KR20020088128A - Method for preparing bismuth oxide thin films by metal-organic chemical vapor deposition - Google Patents

Method for preparing bismuth oxide thin films by metal-organic chemical vapor deposition Download PDF

Info

Publication number
KR20020088128A
KR20020088128A KR1020010027038A KR20010027038A KR20020088128A KR 20020088128 A KR20020088128 A KR 20020088128A KR 1020010027038 A KR1020010027038 A KR 1020010027038A KR 20010027038 A KR20010027038 A KR 20010027038A KR 20020088128 A KR20020088128 A KR 20020088128A
Authority
KR
South Korea
Prior art keywords
bismuth
thin film
vapor deposition
oxygen
chemical vapor
Prior art date
Application number
KR1020010027038A
Other languages
Korean (ko)
Inventor
이규철
김동혁
Original Assignee
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교 filed Critical 학교법인 포항공과대학교
Priority to KR1020010027038A priority Critical patent/KR20020088128A/en
Publication of KR20020088128A publication Critical patent/KR20020088128A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: A method for manufacturing a Bi2O3 thin film by metal-organic chemical vapor deposition(MOCVD) is provided to produce a large quantity of the Bi2O3 thin film under the condition of low or ambient pressure and temperature of 200 degree Celsius to 700 degree Celsius, pouring Bi-containing organic metal and oxygen-containing gas or organic material through separate supplying lines. CONSTITUTION: A Bi2O3 thin film is grown on each material such as SiO2, Si, Al2O3 (0001) and Al2O3 (1100), using MOCVD facility shown in the figure. (CH3)3Bi and O2 are employed as reaction material and Ar gas is used as a transporting one. Each of them is poured through the separate lines. While the thin film is being grown for an hour, the pressure and temperature inside a reactor are preserved at 760mmHg and 500 degree Celsius respectively and the speed of the gas flow is adjusted to 100sccm for Ar gas, 5 to 10sccm for (CH3)3Bi and 40 to 50sccm. After growing, the thin film is processed thermally at 75 degree Celsius under the oxygen ambient.

Description

유기금속 화학증착법에 의한 산화비스무스 박막의 제조방법{METHOD FOR PREPARING BISMUTH OXIDE THIN FILMS BY METAL-ORGANIC CHEMICAL VAPOR DEPOSITION}METHODS FOR PREPARING BISMUTH OXIDE THIN FILMS BY METAL-ORGANIC CHEMICAL VAPOR DEPOSITION}

본 발명은 유기금속 화학증착법(metal-organic chemical vapor deposition; MOCVD)에 의한 산화비스무스 박막의 제조방법에 관한 것으로, 구체적으로는 반응물질로서 비스무스, 및 산소 함유 기체 또는 유기물을 별개의 라인을 통해 반응기에 주입시키고, 반응조건을 제어하면서 유기금속 화학증착법에 의해 막을 성장시킴으로써 제조된 Bi2O3박막 및 이의 제조방법에 관한 것이다.The present invention relates to a method for producing a bismuth oxide thin film by metal-organic chemical vapor deposition (MOCVD), specifically, a bismuth as an reactant, and an oxygen-containing gas or organic matter through a separate line reactor The present invention relates to a Bi 2 O 3 thin film prepared by growing a film by organometallic chemical vapor deposition while controlling the reaction conditions, and a method for producing the same.

