 ) 3- , (SO 4 ) 2- (AsO 4 ) 3- . Among these, when VOSO 4 substituted with (SO 4 ) 2- valent vanadium oxide is applied to a lithium secondary battery, a low voltage due to V 4+ / V 3+ redox-reduction is expected, and VOAsO 4 is V 5+ / V High voltages are expected with 4+ redox, but they have disadvantages such as reduced theoretical capacity due to high mass and hazards of arsenic. In contrast, VOPO 4 is environmentally stable and has the advantage of high theoretical capacity due to high voltage and relatively low mass.

이와 관련하여 두 개의 물분자를 포함한 VOPO4·2H2O 화합물은 이미 1965년에 알려진 물질로서, 지금까지 알려진 제조방법으로 결정성을 갖는 V2O5분말과 H3PO4수용액을 24시간 이상 환류(reflux)하여 제조하는 방법이 알려져 있다(G. Ladwig,Z. Anorg. Allg. Chem., 338, p 266 (1965)). 하지만 이러한 방법은 24시간 이상인 장시간의 반응시간이 소요될 뿐 아니라, 입자도 0.01~0.25㎜로 크기 때문에 지금까지 주로 촉매 재료로 응용되어 왔으며, 리튬이차전지의 양극재료로 응용되지는 못하고 있는 실정이다. 또한 "Redox intercalation of alkali metals into vanadyl phosphate dihydrate(A. Chauvel 외., Material Chemistry and Physics, 40, pp.207-211, 1995)에서도 VOPO4·2H2O의 제조방법과 제조된 VOPO4·2H2O의 층간에 알칼리 금속이온을 삽입시킨 화합물의 구조가 개시되어 있으나, 상기한 바와 마찬가지로 장시간에 걸친 환류법에 의하여 제조하며 또한 제조된 VOPO4·2H2O 도 입자 크기가 10㎛ 이상으로 큰 것을 알게 되었다.In this regard, the VOPO 4 · 2H 2 O compound containing two water molecules is known in 1965, and the crystalline V 2 O 5 powder and H 3 PO 4 aqueous solution have been known for over 24 hours. A method of preparing by reflux is known (G. Ladwig , Z. Anorg. Allg. Chem. , 338, p 266 (1965)). However, this method not only takes a long time of reaction time of 24 hours or more, but also has been applied mainly as a catalyst material until now because the particle size is 0.01 ~ 0.25 mm, it is not applied as a cathode material of a lithium secondary battery. In addition, "Redox intercalation of alkali metals into the vanadyl phosphate dihydrate VOPO manufacture and VOPO 4 · 2H 2 O in the method for producing (A. Chauvel et al., Material Chemistry and Physics, 40 , pp.207-211, 1995) 4 · 2H Although the structure of a compound having an alkali metal ion intercalated between layers of 2 O is disclosed, VOPO 4 .2H 2 O, which is prepared by a reflux method for a long time as described above, also has a large particle size of 10 μm or more. I found out.

또한 상기한 바와 같이 현재 상용화 되고 있는 리튬 이차전지의 양극물질 LiCoO2는, 높은 산화-환원 전위와 장기적인 충방전 안정성을 가지지만 원료 단가가 비싸다는 문제점 때문에 이를 대체할 수 있는 저렴하면서 충방전 특성이 우수한 재료의 개발이 요구되고 있다.In addition, as described above, LiCoO 2 , a cathode material of a commercially available lithium secondary battery, has a high redox potential and long-term charge and discharge stability, but is inexpensive and has a charge and discharge characteristic that can be replaced due to a problem of high raw material cost. Development of excellent materials is required.

본 발명은 상기와 같은 문제점을 해결하기 위하여, 반응시간을 매우 단축시키면서 보다 작은 입자 크기를 갖는 VOPO4·2H2O 의 새로운 제조방법을 제공하는 데에 목적이 있다.In order to solve the above problems, an object of the present invention is to provide a novel method for preparing VOPO 4 .2H 2 O, which has a smaller particle size with a very short reaction time.

