KR20020082816A - High Functional Carbon Nano-materials by Electrochemical Surface Treatment of Alkaline Metals and Preparation Method Thereof - Google Patents

High Functional Carbon Nano-materials by Electrochemical Surface Treatment of Alkaline Metals and Preparation Method Thereof Download PDF

Info

Publication number
KR20020082816A
KR20020082816A KR1020020055919A KR20020055919A KR20020082816A KR 20020082816 A KR20020082816 A KR 20020082816A KR 1020020055919 A KR1020020055919 A KR 1020020055919A KR 20020055919 A KR20020055919 A KR 20020055919A KR 20020082816 A KR20020082816 A KR 20020082816A
Authority
KR
South Korea
Prior art keywords
surface treatment
alkaline
electrolysis
carbon nanotubes
treated
Prior art date
Application number
KR1020020055919A
Other languages
Korean (ko)
Inventor
김기동
Original Assignee
김기동
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김기동 filed Critical 김기동
Priority to KR1020020055919A priority Critical patent/KR20020082816A/en
Publication of KR20020082816A publication Critical patent/KR20020082816A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment

Abstract

PURPOSE: A preparation method of a high functional carbon nano-material which gives polarity onto the surface of carbon, increases surface activity and dissociation energy and substantially improves selective adsorption performance through surface treatment by electrolysis using alkaline transition metal elements is provided. CONSTITUTION: The preparation method of a high functional carbon nanotube(5) is characterized in that adsorption selectivity of the carbon nanotube(5) of which the nanoporous structure having high specific surface area is well developed is improved through the surface treatment by electrolysis using an aqueous solution of alkaline transition metals as an electrolyte(6), wherein adsorption selectivity of the carbon nanotube(5) is improved through the surface treatment by electrolysis using an aqueous solution of alkaline transition metals such as copper, nickel and silver as an electrolyte(6), a carbon nano-material the surface of which is treated by an alkaline electrolyte(6) is formed in a granule or fiber shape, time for performing the surface treatment by alkaline electrolysis is 5 to 60 minutes, and content of each of the alkaline transition metal elements on the surface of the carbon nanotube(5) by alkaline electrolytic surface treatment is 1.0 to 10.0 wt.%.

Description

알칼리 금속의 전기화학적 표면처리에 의한 고기능성 탄소 나노소재 및 이의 제조 방법{High Functional Carbon Nano-materials by Electrochemical Surface Treatment of Alkaline Metals and Preparation Method Thereof}High Functional Carbon Nano-materials by Electrochemical Surface Treatment of Alkaline Metals and Preparation Method Thereof}

본 발명은 고온 정제 처리된 입자상 및 섬유상 탄소 나노튜브에 대하여 알칼리성의 전이금속 원소 중 구리, 니켈 및 은을 이용한 전기분해에 의한 표면처리 방법에 의하여 기상에서의 극성오염원인 NOx, SOx 및 유기성 산화물 (VOCs)에 대한 선택적 흡착성능이 향상된 활성탄소의 제조방법에 관한 것이다.The present invention relates to NOx, SOx and organic oxides, which are polar pollutants in the gas phase, by the surface treatment method by electrolysis using copper, nickel and silver among alkaline transition metal elements with respect to high temperature purified particulate and fibrous carbon nanotubes. The present invention relates to a method for producing activated carbon having improved selective adsorption capacity for VOCs.

극성을 갖는 다양한 환경 오염원에 대한 흡착 ·제거기술은 흡착제가 갖는 기공구조에 따른 물리적 흡착성능과 더불어 그 표면의 화학적 성질에 의해 많은 영향을 받는데 흡착제 표면에 극성을 부여하기 위한 기존의 처리방법으로는 상온에서의 산 및 알칼리성 용액에 의한 첨착처리, 고온에서의 산소 및 오존처리에 의한 산소관능기의 도입, 산 및 알칼리 전해용액의 전기분해에 의한 표면처리 및 산화성 금속촉매를 이용한 전기도금등이 알려져 있으나, 본 발명에 따른 구리, 니켈 및 은등의 알칼리성 전이금속의 전기분해에 의한 탄소 나노소재의 표면에 극성을 부여하는 방법은 아직 보고된 바 없다. 또한, 기존의 흡착제에 대한 금속이온의 도금처리는 광산이나 공업 단지 등에서 배출되는 오 ·폐수에서의 중금속 오염원을 선택적으로 흡착 ·제거하기 위하여 이용되었으나, 흡착제 자체의 표면성질에 의해 도금처리하기 위한 금속의 종류가 제한되었으며, 일반적으로 액상에서의 흡착 ·제거에 국한되었다. 또한, 표면처리된 금속이온에 의해 그 흡착성능이 저하되어 흡착제로서의 기능이 떨어지는 단점이 있었으나, 본 발명에 따른 전기분해에 의한 구리, 니켈 및 은 등의 알칼리 전이금속의 탄소 나노소재의 표면처리는 흡착제로서 흡착성능을 그대로 유지하면서 도금 처리된 금속이온의 표면 극성효과로 인해 액상에서뿐만 아니라 대기중에서 산성의 SOx, NOx 및 유기 산화물 (VOCs)등의 기상오염원에 대하여도 우수한 흡착선택성을 가짐을 알 수 있다.Adsorption / removal technology for various environmental pollutants with polarity is affected by physical adsorption performance according to the pore structure of the adsorbent and the chemical properties of the surface. Existing treatment methods for imparting polarity to the adsorbent surface include Impregnation treatment with acid and alkaline solution at room temperature, introduction of oxygen functional groups by oxygen and ozone treatment at high temperature, surface treatment by electrolysis of acid and alkali electrolytic solutions and electroplating with oxidative metal catalysts are known. However, a method for imparting polarity to the surface of the carbon nanomaterial by electrolysis of alkaline transition metals such as copper, nickel and silver according to the present invention has not been reported. In addition, the plating of metal ions on the adsorbent has been used to selectively adsorb and remove heavy metal contaminants from wastewater and wastewater discharged from mines and industrial complexes, but the metal for plating by the surface properties of the adsorbent itself is used. The types of were limited and generally limited to adsorption and removal in the liquid phase. In addition, the surface treatment of the carbon nanomaterial of the alkali transition metals such as copper, nickel and silver by the electrolysis according to the present invention had a disadvantage that the adsorption performance is reduced by the surface-treated metal ions, so that the function as an adsorbent is deteriorated Due to the surface polarity effect of plated metal ions while maintaining the adsorption performance as an adsorbent, it has excellent adsorption selectivity against gaseous pollutants such as SOx, NOx and organic oxides (VOCs) in the liquid as well as in the air. have.