순수한 산화비스무스는 730℃ 이상에서 형석(fluorite) 구조를 가지며, 산소 딸림격자(sub-lattice) 자리중 25%가 비어 있어 많은 산소 빈자리에 의한 매우 큰 이온전도도를 나타낸다. 이는 현재 가장 널리 이용되고 있는 고체전해질인, Y2O3로 안정화된 지르코니아(YSZ: Yttria Stabilized Zirconia)의 이온전도도의 10-100배를 초과하는 것으로, 현재까지 알려진 물질들 중에서 가장 높은 산소 이온전도도를 갖는다. 이러한 특성을 갖는 산화비스무스는, 연료와 산소를 전기화학적으로 반응시켜 열과 전기를 만드는 발전 방식을 갖는 연료전지 중에서 효율이 가장 높은, 즉 60%의 효율을 갖는 고체전해질 연료전지(solid oxide fuel cell; SOFC)의 전해질로서 응용가치가 높다. 특히 휴대용 제품에 사용되는 소형발전기용 연료전지에 있어서, 고체전해질의 박막화는 필수이므로 산화비스무스의 박막 성장은 큰 의미를 갖는다.Pure bismuth oxide has a fluorite structure above 730 ° C, and 25% of the oxygen sub-lattice sites are empty, indicating a very large ion conductivity by many oxygen vacancies. This is more than 10-100 times the ion conductivity of Y 2 O 3 stabilized zirconia (YSZ: Yttria Stabilized Zirconia), the most widely used solid electrolyte, and has the highest oxygen ion conductivity of all known materials. Has Bismuth oxide having such characteristics is the most efficient fuel cell having a power generation method that generates heat and electricity by electrochemically reacting fuel and oxygen; that is, a solid oxide fuel cell having an efficiency of 60%; High application value as electrolyte of SOFC). Particularly in the fuel cell for small power generators used in portable products, the thin film of solid electrolyte is essential, so the thin film growth of bismuth oxide has great significance.

한편 최근 반도체 분야에서 소자의 고집적화 및 고속화에 따라 MOSFET(metal oxide semiconductor field effect transistor) 구조를 갖는 게이트 절연막으로 사용되고 있는 산화실리콘(SiO2) 층의 두께를 감소시키는 것이 중요한 문제로 부상하고 있다. 그러나 두께 0.1㎛ 이하의 소자를 구현하기 위해 절연막인 산화실리콘의 두께가 15Å 이하로 감소될 것이 요구되는데, 이러한 두께의 감소는 높은 게이트 누설 전류를 일으킬 수 있다. 따라서, 이러한 산화실리콘을 대체하기 위해, 높은 유전상수를 가지며 실리콘과의 접촉시 열적으로 안정한 게이트 절연막을 개발하기 위한 연구가 큰 관심을 모으고 있다.Meanwhile, in the semiconductor field, as the device is highly integrated and high in speed, reducing the thickness of a silicon oxide (SiO 2 ) layer used as a gate insulating film having a MOSFET structure has emerged as an important problem. However, in order to implement devices having a thickness of 0.1 μm or less, the thickness of the silicon oxide, which is an insulating film, is required to be reduced to 15 μm or less, which may cause high gate leakage current. Therefore, in order to replace such silicon oxide, research for developing a gate insulating film having a high dielectric constant and thermally stable upon contact with silicon has attracted great attention.

산화비스무스는 유전상수가 12-25 정도의 값을 가지며, 실리콘과의 격자상수 불일치도가 거의 없다는 점에서 최근의 반도체 분야에서 중요한 주제가 되고 있는 고유전상수 절연막 연구에의 응용가능성을 갖고 있다.Bismuth oxide has a dielectric constant of about 12-25 and has a lattice constant inconsistency with silicon. Therefore, bismuth oxide has an applicability to high dielectric constant insulating film research, which is an important topic in recent semiconductor fields.

스퍼터링(sputtering)이나 증발(evaporation) 등의 물리적 증착법들은 비교적 고진공이 요구되므로 넓은 면적으로 박막을 증착시키기 어렵고, 비용이 많이 들고 장치가 복잡해서 대량생산이 불리하다.Physical vapor deposition methods, such as sputtering and evaporation, require relatively high vacuum, making it difficult to deposit thin films on a large area, and are expensive and complicated to produce mass.

이에 본 발명자들은 상기와 같은 문제점을 해결하기 위하여, 넓은 면적의 증착이 가능하면서 대량생산이 유리하며 도핑 농도 조절이 용이하고 저온 증착이 가능한, 유기금속 화학증착법(MOCVD)에 의한 Bi2O3박막의 제조방법을 개발하기에 이른 것이다.The present inventors have found that Bi 2 O 3 thin film according to, mass production of glass and metal easy doping concentration adjustment, and capable of low temperature deposition, an organic chemical vapor deposition (MOCVD) and can be deposited in a large area in order to solve the above It is early to develop a manufacturing method of.