또한 본 발명은 상기와 같은 새로운 제조방법에 의하여 제조된 VOPO4·2H2O를 포함하여 제조한 리튬이차전지 양극물질을 제공하는 데에 그 목적이 있다.In addition, an object of the present invention is to provide a lithium secondary battery positive electrode material prepared by VOPO 4 · 2H 2 O prepared by the new manufacturing method as described above.

도 1은 본 발명에 따른 VOPO4·2H2O 분말의 X-선 회절도.1 is an X-ray diffraction diagram of VOPO 4 .2H 2 O powder according to the present invention.

도 2는 본 발명에 따른 VOPO4·2H2O 의 푸리에 변환 적외선 흡수 분광도.2 is a Fourier transform infrared absorption spectrogram of VOPO 4 .2H 2 O according to the present invention.

도 3은 본 발명에 따른 VOPO4·2H2O 의 투과 전자 현미경 사진.3 is a transmission electron micrograph of VOPO 4 .2H 2 O in accordance with the present invention.

도 4는 본 발명에 따른 VOPO4·2H2O 의 첫번째 방전 및 충전 곡선.4 is a first discharge and charge curve of VOPO 4 .2H 2 O in accordance with the present invention.

도 5는 본 발명에 따른 VOPO4·2H2O 의 방전속도에 따른 방전용량의 비교도.Figure 5 is a comparison of the discharge capacity according to the discharge rate of VOPO 4 · 2H 2 O in accordance with the present invention.

도 6는 본 발명에 따른 VOPO4·2H2O 의 방전회수에 따른 방전용량 변화도.6 is a change in discharge capacity according to the discharge frequency of VOPO 4 · 2H 2 O in accordance with the present invention.

상기와 같은 목적을 달성하기 위하여 본 발명자들은 예의 연구를 거듭한 결과 초음파 화학적 방법을 이용하여 VOPO4·2H2O를 제조할 경우 상기와 같은 문제점을 해결할 수 있다는 데에 착안하여 본 발명을 완성하게 되었다.In order to achieve the above object, the present inventors have intensively researched and completed the present invention by observing that the above problems can be solved when manufacturing VOPO 4 · 2H 2 O using ultrasonic chemical method. It became.

본 발명은 V2O5, H3PO4및 H2O의 혼합용액을 초음파 처리하여 VOPO4·2H2O를 제조하는 방법을 제공한다. 이 때 상기 제조방법에서 V2O5: H3PO4: H2O 의 몰비는 1 : 40~50 : 500~610 인 것이 바람직하다. 특히 인산의 몰비가 V2O5의 40배를 넘지 않을 경우 제조된 VOPO4·2H2O 가 이차전지용 양극물질로 유용한 특성을 갖기 힘들다. 상기 제조방법에 있어서, 초음파 처리의 세기는 70 ~ 100W/㎠ 로 하는 것이 바람직하며, 시간은 10 ~ 15분 정도가 적당하다.The present invention provides a method for producing VOPO 4 .2H 2 O by sonicating a mixed solution of V 2 O 5 , H 3 PO 4 and H 2 O. At this time, the molar ratio of V 2 O 5 : H 3 PO 4 : H 2 O in the preparation method is preferably 1: 40-50: 500-610. In particular, when the molar ratio of phosphoric acid does not exceed 40 times of V 2 O 5, the manufactured VOPO 4 · 2H 2 O is difficult to have useful properties as a cathode material for secondary batteries. In the above production method, the intensity of the ultrasonic treatment is preferably 70 to 100 W / cm 2, and the time is preferably about 10 to 15 minutes.

또한 본 발명은 상기 V2O5: H3PO4: H2O 의 몰비를 1 : 40~50 : 500~610 으로 혼합하는 단계; 상기 혼합용액을 초음파 처리하는 단계; 초음파 처리된 결과물을 세척한 후 감압 여과시키는 단계; 및 여과된 결과물을 상온에서 건조 및 회수하는 단계를 포함하여 이루어진 VOPO4·2H2O의 제조 방법을 제공한다.In another aspect, the present invention comprises the steps of mixing the molar ratio of V 2 O 5 : H 3 PO 4 : H 2 O to 1: 40 ~ 50: 500 ~ 610; Sonicating the mixed solution; Washing the sonicated result and filtration under reduced pressure; And it provides a method for producing VOPO 4 · 2H 2 O comprising the step of drying and recovering the filtered product at room temperature.