본 발명은 나노기공 구조가 잘 발달된 고비표면적의 입자상 및 섬유상의 탄소 나노튜브에 대하여 전기분해에 의한 알칼리 금속 표면처리를 통해 표면 구조의 변화가 없이 흡착성능을 지속적으로 유지하면서 극성을 갖는 SOx, NOx 및 유기 산화물 (VOCs)등의 대기오염원에 대하여 선택적으로 우수한 흡착특성을 갖는 고기능성의 탄소 나노소재 및 이의 제조방법을 제공하고자 한다.The present invention provides a highly specific surface area of particulate and fibrous carbon nanotubes well-developed nanoporous structure through the alkali metal surface treatment by electrolysis, SOx having a polarity while maintaining the adsorption performance without changing the surface structure, An object of the present invention is to provide a highly functional carbon nanomaterial having a selective adsorption characteristic for air pollutants such as NOx and organic oxides (VOCs), and a method of manufacturing the same.

도 1은 본 발명에 따른 전기화학적 표면처리 장치도1 is an electrochemical surface treatment apparatus according to the present invention

도 2는 본 발명의 미처리, 실시예 1, 2 및 실시예 5, 6에 의한 입자상 탄소 나노튜브의 NOx 전환율을 나타낸 도면2 is a view showing the NOx conversion rate of particulate carbon nanotubes according to the untreated, Examples 1, 2 and 5, 6 of the present invention.

도 3은 본 발명의 미처리, 실시예 1, 2 및 실시예 5, 6에 의한 입자상 탄소 나노튜브의 SOx전환율을 나타낸 도면3 is a view showing the SOx conversion rate of particulate carbon nanotubes according to the untreated, Examples 1, 2 and 5, 6 of the present invention.

도 4는 본 발명의 미처리 및 실시예 3, 4에 의한 섬유상 탄소 나노튜브의 NOx 전환율을 나타낸 도면4 is a view showing the NOx conversion rate of the fibrous carbon nanotubes according to the untreated and Examples 3 and 4 of the present invention.

도 5는 본 발명의 미처리 및 실시예 3, 4에 의한 섬유상 탄소 나노튜브의 SOx 전환율을 나타낸 도면5 is a view showing the SOx conversion rate of the fibrous carbon nanotubes according to the untreated and Examples 3, 4 of the present invention

* 대표도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of representative drawings

1: 표면처리 전해욕조, 2: 흑연 음극판, 3: 흑연 음극 접지대,1: surface treatment electrolytic bath, 2: graphite negative electrode plate, 3: graphite negative electrode grounding strap,

4: 흑연 스크린 박스, 5: 입자 및 섬유상 카본 나노튜브, 6: 전해액4: graphite screen box, 5: particle and fibrous carbon nanotubes, 6: electrolyte

본 발명에서는 나노기공 구조가 잘 발달된 고비표면적의 입자상 및 섬유상의 탄소 나노튜브를 구리, 니켈 및 은 등의 알칼리 전이금속 수용액에서 각각 5 ~ 60분간 전기분해에 의한 표면 처리를 통하여 극성의 유 ·무기 흡착질에 대하여 우수한 흡착선택성을 갖는 고기능성 탄소 나노소재의 제조방법을 제공한다.In the present invention, the high specific surface area well-developed nanoporous carbon nanotubes of the particulate and fibrous carbon nanotubes in the aqueous solution of alkali transition metals such as copper, nickel and silver for 5 to 60 minutes, respectively, by surface treatment by electrolysis Provided is a method for producing a high functional carbon nanomaterial having excellent adsorption selectivity with respect to inorganic adsorbates.