본 발명의 목적은 비스무스-함유 유기금속, 및 산소-함유 기체 또는 유기물을 각각 반응기에서 별도의 라인을 통해 주입하면서 200 내지 700℃의 온도, 상압 및 저압 조건에서 화학적 증착법에 의해 Bi2O3박막을 대량으로 제조하는 방법을 제공하는데 있다.An object of the present invention is to provide a Bi 2 O 3 thin film by chemical vapor deposition at temperatures of 200 to 700 ° C., atmospheric pressure and low pressure while injecting bismuth-containing organometallic and oxygen-containing gases or organics through separate lines in a reactor, respectively. To provide a method for producing a large amount of.

도 1은 본 발명에 사용되는 유기금속 화학증착 장치의 개략도이고,1 is a schematic diagram of an organometallic chemical vapor deposition apparatus used in the present invention,

도 2a 및 2b는 각각 본 발명에 따른 실시예로부터 제조된 Bi2O3막의 X-선 회절법(XRD) θ-2θ 스캔 결과, 및 XRD 진동 곡선(rocking curve)을 나타낸다.2A and 2B show X-ray diffraction (XRD) θ-2θ scan results and XRD rocking curves of Bi 2 O 3 films prepared from examples according to the present invention, respectively.

상기 목적을 달성하기 위하여 본 발명에서는, 반응 전구체로서 비스무스-함유 유기금속, 및 산소-함유 기체 또는 유기물을 이들의 전반응을 억제하기 위하여 각각 별개의 라인을 통해 반응기에 주입시키고 10-3내지 760 mmHg의 압력, 200 내지 700℃의 내부온도의 반응조건에서 기재와 접촉시킴을 포함하는, 산화비스무스 박막의 제조방법을 제공한다.In order to achieve the above object, in the present invention, bismuth-containing organometallic, and oxygen-containing gas or organics as reaction precursors are introduced into the reactor through separate lines in order to suppress their prereaction, and each is 10 -3 to 760. Provided is a method for producing a bismuth oxide thin film comprising contacting a substrate at a reaction condition of a pressure of mmHg and an internal temperature of 200 to 700 ° C.

이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

도 1은 본 발명에 사용되는 유기금속 화학증착 장치의 개략도로서, 본 발명의 Bi2O3박막 제조방법에 따르면, 별개의 반응물질 라인을 사용하고 막을 성장시킴으로써, 반응물질들이 반응 전에 혼합되는 구간을 최소화하고, 상압뿐만 아니라 저압에서 반응기의 온도를 200 내지 700℃로 유지하면서 반응기의 벽면에서 증착이 이루어졌다가 다시 재분해되는 것을 방지함으로써, 산화비스무스 박막의 품질을 저하시키는 것을 현저히 감소시킬 수 있다.1 is a schematic view of an organometallic chemical vapor deposition apparatus used in the present invention, according to the Bi 2 O 3 thin film manufacturing method of the present invention, by using a separate reactant line and growing a membrane, the reaction mixture is mixed before the reaction section It is possible to significantly reduce the quality of the bismuth oxide thin film by preventing the deposition and re-decomposition on the wall of the reactor while maintaining the temperature of the reactor at 200 to 700 ° C. at low pressure as well as normal pressure. have.