또한 본 발명은 상기 본 발명에 따른 제조방법에 의하여 제조된 VOPO4·2H2O 이 리튬 2차전지 양전극용으로서 사용하기에 매우 적합한 특성을 가지고 있으므로, 그러한 용도를 제공한다.In addition, the present invention provides such a use because the VOPO 4 .2H 2 O produced by the manufacturing method according to the present invention has a very suitable property for use as a lithium secondary battery positive electrode.

또한 V2O5, H3PO4및 H2O의 혼합용액을 초음파 처리하여 제조한 VOPO4·2H2O과 아세틸렌 블랙 및 폴리사염화에틸렌이 각각 60~80 중량% : 15~25 중량% : 5~15 중량% 로 혼합된 리튬2차전지 양전극용 조성물을 제공한다.In addition, VOPO 4 2H 2 O, acetylene black, and polytetrachloride, respectively, prepared by sonicating a mixed solution of V 2 O 5 , H 3 PO 4, and H 2 O are 60 to 80 wt%: 15 to 25 wt%: Provided is a composition for a lithium secondary battery positive electrode mixed at 5 to 15% by weight.

이하 본 발명의 구성을 하기 실시예를 통하여 좀 더 구체적으로 설명하고자 한다.Hereinafter, the configuration of the present invention will be described in more detail with reference to the following examples.

실시예 1: 초음파화학적 방법에 의한 VOPOExample 1 VOPO by Ultrasonic Chemical Method 44 ·2H2H 22 O 의 제조Manufacture of O

우선 2g의 결정성 V2O5를 H3PO4수용액(H3PO426.75ml 및 증류수 108.6ml의 혼합물)과 혼합하였다. 이 때 각 성분 V2O5: H3PO4: H2O 의 몰비는 1 : 50 : 604 로 하였다. 상기 용액을 혼합할 때 각 성분의 몰비는 1 : 40 ~ 50 : 500 ~ 610 의 범위가 적합하며, 인산의 몰비가 40 이하일 경우 이차전지용 양극물질로 유용한 VOPO4·2H2O 를 얻기 힘들다는 것은 상기한 바와 같다. 상기 혼합용액을 13㎜ 직경의 티타늄 합금 혼(titanium alloy horn)을 담근 후 600W, 20kHz 의 초음파 발생장치를 이용하여 약 70 내지 100 W/㎠ 의 세기로 10 ~ 15 분간 초음파 처리하였다. 초음파 처리과정에서 용액의 온도는 점차 증가하여 최고 약 60 내지 80℃ 까지 도달하였다. 초음파 과정 중 약 5 ~ 7분 정도 경과되자 적황색 V2O5침전 용액이 옅은 노란색의 콜로이드 용액으로 변화되었으며, 이로부터 VOPO4·2H2O 가 생성됨을 알 수 있었다. 초음파 처리 후의 노란색 침전물을 감압 여과시키면서 아세톤 용매로 여러 번 세척하였다. 여과된 분말을 공기 중에서 상온에서 건조하여 VOPO4·2H2O 분말을 회수하였다.First, 2 g of crystalline V 2 O 5 was mixed with an aqueous H 3 PO 4 solution (a mixture of 26.75 ml of H 3 PO 4 and 108.6 ml of distilled water). At this time, each component V 2 O 5: H 3 PO 4: H 2 O molar ratio of from 1: 604 was set to 50. When the solution is mixed, the molar ratio of each component is in the range of 1:40 to 50: 500 to 610, and when the molar ratio of phosphoric acid is 40 or less, it is difficult to obtain VOPO 4 · 2H 2 O, which is useful as a cathode material for secondary batteries. As described above. The mixed solution was soaked in a titanium alloy horn having a diameter of 13 mm and sonicated for 10 to 15 minutes at an intensity of about 70 to 100 W / cm 2 using an ultrasonic generator of 600 W and 20 kHz. During sonication, the temperature of the solution gradually increased to reach a maximum of about 60 to 80 ℃. After about 5-7 minutes, the red-yellow V 2 O 5 precipitate solution was changed into a pale yellow colloidal solution. From this, it can be seen that VOPO 4 · 2H 2 O was formed. The yellow precipitate after sonication was washed several times with acetone solvent under reduced pressure filtration. The filtered powder was dried in air at room temperature to recover VOPO 4 .2H 2 O powder.