일반적으로 전기분해에 의한 표면처리 금속원소로는 구리, 니켈 및 은 등의 알칼리성 전이금속이 적합하다. 이것은 알칼리성 전이금속이 환원전위가 높아 수용액 중의 환원제에 의해 이온상태에서 금속으로 피착물에 표면처리가 잘 이루어지며, 표면 처리된 금속원소에 의한 선택적 기능성이 지속적으로 유지될 수 있다.In general, alkaline transition metals such as copper, nickel, and silver are suitable as surface-treated metal elements by electrolysis. This alkaline transition metal has a high reduction potential, and thus surface treatment of the adherend with a metal in an ionic state by a reducing agent in an aqueous solution is possible, and the selective functionality by the surface-treated metal element can be continuously maintained.

본 발명에 따른 표면처리에 있어서 전해 구리 수용액의 기본조성은 1.0M의 황산구리(CuSO₄)수용액에 환원제로서 에틸렌디아인 트리 아세테이트 (EDTA), 포름 알데히드(HCHO)를 각각 2 : 1 의 몰비 (Mole ratio)로 하여 pH가 약 12정도의 알칼리성 용액을 제조하여 무전해 구리 도금액으로 사용하였으며, 이때 고온에서의 분해반응을 방지하기 위해 첨가제로서 비피리딜 (Bipyridyl)과 테트라디아노 니켈(II)산 칼륨을 각각 10mg/l 첨가하였다.In the surface treatment according to the present invention, the basic composition of the electrolytic copper aqueous solution is 1.0 mol of copper sulfate (CuSO 수) solution, and ethylene diacetate triacetate (EDTA) and formaldehyde (HCHO) are each used as molar ratios of 2: 1. ), An alkaline solution having a pH of about 12 was prepared and used as an electroless copper plating solution. In this case, bipyridyl and potassium tetradionate nickel (II) acid were used as additives to prevent decomposition reaction at high temperature. 10 mg / l each was added.

본 발명에 따른 전해 니켈 표면처리에 있어서 수용액의 기본조성은 1.0M의 염화니켈(NiCl₂)수용액에 환원제로서 차아인산 나트륨 (NaH₂PO₂)과 염화암모늄 (NH₄Cl)을 각각 1 : 5 의 몰비로 하여 pH가 약 9정도의 알칼리성 니켈 수용액을 제조하여 사용하였다. 또한 본 발명에 따른 전해 은 수용액의 기본조성은 암모니아수를 적당량 섞은 0.2M의 질산은 (AgNO₃)용액과 증류수 200ml에 환원제로서 포르말린 40ml를 섞은 용액을 각각 5 : 1로 혼합한 용액을 제조하여 전해 은 수용액으로 사용하였다.In electrolytic nickel surface treatment according to the present invention, the basic composition of the aqueous solution is 1.0 M aqueous nickel chloride (NiCl₂) solution with sodium hypophosphite (NaH₂PO₂) and ammonium chloride (NH₄Cl) as a reducing agent, respectively, at a molar ratio of 1: 5. An aqueous alkaline nickel solution of about 9 was prepared and used. In addition, the basic composition of the electrolytic silver aqueous solution according to the present invention was prepared by mixing a 0.2 M silver nitrate (AgNO₃) solution with an appropriate amount of ammonia water and a solution of 40: 1 formalin 40 ml as a reducing agent in 200 ml of distilled water to prepare a solution of electrolytic silver solution Used as.

각각의 실험에 따른 표면 처리시간은 5~60분인 것이 바람직하다. 처리 시간이 5분 미만인 경우는 피착물인 입자상 및 섬유상의 탄소 나노튜브 표면에 충분히 처리되지 않으며, 표면처리된 금속원소에 의한 표면 극성이 잘 발달되지 않아 우수한 선택적 기능성을 지속적으로 발현할 수가 없으며, 처리시간이 60분을 초과할 경우 금속원소의 표면 엣칭에 의해 탄소소재 표면에 발달된 기공구조와 흡착표면적을 감소시켜 충분한 흡착성능을 발휘할 수 없으므로 바람직하지 못하다.The surface treatment time according to each experiment is preferably 5 to 60 minutes. If the treatment time is less than 5 minutes, the surface of the adherent particulate and fibrous carbon nanotubes is not sufficiently treated, and the surface polarity due to the surface-treated metal element is not well developed, so that excellent selective functionality cannot be continuously expressed. If the time exceeds 60 minutes, it is not preferable because the surface etching of the metal element reduces the pore structure and the adsorption surface area developed on the surface of the carbon material, so that sufficient adsorption performance cannot be exhibited.

전해 알칼리성 전이금속의 표면처리에 의한 고기능성 탄소 나노소재의 원소분석에 따른 각각의 금속성분 함량은 1~10%가 되도록 하는 것이 바람직하다. 금속성분 함량이 1.0% 미만인 경우는 피착물인 탄소 나노소재 표면에 충분히 처리되지 않아 금속원소에 의한 표면 극성이 잘 발달되지 않아 우수한 흡착 선택성을 지속적으로 유지할 수가 없으며, 성분 함량이 10%를 초과할 경우 금속원소의 표면 엣칭에 의해 탄소소재 표면에 발달된 기공구조와 흡착 표면적을 감소시켜 충분한 흡착성능을 발휘할 수 없으므로 바람직하지 못하다.It is preferable that the content of each metal component according to the elemental analysis of the highly functional carbon nanomaterial by the surface treatment of the electrolytic alkaline transition metal is 1 to 10%. If the metal content is less than 1.0%, the surface of the carbon nanomaterial to be deposited is not sufficiently treated, so that the surface polarity due to the metal element is not well developed, so that excellent adsorption selectivity cannot be maintained continuously, and the content is more than 10%. It is not preferable to reduce the pore structure and adsorption surface area developed on the surface of the carbon material by surface etching of the metal element, so that sufficient adsorption performance cannot be exhibited.