본 발명에 사용되는 비스무스-함유 유기금속으로는 트리메틸 비스무스((CH3)3Bi), 비스사이클로펜타디에닐 비스무스(bis-cyclopentadienyl-Bi; (C5H5)2Bi), 비스메틸사이클로펜타디에닐 비스무스(bis-methylcyclopentadienyl-Bi; (CH3C5H4)2Bi), 비스에틸사이클로펜타디에닐 비스무스(bis-cyclopentadienyl-Bi; (C2H5C5H4)2Bi), 비스펜타메틸사이클로펜타디에닐 비스무스(bis-pentamethylcyclopentadienyl-Bi; [(CH3)5C5]2Bi), 비스무스 아세테이트(Bi(OOCCH3)2·2H2O), 비스무스 아세테이트 무수물(Bi(OOCCH3)2) 및 비스무스 아세틸아세토네이트(Bi(C5H7O2)2·H2O) 등을 들 수 있다. 또한, 본 발명에 사용된 산소-함유 기체로는 O2, O3, NO2, 수증기 및 CO2등을 들 수 있으며, 산소-함유 유기물로는 메틸에틸케톤(C2H5COCH3) 등이 있다.The bismuth-containing organometallic used in the present invention includes trimethyl bismuth ((CH 3 ) 3 Bi), biscyclopentadienyl bis (C 5 H 5 ) 2 Bi), bismethylcyclopenta Dienyl bismuth (bis-methylcyclopentadienyl-Bi; (CH 3 C 5 H 4 ) 2 Bi), bisethylcyclopentadienyl bismuth (bis-cyclopentadienyl-Bi; (C 2 H 5 C 5 H 4 ) 2 Bi), Bis-pentamethylcyclopentadienyl bismuth (bis-pentamethylcyclopentadienyl-Bi; [(CH 3 ) 5 C 5 ] 2 Bi), bismuth acetate (Bi (OOCCH 3 ) 2 .2H 2 O), bismuth acetate anhydride (Bi (OOCCH 3 ) 2 ) and bismuth acetylacetonate (Bi (C 5 H 7 O 2 ) 2 .H 2 O) and the like. In addition, the oxygen-containing gas used in the present invention include O 2 , O 3 , NO 2 , water vapor and CO 2 , and the like, methyl-oxyketone (C 2 H 5 COCH 3 ) and the like. There is this.

본 발명에서 사용될 수 있는 산화비스무스 박막 형성용 기재로는 통상적인 것이 사용될 수 있으며, 그 예로는 유리, 석영, SiO2/Si, Si, Al2O3(0001) 및 Al2O3(1100) 등이 있다.As a substrate for forming a bismuth oxide thin film that can be used in the present invention, conventional ones may be used, and examples thereof include glass, quartz, SiO 2 / Si, Si, Al 2 O 3 (0001), and Al 2 O 3 (1100). Etc.

또한, 필요에 따라, 본 발명의 MOCVD에 의해 형성된 산화비스무스 박막에 M=Ca, Sr, Ba 등의 알칼리토금속을 통상의 방법으로 첨가하여 Bi2O3-MO 계의 박막을 제조할 수 있고, RE=Y, La, Gd, Dy, Er, Ho 등의 희토류금속을 통상의 방법으로 첨가하여 Bi2O3-RE2O3계의 박막을 제조할 수 있으며, M=V, Nb, Ta 등을 통상의 방법으로 첨가하여 Bi2O3-M2O5계의 박막을 제조할 수 있으며, 또한 M=W, Mo 등을 통상의 방법으로 첨가하여 Bi2O3-MO3계의 박막을 제조할 수 있다.Further, if necessary, Bi 2 O 3 -MO thin film can be prepared by adding alkaline earth metal such as M = Ca, Sr, Ba to the bismuth oxide thin film formed by MOCVD of the present invention in a conventional manner, A rare earth metal such as RE = Y, La, Gd, Dy, Er, Ho can be added in a conventional manner to prepare a Bi 2 O 3 -RE 2 O 3 based thin film, and M = V, Nb, Ta, etc. The Bi 2 O 3 -M 2 O 5- based thin film can be prepared by adding a conventional method, and M = W, Mo, etc. can be added by a conventional method to produce a Bi 2 O 3 -MO 3 based thin film It can manufacture.

본 발명에 의해 제조된 산화비스무스 박막은, X-선 회절법(XRD) 스캔 결과로부터 우수한 결정성을 가짐이 확인되었다(도 2a 및 도 2b 참조). 또한 본 발명의 방법에 의하면 산화비스무스 박막을 대량으로 제조할 수 있다.The bismuth oxide thin film produced by the present invention was confirmed to have excellent crystallinity from the results of X-ray diffraction (XRD) scanning (see FIGS. 2A and 2B). Moreover, according to the method of this invention, a bismuth oxide thin film can be manufactured in large quantities.