본 발명의 실시예 1에 따라 제조된 VOPO4·2H2O 의 X-선 회절도를 도 1에 나타내었다. 각 회절의 피크를 분석하여, 격자상수 a = 6.2Å, c = 7.4Å 을 갖는사방정계의 100% 순수한 VOPO4·2H2O 가 형성되었음을 확인하였다. 또한 제조된 VOPO4·2H2O 의 푸리에 변환 적외선 흡수 분광도를 도 2에 나타내었다. 1,000cm-1영역의 피크들은 전형적인 VOPO4·2H2O 에 해당된다.X-ray diffraction diagram of VOPO 4 .2H 2 O prepared according to Example 1 of the present invention is shown in FIG. 1. By analyzing the peaks of each diffraction, it was confirmed that 100% pure VOPO 4 .2H 2 O of a tetragonal system having a lattice constant a = 6.2 Hz and c = 7.4 Hz was formed. In addition, the Fourier transform infrared absorption spectroscopy of the prepared VOPO 4 .2H 2 O is shown in FIG. 2. Peaks in the 1,000 cm −1 region correspond to the typical VOPO 4 .2H 2 O.

본 발명의 실시예에 따라 합성된 VOPO4·2H2O 의 투과 전자 현미경 사진을 도 3에 나타내었다. 사각형 모양의 입자 형태를 가지면서 1 ~ 3㎛의 입자크기를 가지고 있었다.A transmission electron micrograph of VOPO 4 .2H 2 O synthesized according to an embodiment of the present invention is shown in FIG. 3. It had a particle shape of square shape and had a particle size of 1 ~ 3㎛.

실시예 2: 리튬2차전지 양전극의 제조Example 2: Preparation of Lithium Secondary Battery Positive Electrode

상기 실시예 1의 방법에 의해 제조된 VOPO4·2H2O 분말, 아세틸렌블랙 및 폴리사염화에틸렌를 각각 70 : 20 : 10의 중량비로 혼합하여 양전극을 제조하였다. 에틸렌 카보네이트(EC; Ethylene Carbonate): 디메틸 카보네이트(DMC; Dimethyl Carbonate)가 50 : 50 의 부피비로 혼합된 용매에 녹아 있는 1M LiPF6를 전해질로 하고, 리튬금속을 음극으로 하는 스와질록(Swagelok) 형태의 테스트셀을 제조하여 일정전류 밀도 하에서 VOPO4·2H2O 전극의 전기화학적 충방전 특성을 측정하였다.The positive electrode was prepared by mixing VOPO 4 .2H 2 O powder, acetylene black, and polyethylene tetrachloride prepared by the method of Example 1 at a weight ratio of 70:20:10. Ethylene Carbonate (EC): Swagelok form in which 1M LiPF 6 dissolved in a solvent in which dimethyl carbonate (DMC) is dissolved in a volume ratio of 50:50 is used as an electrolyte, and lithium metal is used as an anode. A test cell was prepared to measure the electrochemical charge and discharge characteristics of the VOPO 4 · 2H 2 O electrode under a constant current density.

도 4는 실시예 2에 따라 제조된 VOPO4·2H2O를 포함하는 리튬 2차전지의 4.3 ~ 2 V 구간에서 0.15 C 방전 및 충전 속도 (전류 = 20.8 mA/g) 하에서 얻은 첫번째 방전 및 충전 곡선이다. 첫번째 방전 곡선에서 보는 바와 같이 3.6V 에서 평균전압을 유지하였으며, 리튬이온 1몰이 VOPO4·2H2O 에 삽입됨을 알 수 있다. 이는 135 mAh/g 의 방전용량에 해당된다. 첫번째 충전 곡선으로부터 방전용량과 유사한 충전용량을 얻었으며, 이로부터 리튬 이온이 가역적으로 반응하고 있음을 알 수 있었다. 방전용량과 평균전압으로부터 본 발명의 일실시예에 따라 제조된 VOPO4·2H2O 의 에너지밀도는 486 Wh/kg 였다.Figure 4 is the first discharge and charge obtained under 0.15 C discharge and charge rate (current = 20.8 mA / g) in the 4.3 ~ 2 V section of the lithium secondary battery containing VOPO 4 2H 2 O prepared according to Example 2 It is a curve. As shown in the first discharge curve, the average voltage was maintained at 3.6V, and it can be seen that 1 mole of lithium ions were inserted into VOPO 4 · 2H 2 O. This corresponds to a discharge capacity of 135 mAh / g. A charge capacity similar to the discharge capacity was obtained from the first charge curve, indicating that lithium ions were reversibly reacting. From the discharge capacity and the average voltage, the energy density of VOPO 4 .2H 2 O prepared according to one embodiment of the present invention was 486 Wh / kg.