본 발명의 실시예는 다음과 같으며, 본 발명의 범위가 그 실시예에 한정되는 것은 아니다.Embodiments of the present invention are as follows, but the scope of the present invention is not limited to the embodiments.

[실시예 1]Example 1

비표면적이 682 m²/g, 세공부피 0.68 cm³/g 및 나노기공 분율이 93%이상인 고순도 정제처리된 입자상 탄소 나노튜브를 사용하여 알칼리성 구리 수용액에서 전기분해 처리하였다. 표면처리에 있어 우선 구리 전해액의 기본조성은 1.0M의 황산구리(CuSO₄)수용액에 환원제로서 에틸렌디아민 트리 아세테이트 (EDTA), 포름 알데히드 (HCHO)를 각각 2 : 1 의 몰비 (Mole ratio)로 하여 pH가 약 12정도의 알칼리성 구리 전해액을 제조하여 사용하였으며, 이때 고온에서의 분해반응을 방지하기 위해 첨가제로서 비피리딜 (Bipyridyl)과 테트라디아노 니켈(II)산 칼륨을 각각 10mg/l 첨가하여 제조하였다. 약 20℃의 실온에서 준비된 구리수용액에 탄소 나노튜브를 넣고 약 5분간 표면처리 하였으며, 처리된 탄소 나노튜브의 흡착 비표면적과 요오드 흡착량 및 도금된 구리원소 함량을 각각 표 1에 나타내었다. 그 결과, BET 비표면적과 액상에서의 요오드 흡착량은 크게 변하지 않았으나 탄소 나노튜브 표면에 처리된 구리원소의 함량은 1.0%로 증가하였다. 이에 따른 대기중의 NOx 및 SOx 전환율을 도 2와 도 3에 각각 나타내었으며, 대기중의 방치시간에 따라 NOx 전환율은 최고 140%이상, SOx 전환율은 최고 175%이상 증가함을 보여주었다.Electrolytic treatment was performed in alkaline copper aqueous solution using high purity purified particulate carbon nanotubes having a specific surface area of 682 m 2 / g, pore volume of 0.68 cm 3 / g and nanopore fraction of 93% or more. In the surface treatment, the basic composition of the copper electrolyte was firstly prepared in a 1.0 M copper sulfate (CuSO₄) solution with ethylene diamine triacetate (EDTA) and formaldehyde (HCHO) as a molar ratio of 2: 1, respectively. Alkaline copper electrolyte of about 12 was prepared and used, and 10 mg / l of bipyridyl and potassium tetradionickel (II) acid were added as additives to prevent decomposition reaction at high temperature. . Carbon nanotubes were placed in a copper aqueous solution prepared at room temperature of about 20 ° C. and surface treated for about 5 minutes. Table 1 shows the adsorption specific surface area, iodine adsorption amount and plated copper element content of the treated carbon nanotubes, respectively. As a result, the BET specific surface area and the iodine adsorption amount in the liquid phase did not change significantly, but the content of copper element on the surface of the carbon nanotubes increased to 1.0%. As a result, the NOx and SOx conversion rates in the air are shown in FIGS. 2 and 3, respectively, and the NOx conversion rate is increased by at least 140% and the SOx conversion is increased by at least 175% according to the waiting time in the atmosphere.

[실시예 2]Example 2

실시예 1에서와 같이 전기분해에 의한 구리원소 표면처리에 있어 전해액의 기본조성은 실시예 1과 같으며, 용액온도 약 60℃에서 입자상 탄소 나노튜브를 넣고 약 30분간 표면처리하였으며, 처리된 탄소 나노튜브의 흡착 비표면적과 요오드 흡착량 및 처리된 구리원소의 함량을 각각 표 1에 나타내었다. 그 결과, BET 비표면적과 액상에서의 요오드 흡착량은 크게 변하지 않았으나 턴소 나노튜브 표면에 처리된 구리원소의 함량은 5.0%로 증가하였다. 이에 따른 대기중의 NOx 및 SOx 전환율을 도 2와 도 3에 각각 나타내었으며, 대기중의 방치시간에 따라 NOx 전환율은 최고 180%이상, SOx 전환율은 최고 230%이상 증가함을 보여주었다.As in Example 1, the basic composition of the electrolytic solution in the copper element surface treatment by electrolysis was the same as in Example 1, and the particulate carbon nanotubes were surface treated for about 30 minutes at a solution temperature of about 60 ° C., and treated carbon The adsorption specific surface area, iodine adsorption amount, and treated copper element content of the nanotubes are shown in Table 1, respectively. As a result, the BET specific surface area and the iodine adsorption amount in the liquid phase did not change significantly, but the content of copper element on the surface of the turno nanotubes increased to 5.0%. As a result, the NOx and SOx conversion rates in the air are shown in FIGS. 2 and 3, respectively, and the NOx conversion rate is increased by at least 180% and the SOx conversion is increased by at least 230% according to the waiting time in the air.