본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.The invention can be better understood by the following examples, which are intended for the purpose of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.

실시예Example

도 1에 도시된 유기금속 화학증착 장치를 사용하여 각각 SiO2/Si, Si, Al2O3(0001) 및 Al2O3(1100)의 기재 위에 Bi2O3박막을 성장시켰다. 반응물질로서 트리메틸 비스무스[(CH3)3Bi, TMBi] 및 O2를 사용하였고, 운반기체로서 아르곤을 사용하였다. 분리된 라인들을 통해 TMBi 및 O2를 각각 반응기 내로 주입하였다. 이때 반응기 내의 압력 및 온도를 각각 760 mmHg, 500 ℃로 일정하게 유지하면서, 각 반응물질들의 흐름속도는 각각 아르곤 100 sccm, TMBi 5 내지 10 sccm, 및 O240 내지 50 sccm의 범위로 조절하면서 약 1시간에 걸쳐 증착에 의해 막을 성장시켰다. 성장시간이 끝난 후, 750℃에서 산소 분위기 열처리를 30분 동안 실시하였다. 증착반응의 완료 후 형성된 산화비스무스 막은 두께가 약 0.2 ㎛이었으며, 결정 배향성을 X-선 회절법(XRD)으로 다음과 같이 결정하였다.Bi 2 O 3 thin films were grown on substrates of SiO 2 / Si, Si, Al 2 O 3 (0001) and Al 2 O 3 (1100) using the organometallic chemical vapor deposition apparatus shown in FIG. Trimethyl bismuth [(CH 3 ) 3 Bi, TMBi] and O 2 were used as reactants, and argon was used as the carrier gas. TMBi and O 2 were each injected into the reactor via separate lines. At this time, while maintaining a constant pressure and temperature in the reactor at 760 mmHg, 500 ℃, respectively, the flow rate of each reactant is about 100 sccm argon, TMBi 5 to 10 sccm, and O 2 40 to 50 sccm The film was grown by evaporation over 1 hour. After the growth time, the oxygen atmosphere heat treatment was performed for 30 minutes at 750 ℃. The bismuth oxide film formed after completion of the deposition reaction had a thickness of about 0.2 μm, and crystal orientation was determined by X-ray diffraction (XRD) as follows.

X선 회절 분석X-ray diffraction analysis

Bi2O3박막을 Al2O3(0001) 기재 위에 형성시키고, 이 막에 대한 XRD θ-2θ 스캔 결과를 도 2a에 나타내었다. 이 막은 기재 피크 이외에 두드러진 Bi2O3입방성(cubic)(111) 피크를 나타냄으로써, Bi2O3박막이 기재 표면에 (111) 방향을 따라 크게 배향되었음을 알 수 있다. 또한 SiO2/Si와 같은 무정형 기재 위에서도 Bi2O3XRD 피크가 관찰되었으며, 이로부터 Bi2O3박막이 성장되었음을 알 수 있다.A Bi 2 O 3 thin film was formed on an Al 2 O 3 (0001) substrate, and the XRD θ-2θ scan results for this film are shown in FIG. 2A. This film exhibits a prominent Bi 2 O 3 cubic (111) peak in addition to the substrate peak, indicating that the Bi 2 O 3 thin film is oriented largely along the (111) direction on the substrate surface. Bi 2 O 3 XRD peaks were also observed on amorphous substrates such as SiO 2 / Si, indicating that Bi 2 O 3 thin films were grown.

또한, Al2O3(0001) 및 Al2O3(1100) 기재 위에 형성된 산화비스무스 박막의 (111)면에 대한 XRD 진동 곡선(rocking curve)을 도 2b에 나타내었다. 진동 곡선은 상기 막들의 (111) 반사에서 각각 측정되었다. 도 2b로부터 알 수 있듯이, Al2O3(0001) 및 Al2O3(1100) 기재 위에 형성된 Bi2O3박막의 진동 곡선에서의 최대값/2에서의 총 너비(full width at half maximum, FWHM)는 각각 0.2 및 0.11°로서 작은 값을 가지므로, 본 실시예에서 성장시킨 Bi2O3박막의 결정성이 매우 우수함을 나타낸다.In addition, the XRD rocking curve for the (111) plane of the bismuth oxide thin film formed on the Al 2 O 3 (0001) and Al 2 O 3 (1100) substrate is shown in Figure 2b. Vibration curves were measured at each of the (111) reflections of the films. As can be seen from FIG. 2B, the full width at half maximum, in the vibration curve of the Bi 2 O 3 thin film formed on the Al 2 O 3 (0001) and Al 2 O 3 (1100) substrates, FWHM) has a small value of 0.2 and 0.11 °, respectively, and thus shows very good crystallinity of the Bi 2 O 3 thin film grown in this example.

본 발명의 유기금속 화학증착법에 의한 산화비스무스 박막의 제조방법은 대량생산이 유리하고 도핑 농도 조절이 용이하며 저온증착을 가능하게 하며, 결정성이 우수한 산화비스무스 박막을 제조할 수 있다.The method for producing a bismuth oxide thin film by the organometallic chemical vapor deposition method of the present invention is advantageous in mass production, easy doping concentration control, low temperature deposition, it is possible to produce a bismuth oxide thin film excellent in crystallinity.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (4)

비스무스-함유 유기금속, 및 산소-함유 기체 또는 유기물을 별개의 라인을 통해 반응기에 주입시키면서 압력 10-3내지 760 mmHg 및 온도 200 내지 700℃의 범위에서 기재와 접촉시켜 기재 위에 막을 성장시키는 것을 특징으로 하는, 유기금속 화학증착법에 의한 산화비스무스 박막의 제조방법.Growing a film on the substrate by contacting the substrate with a bismuth-containing organometallic, and oxygen-containing gas or organics in a range of 10 -3 to 760 mmHg and a temperature of 200 to 700 ° C while injecting the reactor through a separate line. A method for producing a bismuth oxide thin film by an organometallic chemical vapor deposition method. 제1항에 있어서,The method of claim 1, 비스무스-함유 유기금속이 트리메틸 비스무스, 비스사이클로펜타디에닐 비스무스, 비스메틸사이클로펜타디에닐 비스무스, 비스에틸사이클로펜타디에닐 비스무스, 비스펜타메틸사이클로펜타디에닐 비스무스, 비스무스 아세테이트, 비스무스 아세테이트 무수물 및 비스무스 아세틸아세토네이트로 이루어진 군으로부터 선택된 것을 특징으로 하는 방법.Bismuth-containing organometallic compounds include trimethyl bismuth, biscyclopentadienyl bismuth, bismethylcyclopentadienyl bismuth, bisethylcyclopentadienyl bismuth, bispentamethylcyclopentadienyl bismuth, bismuth acetate, bismuth acetate anhydride and bismuth acetyl And acetonate selected from the group consisting of: 제1항에 있어서,The method of claim 1, 산소-함유 기체가 O2, O3, NO2, 수증기 또는 CO2인 것을 특징으로 하는 방법.And wherein the oxygen-containing gas is O 2 , O 3 , NO 2 , water vapor or CO 2 . 제1항에 있어서,The method of claim 1, 산소-함유 유기물이 메틸에틸케톤(C2H5COCH3)인 것을 특징으로 하는 방법.Wherein the oxygen-containing organic is methyl ethyl ketone (C 2 H 5 COCH 3 ).
KR1020010027038A 2001-05-17 2001-05-17 Method for preparing bismuth oxide thin films by metal-organic chemical vapor deposition KR20020088128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010027038A KR20020088128A (en) 2001-05-17 2001-05-17 Method for preparing bismuth oxide thin films by metal-organic chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010027038A KR20020088128A (en) 2001-05-17 2001-05-17 Method for preparing bismuth oxide thin films by metal-organic chemical vapor deposition

Publications (1)

Publication Number Publication Date
KR20020088128A true KR20020088128A (en) 2002-11-27

Family

ID=27705305

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010027038A KR20020088128A (en) 2001-05-17 2001-05-17 Method for preparing bismuth oxide thin films by metal-organic chemical vapor deposition

Country Status (1)

Country Link
KR (1) KR20020088128A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100533648B1 (en) * 2003-03-14 2005-12-06 한국과학기술연구원 GROWING METHOD FOR Bi THIN FILM AND Bi BASED DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959089A (en) * 1995-08-22 1997-03-04 Sony Corp Growing of chemical vapor phase
KR970018599A (en) * 1995-09-11 1997-04-30 이데이 노부유끼 A method of producing bismuth oxide, a method of forming an oxide film, and a method of manufacturing a capacitor structure of a semiconductor device
KR19990013831A (en) * 1997-07-14 1999-02-25 빌헬름 에핑, 디터 라인하르트 Oxide Ceramic Thin Film Manufacturing Method
JPH11297680A (en) * 1998-04-10 1999-10-29 Mitsubishi Materials Corp Solution for thin film formation and formation of thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959089A (en) * 1995-08-22 1997-03-04 Sony Corp Growing of chemical vapor phase
KR970018599A (en) * 1995-09-11 1997-04-30 이데이 노부유끼 A method of producing bismuth oxide, a method of forming an oxide film, and a method of manufacturing a capacitor structure of a semiconductor device
KR19990013831A (en) * 1997-07-14 1999-02-25 빌헬름 에핑, 디터 라인하르트 Oxide Ceramic Thin Film Manufacturing Method
JPH11297680A (en) * 1998-04-10 1999-10-29 Mitsubishi Materials Corp Solution for thin film formation and formation of thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100533648B1 (en) * 2003-03-14 2005-12-06 한국과학기술연구원 GROWING METHOD FOR Bi THIN FILM AND Bi BASED DEVICE

Similar Documents

Publication Publication Date Title
EP0630424B1 (en) Ferroelectric thin films made by metalorganic chemical vapor deposition
Hu et al. Reactive‐ion etching of GaAs and InP using CCl2F2/Ar/O2
JP3462852B2 (en) Method and apparatus for producing thin films by chemical vapor deposition
US5104690A (en) CVD thin film compounds
Brierley et al. The growth of ferroelectric oxides by MOCVD
WO2002016679A1 (en) Polycrystalline semiconductor material and method of manufacture thereof
JPS6077431A (en) Method of producing cadmium mercury telluride
KR100373080B1 (en) C-axis oriented lead germanate film and deposition method
KR100385487B1 (en) Method of fabricating film for solar cells
CN108615672A (en) A kind of preparation method and its semiconductor junction epitaxial of semiconductor junction epitaxial
Peng et al. Metalorganic chemical vapor deposition of ferroelectric Pb (Zr, Ti) O3 thin films
KR100212906B1 (en) Process for producing oxide films and chemical deposition apparatus therefor
KR20020088128A (en) Method for preparing bismuth oxide thin films by metal-organic chemical vapor deposition
US6808743B2 (en) Growth of ZnO film using single source CVD
Zeng et al. Sol‐Gel Preparation of Pb (Zr0. 50Ti0. 50) O3 Ferroelectric Thin Films Using Zirconium Oxynitrate as the Zirconium Source
Liu et al. Low-temperature preparation of perovskite Pb (Sc0. 5Ta0. 5) O3 thin films using MOCVD
US6495378B2 (en) Ferroelastic lead germanate thin film and deposition method
EP1734151A1 (en) A method and system for metalorganic chemical vapour deposition (MOCVD) and annealing of lead germanite (PGO) thin films films
JP2881929B2 (en) Manufacturing method of alumina film
Asahara et al. Characterization of zinc oxide films grown by a newly developed plasma enhanced metal organic chemical vapor deposition employing microwave excited high density plasma
JPH0776090B2 (en) Method for manufacturing zirconia thin film
CN115261793A (en) Preparation method of Hf-based ferroelectric film based on PVD
JPH021366B2 (en)
JPS6136371B2 (en)
Li et al. Ferroelectric PbZr1-xTixO3 thin films made by various metalorganic chemical vapor deposition techniques

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application