도 5는 실시예 2에 따라 제조된 VOPO4·2H2O를 포함하는 리튬 2차전지의 방전속도에 따른 방전용량을 나타내는 그래프이다. 0.03C 의 저속 방전과 10 배에 해당되는 0.3C 의 고속 방전시 방전용량의 차이가 현저하지 않음을 볼 수 있으며, 이로부터 본 발명에 따라 제조된 VOPO4·2H2O는 리튬이온의 확산속도가 빠른 물질임을 알 수 있다.5 is a graph showing the discharge capacity according to the discharge rate of the lithium secondary battery containing VOPO 4 · 2H 2 O prepared according to Example 2. It can be seen that the difference in the discharge capacity is not remarkable when the low-speed discharge of 0.03C and the high-speed discharge of 0.3C corresponding to 10 times. From this, VOPO 4 · 2H 2 O prepared according to the present invention is the diffusion rate of lithium ion It can be seen that is a fast substance.

도 6은 충방전 회수에 따른 방전용량의 변화를 나타내고 있으며, 충방전 사이클이 반복되어도 방전용량은 초기 값에서 크게 벗어나지 않았다. 이로부터 본 발명에 따라 제조된 VOPO4·2H2O는 우수한 사이클의 특성을 가지는 물질임을 알 수 있다.6 shows a change in discharge capacity according to the number of charge and discharge cycles, and the discharge capacity did not deviate significantly from the initial value even when the charge and discharge cycle was repeated. From this, it can be seen that VOPO 4 .2H 2 O prepared according to the present invention is a material having excellent cycle characteristics.

이상 본 발명의 최적 실시예를 통하여 본 발명을 좀 더 상세하게 살펴보았으나, 상기 실시예에는 단지 예시적인 것에 불과하므로 본 발명의 범위를 제한하는 것은 아님이 자명하다.Although the present invention has been described in more detail through the preferred embodiments of the present invention, it is obvious that the embodiments are merely exemplary and are not intended to limit the scope of the present invention.

상기한 바와 같이 본 발명에 따른 초음파화학적 방법을 이용하여 VOPO4·2H2O를 제조하는 경우, 기존의 오랜 반응시간 (24 시간 이상)에 의해 제조되는 것을 단시간내에 제조할 수 있어 매우 신속하고 경제적인 획기적인 제조방법이다.As described above, when preparing VOPO 4 · 2H 2 O using the ultrasonic chemical method according to the present invention, it is possible to prepare a product prepared by the existing long reaction time (more than 24 hours) within a short time, very fast and economical It is a breakthrough manufacturing method.

또한 본 발명에 따른 초음파화학적 제조방법으로 제조된 VOPO4·2H2O 는 입자의 크기가 1~3㎛ 정도로 기존의 방법에 의하여 제조된 것에 비하여 매우 작으며, 평균전압 3.6 V, 방전용량 135mAh/g 및 안정된 충방전 수명 등 리튬이차전지의 양극물질로 매우 우수한 특성을 가지고 있다.In addition, the VOPO 4 · 2H 2 O prepared by the ultrasonic chemical preparation method according to the present invention has a particle size of 1 ~ 3㎛ is very small compared to the conventional method, the average voltage 3.6 V, discharge capacity 135mAh / It has very good characteristics as a cathode material of lithium secondary battery such as g and stable charge and discharge life.