[실시예 3]Example 3

비표면적이 865 m²/g, 세공부피 0.75 cm³/g 및 나노기공 분율이 95%이상인 고순도 정제처리된 섬유상 탄소 나노튜브를 사용하여 알칼리성 니켈 수용액에서 전기분해 처리하였다. 표면처리에 있어서 니켈 전해액의 기본조성은 1.0M의 염화니켈 (NiCl₂)수용액에 환원제로서 차아인산 나트륨 (NaH₂PO₂)과 염화암모늄 (NH₄Cl)을 각각 1 : 5 의 몰비로 하여 pH가 약 9정도의 알칼리성 니켈 전해액을 제조하여 사용하였다. 약 40℃의 실온에서 준비된 니켈 전해액에 섬유상 탄소 나노튜브를 넣고 약 15분간 표면 처리하였으며, 처리된 탄소 나노튜브의 흡착 비표면적과 요오드 흡착량 및 처리된 니켈원소의 함량을 각각 표 1에 나타내었다. 그 결과, BET 비표면적과 액상에서의 요오드 흡착량은 크게 변하지 않았으나 턴소 나노튜브 표면에 처리된 니켈원소의 함량은 3.0%로 증가하였다. 이에 따른 대기중의 NOx 및 SOx 전환율을 도 4와 도 5에 각각 나타내었으며, 대기중의 방치시간에 따라 NOx 전환율은 최고 160%이상, SOx 전환율은 최고 180%이상 증가함을 보여주었다.Electrolytic treatment was performed in alkaline nickel aqueous solution using high-purity purified fibrous carbon nanotubes with a specific surface area of 865 m² / g, pore volume of 0.75 cm³ / g and nanopore fraction of at least 95%. In the surface treatment, the basic composition of nickel electrolyte is alkaline solution with pH of about 9 with 1.0M aqueous nickel chloride (NiCl₂) solution as the molar ratio of sodium hypophosphite (NaH₂PO₂) and ammonium chloride (NH₄Cl) as 1: 5 respectively. Nickel electrolyte was prepared and used. Fibrous carbon nanotubes were placed in a nickel electrolyte prepared at room temperature of about 40 ° C. and surface treated for about 15 minutes. Table 1 shows the adsorption specific surface area, iodine adsorption amount and treated nickel element content of the treated carbon nanotubes, respectively. . As a result, the BET specific surface area and the iodine adsorption amount in the liquid phase did not change significantly, but the content of nickel element treated on the surface of the turno nanotube increased to 3.0%. Accordingly, the atmospheric NOx and SOx conversion rates are shown in FIGS. 4 and 5, respectively, and the NOx conversion rate is increased by at least 160% and the SOx conversion is increased by at least 180% according to the waiting time in the atmosphere.

[실시예 4]Example 4

실시예 3에서와 같이 전기분해에 의한 니켈원소 표면처리에 있어 전해액의 기본조성은 실시예 3과 같으며, 용액온도 약 80℃에서 섬유상 탄소 나노튜브를 넣고 약 45분간 표면처리하였으며, 처리된 탄소 나노튜브의 흡착 비표면적과 요오드 흡착량 및 처리된 니켈원소 함량을 각각 표 1에 나타내었다. 그 결과, BET 비표면적과 액상에서의 요오드 흡착량은 크게 변하지 않았으나 탄소 나노튜브 표면에 처리된 니켈원소의 함량은 7.5%로 증가하였다.As in Example 3, the basic composition of the electrolytic solution in the nickel element surface treatment by electrolysis was the same as in Example 3, and the fibrous carbon nanotubes were added at a solution temperature of about 80 ° C. and surface treated for about 45 minutes. The adsorption specific surface area, iodine adsorption amount and treated nickel element content of the nanotubes are shown in Table 1, respectively. As a result, the BET specific surface area and the iodine adsorption amount in the liquid phase did not change significantly, but the content of nickel element treated on the surface of the carbon nanotubes increased to 7.5%.

이에 따른 대기중의 NOx 및 SOx 전환율을 도 4와 도 5에 각각 나타내었으며, 대기중의 방치시간에 따라 NOx 전환율은 최고 190%이상, SOx 전환율은 최고 240%이상 증가함을 보여주었다.As a result, the NOx and SOx conversion rates in the air are shown in FIGS. 4 and 5, respectively, and the NOx conversion rate is increased by at least 190% and the SOx conversion is increased by at least 240% according to the waiting time in the air.