Claims (6)

V2O5, H3PO4및 H2O의 혼합용액을 초음파 처리하여 VOPO4·2H2O를 제조하는 방법.A method of producing VOPO 4 .2H 2 O by sonicating a mixed solution of V 2 O 5 , H 3 PO 4 and H 2 O. 제1 항에 있어서,According to claim 1, 상기 V2O5: H3PO4: H2O 의 몰비가 1 : 40~50 : 500~610 인The molar ratio of V 2 O 5 : H 3 PO 4 : H 2 O is 1: 40-50: 500-610 제조 방법.Manufacturing method. 제1 항에 있어서,According to claim 1, 상기 초음파 처리의 세기는 70~100W/㎠ , 시간은 10~15분으로 하는The intensity of the ultrasonic treatment is 70 ~ 100W / ㎠, the time is 10 ~ 15 minutes 제조 방법.Manufacturing method. 제1 항에 있어서,According to claim 1, 상기 제조 방법이,The manufacturing method, V2O5: H3PO4: H2O를 각각 1 : 40~50 : 500~610의 몰비로 혼합하는 단계;Mixing V 2 O 5 : H 3 PO 4 : H 2 O in a molar ratio of 1: 40-50: 500-610, respectively; 상기 혼합용액을 초음파 처리하는 단계;Sonicating the mixed solution; 초음파 처리된 결과물을 세척한 후 감압 여과시키는 단계; 및Washing the sonicated result and filtration under reduced pressure; And 여과된 결과물을 상온에서 건조 및 회수하는 단계를 포함하여 이루어진 VOPO4·2H2O의 제조 방법.Method for producing VOPO 4 · 2H 2 O comprising the step of drying and recovering the filtered product at room temperature. 제1 항 내지 제4 항 중 어느 한 항에 의하여 제조된 리튬 2차전지 양전극용 VOPO4·2H2O.VOPO 4 · 2H 2 O for a lithium secondary battery positive electrode prepared according to any one of claims 1 to 4 . V2O5, H3PO4및 H2O의 혼합용액을 초음파 처리하여 제조한 VOPO4·2H2O과 아세틸렌 블랙 및 폴리사염화에틸렌이 각각 60~80 중량% : 15~25 중량% : 5~15 중량%의 비율로 혼합된 리튬2차전지 양전극용 조성물.VOPO 4 2H 2 O, acetylene black, and polytetrachloride, respectively, prepared by sonicating a mixed solution of V 2 O 5 , H 3 PO 4, and H 2 O, respectively, are 60 to 80 wt%: 15 to 25 wt%: 5 A composition for a lithium secondary battery positive electrode mixed at a ratio of ˜15 wt%.
KR10-2001-0027458A 2001-05-19 2001-05-19 Sonochemical preparation of VOPO4·2H2O and the use for cathode of rechargeable lithium battery KR100424674B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2001-0027458A KR100424674B1 (en) 2001-05-19 2001-05-19 Sonochemical preparation of VOPO4·2H2O and the use for cathode of rechargeable lithium battery
JP2001353551A JP4275881B2 (en) 2001-05-19 2001-11-19 Ultrasonic chemical production method of VOPO4 · 2H2O and application to positive electrode material of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0027458A KR100424674B1 (en) 2001-05-19 2001-05-19 Sonochemical preparation of VOPO4·2H2O and the use for cathode of rechargeable lithium battery

Publications (2)

Publication Number Publication Date
KR20020088245A true KR20020088245A (en) 2002-11-27
KR100424674B1 KR100424674B1 (en) 2004-03-27

Family

ID=19709666

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0027458A KR100424674B1 (en) 2001-05-19 2001-05-19 Sonochemical preparation of VOPO4·2H2O and the use for cathode of rechargeable lithium battery

Country Status (2)

Country Link
JP (1) JP4275881B2 (en)
KR (1) KR100424674B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101994260B1 (en) 2012-10-15 2019-06-28 삼성에스디아이 주식회사 Positive active material, method for preparation thereof and lithium battery comprising the same
JP5999430B2 (en) * 2013-01-28 2016-09-28 株式会社豊田自動織機 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery having the same
KR102379563B1 (en) * 2014-12-26 2022-03-28 삼성전자주식회사 Composite positive active material, method for preparation thereof, positive electrode comprising the same and lithium battery comprising the positive electrode
CN105185990B (en) * 2015-08-17 2018-01-02 河南理工大学 A kind of preparation method of the water vanadium phosphate of spherical lithium ion secondary battery positive electrode one