[실시예 5]Example 5

실시예 1에서와 같은 비표면적이 682 m²/g, 세공부피 0.68 cm³/g 및 나노기공 분율이 93%이상인 고순도 정제처리된 입자상 탄소 나노튜브를 사용하여 알칼리성 은 수용액에서 전기분해 처리하였다. 표면처리에 있어서 은 전해액의 기본조성은 암모니아수를 적당량 섞은 0.2M의 질산은 (AgNO₃)수용액과 증류수 200ml에 환원제로서 포르말린 40ml를 섞은 용액을 각각 5 : 1로 혼합한 용액을 제조하여 은 전해용액으로 사용하였다. 약 40℃의 실온에서 준비된 은 전해액에 입자상 탄소 나노튜브를 넣고 약 15분간 표면 처리하였으며, 처리된 탄소 나노튜브의 흡착 비표면적과 요오드 흡착량 및 처리된 은 원소의 함량을 각각 표 1에 나타내었다. 그 결과, BET 비표면적과 액상에서의 요오드 흡착량은 크게 변하지 않았으나 탄소 나노튜브 표면에 처리된 은 원소의 함량은 3.0%로 증가하였다. 이에 따른 대기중의 NOx 및 SOx 전환율을 도 2와 도 3에 각각 나타내었으며, 대기중의 방치시간에 따라 NOx 전환율은 최고 160%이상, SOx 전환율은 최고 210%이상 증가함을 보여주었다.Electrolytic treatment was performed in alkaline silver aqueous solution using high purity purified particulate carbon nanotubes having a specific surface area of 682 m 2 / g, pore volume of 0.68 cm 3 / g and nanopore fraction of 93% or more as in Example 1. In the surface treatment, the basic composition of the silver electrolyte solution was prepared by mixing 0.2 M silver nitrate (AgNO₃) solution with ammonia water and 200 ml of distilled water and 5: 1 mixture of 40 ml of formalin as a reducing agent. It was. Particulate carbon nanotubes were put in a silver electrolyte prepared at room temperature of about 40 ° C. and surface treated for about 15 minutes. Table 1 shows the adsorption specific surface area, iodine adsorption amount and treated silver element content of the treated carbon nanotubes, respectively. . As a result, the BET specific surface area and the iodine adsorption amount in the liquid phase did not change significantly, but the content of silver element treated on the surface of the carbon nanotubes increased to 3.0%. As a result, the NOx and SOx conversion rates in the air are shown in FIGS. 2 and 3, respectively, and the NOx conversion rate is increased by at least 160% and the SOx conversion is increased by at least 210% according to the waiting time in the atmosphere.

[실시예 6]Example 6

실시예 5에서와 같이 전기분해에 의한 은 원소 표면처리에 있어 전해액의 기본조성은 실시예 5와 같으며, 용액온도 약 100℃에서 입자상 탄소 니노튜브를 넣고 약 60분간 도금처리 하였으며, 처리된 탄소 나노튜브의 흡착 비표면적과 요오드 흡착량 및 처리된 은 원소함량을 각각 표 1에 나타내었다. 그 결과, BET 비표면적과 액상에서의 요오드 흡착량은 크게 변하지 않았으나 탄소 나노튜브 표면에 처리된 은 원소의 함량은 10.0%로 증가하였다.As in Example 5, the basic composition of the electrolyte in the surface treatment of the silver element by electrolysis was the same as that of Example 5, and the plated carbon nanotubes were plated for about 60 minutes at a solution temperature of about 100 ° C. The adsorption specific surface area, iodine adsorption amount and treated silver element content of the nanotubes are shown in Table 1, respectively. As a result, the BET specific surface area and the amount of iodine adsorption in the liquid phase did not change significantly, but the content of silver element treated on the surface of the carbon nanotubes increased to 10.0%.

이에 따른 대기중의 NOx 및 SOx 전환율을 도 2와 도 3에 각각 나타내었으며, 대기중의 방치시간에 따라 NOx 전환율은 최고 190%이상, SOx 전환율은 최고 240%이상 증가함을 보여주었다.As a result, the NOx and SOx conversion rates in the air are shown in FIGS. 2 and 3, respectively. The NOx conversion rate increased by 190% or more and the SOx conversion rate increased by 240% or more according to the waiting time in the air.

전해 표면처리된 각각의 탄소 나노소재는 실온에서 증류수로 2~3차례 세척한 후, 100℃의 건조로에서 약 24시간 이상 건조하여 사용하였으며, 위 실시예 1~6에서 얻어진 입자상 및 섬유상 탄소 나노튜브와 기존의 미처리 탄소 나노튜브에 대한 흡착 비표면적, 요오드 흡착능 및 처리된 성분원소의 함량 분석을 실시하였으며, 그 결과를 다음의 표 1에 나타내었다.Each carbon nanomaterial electrolytically surface-treated was washed 2-3 times with distilled water at room temperature and then dried in a drying furnace at 100 ° C. for at least 24 hours. Particulate and fibrous carbon nanotubes obtained in Examples 1 to 6 were used. And the adsorption specific surface area, iodine adsorption capacity and the content of the treated component of the conventional untreated carbon nanotubes were analyzed, and the results are shown in Table 1 below.

〈표 1〉<Table 1>

* 각각의 측정값은 실시예에 따른 평균값을 나타내었다.* Each measured value represents the average value according to the Example.

각각의 실시예에 따른 알칼리성의 전이금속에 의해 전기분해 표면처리된 입자상 및 섬유상 탄소 나노튜브는 기존의 처리하지 않은 탄소 나노튜브와 비교할 때 표면구조 즉, 흡착비표면적 및 기공 구조등의 물리적 변화는 크게 나타나지 않았으며, 이에 따른 액상에서의 요오드 흡착능의 차이도 크게 나타나지 않았다. 그러나, 표면처리된 금속원소에 의한 표면극성의 발달은 두드러져 이에 따른 기상에서의 NOx 및 SOx의 전환율은 크게 향상되었음을 확인할 수 있었다.The particulate and fibrous carbon nanotubes electrolytically treated with alkaline transition metals according to the respective embodiments have a physical change such as surface structure, that is, adsorption specific surface area and pore structure, compared with conventional untreated carbon nanotubes. There was no significant difference, and accordingly, there was no significant difference in iodine adsorption capacity. However, the development of surface polarity due to the surface-treated metal element was remarkable, and thus the conversion of NOx and SOx in the gas phase was greatly improved.

이상에서와 같이 본 발명에 따라 알칼리성 전이금속의 전기분해에 의한 표면처리 방법은 그 흡착성능은 거의 변화없이 상대적인 극성을 갖는 기상에서의 오염원인 NOx, SOx 및 유기 산화물 (VOCs)에 대하여 선택적으로 흡착성능이 크게 향상된 고기능성 탄소 나노소재를 제조하였다.As described above, the surface treatment method by electrolysis of alkaline transition metal according to the present invention selectively adsorbs to NOx, SOx and organic oxides (VOCs), which are pollutants in the gas phase with relative polarity, with almost no change in adsorption performance. A highly functional carbon nanomaterial was prepared with greatly improved performance.

Claims (5)

고비표면적의 나노기공 구조가 발 발달된 탄소 나노튜브를 알칼리성 전이금속 수용액을 전해액으로 사용하여 전기분해 방법에 의한 표면처리를 통하여 흡착선택성을 향상시킨 고기능성 탄소 나노튜브 및 이의 제조방법Highly functional carbon nanotubes with a high specific surface area nanoporous structure developed by using an alkaline transition metal solution as an electrolytic solution to improve the adsorption selectivity through surface treatment by electrolysis method and a method of manufacturing the same 제 1항에 있어서, 알칼리성 전이금속으로서 구리, 니켈 및 은을 수용액으로 사용하여 전기분해 방법에 의한 표면처리를 통하여 흡착 선택성을 향상시킨 고기능성 탄소 나노튜브 및 이의 제조방법The method according to claim 1, wherein copper, nickel and silver are used as the alkaline transition metals as aqueous solutions, and the high-performance carbon nanotubes having improved adsorption selectivity through surface treatment by an electrolysis method and a method of manufacturing the same. 제 1항에 있어서, 알칼리 전해액에 의해 표면처리 되는 탄소 나노소재가 입자상 및 섬유상인 것을 특징으로 하는 흡착 선택성을 향상시킨 고기능성 탄소 나노튜브 및 이의 제조방법The method of claim 1, wherein the carbon nanomaterials surface-treated with an alkali electrolyte solution are particulate and fibrous, and the high-performance carbon nanotubes having improved adsorptive selectivity and a method of manufacturing the same are provided. 제 1항에 있어서, 알칼리 전기분해에 의한 표면처리 시간이 5~60분인 것을 특징으로 하는 흡착선택성을 향상시킨 고기능성 탄소 나노튜브 및 이의 제조방법The method of claim 1, wherein the surface treatment time by alkali electrolysis is 5 to 60 minutes, and the high-performance carbon nanotubes having improved adsorptive selectivity and a method of manufacturing the same. 제 1항에 있어서, 알칼리 전기분해 표면처리 방법에 의해 탄소 나노튜브 표면의 각 알칼리 전이금속 성분 원소의 함량을 1.0 ~ 10.0%으로 하는 흡착선택성이 향상된 고기능성 탄소 나노튜브 및 이의 제조방법According to claim 1, High functional carbon nanotubes having improved adsorption selectivity, and a method for producing the alkali transition metal surface element content of 1.0 to 10.0% by alkali electrolysis surface treatment method
KR1020020055919A 2002-09-13 2002-09-13 High Functional Carbon Nano-materials by Electrochemical Surface Treatment of Alkaline Metals and Preparation Method Thereof KR20020082816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020055919A KR20020082816A (en) 2002-09-13 2002-09-13 High Functional Carbon Nano-materials by Electrochemical Surface Treatment of Alkaline Metals and Preparation Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020055919A KR20020082816A (en) 2002-09-13 2002-09-13 High Functional Carbon Nano-materials by Electrochemical Surface Treatment of Alkaline Metals and Preparation Method Thereof

Publications (1)

Publication Number Publication Date
KR20020082816A true KR20020082816A (en) 2002-10-31

Family

ID=27728313

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020055919A KR20020082816A (en) 2002-09-13 2002-09-13 High Functional Carbon Nano-materials by Electrochemical Surface Treatment of Alkaline Metals and Preparation Method Thereof

Country Status (1)

Country Link
KR (1) KR20020082816A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688428B1 (en) * 2005-01-11 2007-03-02 (주)나노클러스터 Fabrication method of catalytic materials and electrode material with metal nanoparticles dispersed colloid
KR100704234B1 (en) * 2005-08-18 2007-04-10 재단법인서울대학교산학협력재단 A fabrication method for well-ordered molecular device arrays using porous anodic aluminum oxide templates
KR100716032B1 (en) * 2006-12-29 2007-05-09 부산대학교 산학협력단 Apparatus and method for producing catalyst and Cobalt and Platinum supported catalyst using Carbon nano fibers for fuel cell
KR100785638B1 (en) * 2006-01-10 2007-12-12 성균관대학교산학협력단 Method for Single walled carbon nanotube Bucky Paper by Cu reduction reaction
US8658281B2 (en) 2008-09-22 2014-02-25 Samsung Electronics Co., Ltd. Apparatus and method for surface-treating carbon fiber by resistive heating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544154A (en) * 1991-08-06 1993-02-23 Petoca:Kk Surface treatment of carbon fiber
JP2001115374A (en) * 1999-08-26 2001-04-24 Korea Res Inst Chem Technol Method for producing highly functional active carbon fiber having ion exchange characteristic
KR20040030802A (en) * 2001-07-11 2004-04-09 모시 팡 A Device for Producing Negatively Charged Nanoparticles and a Method for the Same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544154A (en) * 1991-08-06 1993-02-23 Petoca:Kk Surface treatment of carbon fiber
JP2001115374A (en) * 1999-08-26 2001-04-24 Korea Res Inst Chem Technol Method for producing highly functional active carbon fiber having ion exchange characteristic
KR20040030802A (en) * 2001-07-11 2004-04-09 모시 팡 A Device for Producing Negatively Charged Nanoparticles and a Method for the Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688428B1 (en) * 2005-01-11 2007-03-02 (주)나노클러스터 Fabrication method of catalytic materials and electrode material with metal nanoparticles dispersed colloid
KR100704234B1 (en) * 2005-08-18 2007-04-10 재단법인서울대학교산학협력재단 A fabrication method for well-ordered molecular device arrays using porous anodic aluminum oxide templates
KR100785638B1 (en) * 2006-01-10 2007-12-12 성균관대학교산학협력단 Method for Single walled carbon nanotube Bucky Paper by Cu reduction reaction
KR100716032B1 (en) * 2006-12-29 2007-05-09 부산대학교 산학협력단 Apparatus and method for producing catalyst and Cobalt and Platinum supported catalyst using Carbon nano fibers for fuel cell
US8658281B2 (en) 2008-09-22 2014-02-25 Samsung Electronics Co., Ltd. Apparatus and method for surface-treating carbon fiber by resistive heating

Similar Documents

Publication Publication Date Title
US11247197B1 (en) Core-shell structured catalyst, preparation method thereof and method for treating industrial tail gas
CN109647408B (en) Preparation method and application of Co-MOF-based porous composite self-supporting catalyst
KR100292140B1 (en) Metal deposited active carbon having selective absorption capability for polar contaminants and preparation method thereof
JP4893918B2 (en) Nitrogen-containing carbon-based electrode catalyst
KR20020082816A (en) High Functional Carbon Nano-materials by Electrochemical Surface Treatment of Alkaline Metals and Preparation Method Thereof
KR20070028528A (en) Method for producing catalyst
CN111203179A (en) Preparation method and application of renewable phenol-containing organic wastewater catalytic adsorption material
CN111744526B (en) Packaged noble metal catalyst for reducing Cr (VI) by liquid-phase catalytic hydrogenation under neutral condition and preparation method and application thereof
CN112086298B (en) Modified activated carbon/ferroferric oxide composite material and preparation method and application thereof
CN112090398A (en) Photocatalytic adsorbent, preparation method thereof and application thereof in sewage treatment
Zhu et al. Contribution of 1O2 in the efficient degradation of organic pollutants with Cu0/Cu2O/CuO@ N–C activated peroxymonosulfate: A Case study with tetracycline
CN114682215B (en) Setaria viridis-shaped composite nano-adsorption material with bionic structure and preparation method thereof
CN111495331B (en) Strong acid heteroatom-resistant magnetic biochar water treatment agent and preparation method and application thereof
CN110862126B (en) Preparation method of hydrogel electrocatalytic electrode containing silver phosphate/calcium phosphate
CN106693889A (en) Composite nanometer material for purifying water as well as preparation method and application of composite nanometer material
Wang et al. Simultaneous removal of nitrogen and phosphorus from aqueous environments with recyclable La (OH) 3/Fe3C ordered mesoporous carbon electrode
CN110302787B (en) Nickel plating spinel catalyst for phosphine decomposition and preparation method thereof
CN112375919A (en) Method for directly recovering gold in thiosulfate system
CN116059979B (en) Method for synthesizing protonated polyaniline composite membrane capable of efficiently adsorbing gaseous mercury
WO2022108389A1 (en) Three-way catalyst for carbon dioxide reduction
CN115582103B (en) Adsorbent for fixing molybdenum disulfide by different-component multistage network, preparation method and application thereof
KR100780480B1 (en) Filter for removing to noxious by using carbon/metal composites
KR20030095695A (en) Activated carbon or activated carbon fiber/transition metal composite and preparation thereof
CN116253421A (en) Hydrogen peroxide remover for water treatment, preparation method and application
CN117753457A (en) Catalyst for reduction recovery of sulfur dioxide and synthesis method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application