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04220959A (en) * 1990-12-21 1992-08-11 Furukawa Battery Co Ltd:The Ni-h storage battery
JP3441765B2 (en) * 1993-07-05 2003-09-02 新神戸電機株式会社 Method for forming positive electrode active material layer
JPH08259208A (en) * 1995-03-23 1996-10-08 Tosoh Corp Intercalation compound and its production
JPH08290907A (en) * 1995-04-20 1996-11-05 Tosoh Corp Interlaminar compound and its production
EP1171237A1 (en) * 1999-04-15 2002-01-16 E.I. Du Pont De Nemours And Company Vanadium phosphorus oxide catalyst having a thermally conductive support
KR101264619B1 (en) * 2010-06-24 2013-05-27 코웨이 주식회사 Method for making ice

Also Published As

Publication number Publication date
JP2002338217A (en) 2002-11-27
KR100424674B1 (en) 2004-03-27
JP4275881B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
He et al. A 3.4 V layered VOPO4 cathode for Na-ion batteries
JP5268134B2 (en) Method for producing positive electrode active material and non-aqueous electrolyte battery using the same
JP5650875B2 (en) Method for synthesizing a substance mainly composed of LIXM1-YM'Y (XO4) N
Aravindan et al. LiMnPO 4–A next generation cathode material for lithium-ion batteries
US9413006B2 (en) Lithium manganese phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
US7498098B2 (en) Method for producing positive cathode material for lithium battery, and lithium battery
Wang et al. Assembly of LiMnPO4 nanoplates into microclusters as a high-performance cathode in lithium-ion batteries
KR20200138198A (en) Microwave assisted sol-gel method for manufacturing in-situ carbon-coated electrode material and product thereof
JP5268042B2 (en) Method for producing positive electrode active material and non-aqueous electrolyte battery using the same
Ni et al. Stable cycling of β-VOPO4/NaVOPO4 cathodes for sodium-ion batteries
Hameed et al. Carbon coated Li3V2 (PO4) 3 from the single-source precursor, Li2 (VO) 2 (HPO4) 2 (C2O4)· 6H2O as cathode and anode materials for Lithium ion batteries
Zheng et al. Facile construction of nanoscale laminated Na 3 V 2 (PO 4) 3 for a high-performance sodium ion battery cathode
JP5765780B2 (en) Lithium silicate compound, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery using the same
RU2718878C1 (en) Connection for electrode material of metal-ion batteries, electrode material based on it, electrode and battery based on electrode material
Cao et al. NaV 3 O 8 with superior rate capability and cycle stability as cathode materials for sodium-ion batteries
Nguyen et al. Mechanical alloy coating of LATP decorated porous carbon on LiFe1/3Mn1/3Co1/3PO4/C composite cathode for high-voltage Li-ion battery
Huynh et al. Structure and electrochemical behavior of minor Mn-doped olivine LiMnxFe1− xPO4
Nojima et al. Electrochemical Characterization, Structural Evolution, and Thermal Stability of LiVOPO_4 over Multiple Lithium Intercalations
Li et al. Hierarchically porous LiMn0. 1Fe0. 9PO4@ C microspherical cathode materials prepared by a facile template-free hydrothermal method for high-performance lithium-ion batteries
KR100424674B1 (en) Sonochemical preparation of VOPO4·2H2O and the use for cathode of rechargeable lithium battery
KR20100016515A (en) Method for the production of lithium-rich metal oxides
Zhang et al. Submicrometer Rod-Structured Na7V4 (P2O7) 4 (PO4)/C as a Cathode Material for Sodium-Ion Batteries
Li et al. Constructing a Hierarchical LiMn0. 8Fe0. 2PO4/C Cathode via Comodification of Li3PO4 and Graphite for High-Performance Lithium-Ion Batteries
CN108630938B (en) Positive electrode active material, positive electrode using same, and lithium ion secondary battery
Trinh et al. A Study on Crystalline Structure and Li+-Ion Diffusion Coefficient of LiNi x Fe1− x PO4/C Cathode Material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090303

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee