KR20020081940A - Method of nitric oxides reduction and soot treatment by using hydrogen peroxide solution, alcohol or hydrogen peroxide solution /alcohol mixture - Google Patents

Method of nitric oxides reduction and soot treatment by using hydrogen peroxide solution, alcohol or hydrogen peroxide solution /alcohol mixture Download PDF

Info

Publication number
KR20020081940A
KR20020081940A KR1020010021535A KR20010021535A KR20020081940A KR 20020081940 A KR20020081940 A KR 20020081940A KR 1020010021535 A KR1020010021535 A KR 1020010021535A KR 20010021535 A KR20010021535 A KR 20010021535A KR 20020081940 A KR20020081940 A KR 20020081940A
Authority
KR
South Korea
Prior art keywords
hydrogen peroxide
alcohol
water
concentration
methanol
Prior art date
Application number
KR1020010021535A
Other languages
Korean (ko)
Inventor
조규만
Original Assignee
조규만
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조규만 filed Critical 조규만
Priority to KR1020010021535A priority Critical patent/KR20020081940A/en
Publication of KR20020081940A publication Critical patent/KR20020081940A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE: A method for NOx reduction by using hydrogen peroxide solution, alcohol or hydrogen peroxide solution/alcohol mixture is provided, which can remove effectively NOx and soot contained in exhaust gas stream of various burners and diesel engines. CONSTITUTION: The method comprises the steps of spraying mixture of hydrogen peroxide of 1 to 15 wt.% concentration, water and alcohol of 1 to 1.5 wt.% concentration at a weight ratio of 1-7.5:1-7.5:85-98 through reagent spraying nozzles(3) to exhaust gas coming from a combustion chamber(1) and containing nitrogen oxide (NOx) at 400 to 800 deg.C at a reactor(2); spraying water through water spraying nozzles(6) to condensate at a cooling tower(5).

Description

과산화수소, 알코올 또는 과산화수소수와 알코올의 혼합물을 이용한 질소산화물 저감 및 처리 방법{METHOD OF NITRIC OXIDES REDUCTION AND SOOT TREATMENT BY USING HYDROGEN PEROXIDE SOLUTION, ALCOHOL OR HYDROGEN PEROXIDE SOLUTION /ALCOHOL MIXTURE}METHODS OF NITRIC OXIDES REDUCTION AND SOOT TREATMENT BY USING HYDROGEN PEROXIDE SOLUTION, ALCOHOL OR HYDROGEN PEROXIDE SOLUTION / ALCOHOL MIXTURE}

본 발명은 배기가스중의 질소산화물 저감 및 처리 방법에 관한 것이다. 보다 상세하게는, 과산화수소수, 알코올 또는 과산화수소수와 알코올의 혼합물을 이용하여 각종 버너 및 디젤엔진의 배기가스에서 대기중에 다량 함유되어 배출되는 질소산화물의 저감 및 처리하는 방법에 관한 것이다.The present invention relates to a method for reducing and treating nitrogen oxides in exhaust gas. More specifically, the present invention relates to a method for reducing and treating nitrogen oxides contained in a large amount in the atmosphere of exhaust gas of various burners and diesel engines using hydrogen peroxide water, alcohol or a mixture of hydrogen peroxide water and alcohol.

종래의 질소산화물을 처리하는 화학적 처리 방법으로는 버너 및 공업용로의 경우, 암모니아 혹은 시안(통칭 청산가리)용액을 배기가스에 분사하는 방법이 주로 사용되어 왔으며, 디젤엔진의 경우에는 질소산화물 저감에 관한 화학적 처리가 전무한 실정이다. 또한 통상적으로 매연으로 지칭되는 입자상 물질의 저감 방법으로는 DPF(Diesel Particle Filter)라고 하는 필터가 점차 확대되고 있는 실정이나, 경제적인 면과 내구성에서 어려움이 따르고 있다.As a conventional chemical treatment method for treating nitrogen oxides, a method of injecting ammonia or cyan (commonly known cyanide) solution into the exhaust gas has been mainly used in burners and industrial furnaces. There is no chemical treatment. In addition, as a method of reducing particulate matter, commonly referred to as soot, a filter called a diesel particle filter (DPF) is gradually being expanded, but it is difficult in terms of economics and durability.

종래 암모니아를 이용한 질소산화물 저감 방법은 질소산화물의 농도가 1400K(1127℃)근처에서 최소화되어 거의 모든 질소산화물이 분해되는 특성이 있으나, 배기가스 온도가 1127℃ 정도가 되어야 하므로 버너사용 공장에서는 현실적으로 무리이며, 재가열 등의 문제가 발생하므로 막대한 에너지 손실을 초래한다. 또한, 암모니아 자체는 독성물질로서 부식성이 강하며 보관하기 어렵다.Conventional nitrogen oxide reduction method using ammonia is characterized by the fact that nitrogen oxide concentration is minimized near 1400K (1127 ℃), so that almost all nitrogen oxides are decomposed. However, since exhaust gas temperature should be about 1127 ℃, it is practically impossible in a burner factory. Problem occurs, such as reheating, resulting in enormous energy loss. In addition, ammonia itself is a toxic material, corrosive and difficult to store.

시안 또한, 그 자체가 강한 독성을 지니고 있기 때문에 누출시 인명사상의 위험이 매우 크고 보관시 많은 주의를 요한다. 사용 후에는 시안이 승화하여 이소시안산이 질소산화물 저감장치의 저온부에 응축되어 독극물로 잔존하므로 사용시 매우 위험한 단점이 있다.Cyanide is also very toxic in itself, so there is a very high risk of personal injury in case of leakage and requires great care in storage. After use, cyan sublimates and isocyanic acid condenses at low temperature in the nitrogen oxide reduction device and remains as a poison.

그리고 백금촉매를 이용한 질소산화물 저감 방법은 비교적 낮은 온도(800℃ 정도)에서 질소산화물을 분해할 수 있으나, 장치의 구성이 매우 복잡하며 설치비 및 촉매의 단가가 매우 고가이고, 배기가스가 대용량(즉, 고농도의 질소산화물)인 경우에는 사용이 불가능한 문제가 있다.In addition, the nitrogen oxide reduction method using platinum catalyst can decompose nitrogen oxide at a relatively low temperature (about 800 ° C), but the configuration of the device is very complicated, the installation cost and the cost of the catalyst are very expensive, and the exhaust gas has a large capacity (that is, , High concentrations of nitrogen oxides), there is a problem that can not be used.

한편, 디젤엔진에서 배출되는 질소산화물의 경우, 국내에서는 그 저감장치가 적용된 예가 아직 없으며 외국의 경우, 촉매를 이용한 방법이 있으나 비용이 많이 들고 수명이 짧다는 단점이 있다. 또한, 매연 저감 방법인 DFP의 경우, 비용이 많이 들며 배기 가스관의 압력 증가로 엔진 효율이 저하되고 내구성이 저조한 문제가 있다.On the other hand, in the case of nitrogen oxide discharged from the diesel engine, the reduction device is not yet applied in the country, and in the case of foreign countries, there is a method using a catalyst, but the cost is high and short life. In addition, in the case of the smoke reduction method DFP, there is a problem that the cost is high, the engine efficiency is lowered due to the increase in the pressure of the exhaust gas pipe and the durability is poor.

이에 본 발명의 목적은 과산화수소수, 알코올 또는 과산화수소수와 알코올의 혼합물을 이용하여 각종 버너 및 디젤엔진의 배기가스로부터 질소산화물 및 매연을 효율적으로 제거 및 처리하는 방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for efficiently removing and treating nitrogen oxides and soot from exhaust gases of various burners and diesel engines using hydrogen peroxide water, alcohol or a mixture of hydrogen peroxide water and alcohol.

도 1은 본 발명의 공정개략도이며,1 is a process schematic diagram of the present invention,

도 2는 본 발명을 디젤 엔진에 적용한 예를 나타내는 공정개략도이며,2 is a process schematic diagram showing an example in which the present invention is applied to a diesel engine,

도 3은 본 발명의 실시예에 사용된 질소산화물 및 매연 처리 시스템을 나타내는 사시도이며,3 is a perspective view showing a nitrogen oxide and a soot treatment system used in the embodiment of the present invention,

도 4는 과산화수소수, 메탄올 및 과산화수소수+메탄올 분사시 온도변화에 따른 잔존 NO량을 나타내는 그래프,4 is a graph showing the amount of residual NO according to the temperature change during the injection of hydrogen peroxide, methanol and hydrogen peroxide + methanol,

도 5는 과산화수소수, 메탄올 및 과산화수소수+메탄올 분사시 초기 NO농도변화에 따른 잔존 NO량을 나타내는 그래프,5 is a graph showing the amount of residual NO according to the initial NO concentration change when hydrogen peroxide, methanol and hydrogen peroxide + methanol injection;

도 6은 과산화수소수, 메탄올 및 과산화수소수+메탄올 분사량의 변화에 따른 잔존 NO량을 나타내는 그래프,6 is a graph showing the amount of residual NO according to the change in injection amount of hydrogen peroxide, methanol and hydrogen peroxide + methanol;

도 7은 과산화수소수, 메탄올 및 과산화수소수+메탄올 분사시 잔존 산소 농도변화에 따른 NO량을 나타내는 그래프,7 is a graph showing the amount of NO according to the residual oxygen concentration change when hydrogen peroxide, methanol and hydrogen peroxide + methanol injection;

도 8은 과산화수소수, 메탄올 및 과산화수소수+메탄올 분사시 온도 변화에따른 잔존 SO3량을 나타내는 그래프,8 is a graph showing the amount of SO 3 remaining according to the temperature change during the injection of hydrogen peroxide, methanol and hydrogen peroxide + methanol;

도 9는 과산화수소수, 메탄올 및 과산화수소수+메탄올 분사시 초기 SO3농도변화에 따른 잔존 SO3량을 나타내는 그래프,9 is a graph showing the amount of SO 3 remaining according to the initial SO 3 concentration change during hydrogen peroxide, methanol and hydrogen peroxide + methanol injection;

도 10은 메탄 및 과산화수소수+메탄 분사시 온도 변화에 따른 잔존 CH4량을 나타내는 그래프,10 is a graph showing the amount of CH 4 remaining according to the temperature change during the injection of methane and hydrogen peroxide + methane,

도 11은 CH2Cl2및 과산화수소수+CH2Cl2분사시 온도 변화에 따른 잔존 CH2Cl2량을 나타내는 그래프,11 is a graph showing the amount of CH 2 Cl 2 remaining according to the temperature change during the injection of CH 2 Cl 2 and hydrogen peroxide + CH 2 Cl 2 ,

도 12는 C6H6및 과산화수소수+C6H6분사시 온도 변화에 따른 잔존 C6H6및 CO양을 나타내는 그래프,12 is a graph showing the amount of remaining C 6 H 6 and CO according to the temperature change during the injection of C 6 H 6 and hydrogen peroxide + C 6 H 6 ,

도 13은 컴퓨터를 이용한 NO 농도 저감 시뮬레이션에 의한 결과를 나타내는 그래프이다.It is a graph which shows the result by NO concentration reduction simulation using a computer.

* 도면의 주요부위에 대한 부호의 설명 *Explanation of symbols on major parts of drawing

1 .... 연소실 2 .... 반응조1 .... combustion chamber 2 .... reactor

3 .... 반응제 분사노즐 4 .... 반응제 탱크3 .... Reagent Jet Nozzle 4 .... Reagent Tank

5 .... 냉각탑 6 .... 물 분사노즐5 .... cooling tower 6 .... water jet nozzle

7 .... 폐기물 저장 피트 8 .... 실린더블럭7 .... Waste Storage Feet 8 .... Cylinder Block

10.... 머플러 11.... 소각로10 .... Muffler 11 .... Incinerator

12.... 가변선회버너 13.... 탄화수소분사12 .... Variable swing burner 13 .... Hydrocarbon injection

14.... 분사물(과산화수소수등) 분사 15 .... 배기덕트14 .... Injecting sprays (hydrogen peroxide, etc.) 15 .... Exhaust duct

20.... 절곡부20 .... Bends

본 발명의 일 견지에 의하면,According to one aspect of the invention,

400-800℃에서 질소산화물(NOx)을 함유하는 배기가스에 과산화수소수, 알코올 또는 과산화수소수와 알코올의 혼합물을 적용하는 단계; 및Applying hydrogen peroxide water, alcohol or a mixture of hydrogen peroxide and alcohol to exhaust gas containing nitrogen oxides (NOx) at 400-800 ° C .; And

그 후, 물을 적용하여 수용액으로 응축시키는 단계;Thereafter, applying water to condense into an aqueous solution;

를 포함하여 이루어지는 질소산화물 저감 및 처리방법이 제공된다.Provided is a nitrogen oxide reduction and treatment method comprising a.

본 발명의 다른 견지에 의하면,According to another aspect of the present invention,

질소산화물(NOx)을 함유하는 배기가스가 방출되는 연소실 후단에 과산화수소수, 알코올 또는 과산화수소수와 알코올의 혼합물을 적용하는 단계; 및Applying hydrogen peroxide, alcohol or a mixture of hydrogen peroxide and alcohol to the rear of the combustion chamber in which exhaust gas containing nitrogen oxides (NOx) is discharged; And

그 후, 물을 적용하여 수용액으로 응축시키는 단계;Thereafter, applying water to condense into an aqueous solution;

를 포함하여 이루어지는 질소산화물 저감 및 처리방법이 제공된다.Provided is a nitrogen oxide reduction and treatment method comprising a.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명의 방법은, 과산화수소수, 알코올 또는 과산화수소수와 알코올의 혼합물을 이용하여 배기가스중에 함유되어 있는 질소산화물 및 매연의 저감 및 처리 방법에 관한 것이다.The method of the present invention relates to a method for reducing and treating nitrogen oxides and soot contained in exhaust gas by using hydrogen peroxide water, alcohol or a mixture of hydrogen peroxide water and alcohol.

본 발명자들은 질소산화물, 특히 일산화질소(NO)와 과산화수소수, 알코올 또는 과산화수소수와 알코올의 혼합물이 반응하여 질소산화물을 이산화질소로 변화되어 용이하게 저감됨을 발견하였다.The present inventors have found that nitrogen oxides, in particular nitrogen monoxide (NO) and hydrogen peroxide water, alcohols or mixtures of hydrogen peroxide water and alcohols react to change nitrogen oxides to nitrogen dioxide and are easily reduced.

본 발명의 방법에 의하면 400-800℃에서 처리하고자 하는 질소산화물을 함유하는 배기가스에 과산화수소수(H2O2(aq.)), 알코올 또는 과산화수소수와 알코올의 혼합물을 적용한다. 과산화수소수, 알코올 또는 과산화수소수와 알코올의 혼합물(이하, 단지 '질소산화물 처리제'라 한다.)은 처리하고자 하는 질소산화물을 함유하는 배기가스에 어떠한 형태로 적용될 수 있으며, 바람직하게는 미스트(mist)로 분무된다.According to the method of the present invention, hydrogen peroxide (H 2 O 2 (aq.)), Alcohol or a mixture of hydrogen peroxide and alcohol is applied to the exhaust gas containing nitrogen oxide to be treated at 400-800 ° C. Hydrogen peroxide, alcohol or a mixture of hydrogen peroxide and alcohol (hereinafter referred to simply as 'nitrogen oxide treatment agent') may be applied in any form to the exhaust gas containing the nitrogen oxide to be treated, and preferably mist Is sprayed with.

상기 과산화수소수, 알코올 또는 과산화수소수와 알코올의 혼합물을 분사할 때 적절한 온도는 400-800℃이며, 보다 바람직한 온도는 550-800℃ 그리고 가장 바람직한 온도는 700℃이다. 질소산화물과 상기 과산화수소수, 알코올 또는 과산화수소수와 알코올의 혼합물이 반응시, 상기 온도 범위에서 최대의 NO에서 NO2로의 전환율을 나타낸다.When spraying the hydrogen peroxide, alcohol or a mixture of hydrogen peroxide and alcohol, the appropriate temperature is 400-800 ° C., more preferably 550-800 ° C. and most preferred is 700 ° C. When the nitrogen oxide and the hydrogen peroxide water, alcohol or a mixture of hydrogen peroxide water and alcohol react, the conversion of NO 2 to NO 2 in the above temperature range is shown.

상기 온도범위에서 과산화수소수, 알코올 또는 과산화수소수와 알코올의 혼합물과 배기가스중에 함유되어 있는 질소산화물과의 반응 메카니즘은 다음과 같다.The reaction mechanism of the hydrogen peroxide, alcohol or a mixture of hydrogen peroxide and alcohol with the nitrogen oxide contained in the exhaust gas in the above temperature range is as follows.

상기 온도범위에서 과산화수소는 다음과 같은 분해되어 수산화기를 발생한다.In the above temperature range, hydrogen peroxide is decomposed as follows to generate hydroxyl groups.

H2O2→2OHH 2 O 2 → 2OH

단, 이 때 H2O2가 100% OH로 전환되는 것은 아니며, 대기압 조건하에서 850K(577℃)일 때 과산화수소수의 수산화기로의 전환율이 가장 높다.However, at this time, H 2 O 2 is not converted to 100% OH, and the conversion rate of the hydrogen peroxide solution to the hydroxyl group is the highest at 850 K (577 ° C.) under atmospheric pressure.

그 후, 과산화수소(H2O2)와 OH기 반응으로 물과 HO2이 존재한다.Thereafter, water and HO 2 are present in the hydrogen peroxide (H 2 O 2 ) and the OH group reaction.

H2O2+ OH → H2O + HO2 H 2 O 2 + OH → H 2 O + HO 2

한편, 일반적으로 연소과정에서 발생하는 질소산화물(NOx)의 90-95%는 NO이며 그 나머지는 NO2또는 N2O인데, 이와 같은 질소산화물을 함유하는 배기가스를 과산화수소수와 접촉시키면 HO2와 NO가 반응하여 하기 반응식에 따라 질소산화물의 대부분을 차지하는 NO는 NO2로 전환된다.On the other hand, typically 90-95% of the nitrogen oxides (NOx) generated in the combustion process is NO and the remainder is the NO 2 or N 2 O, when contacting the exhaust gas containing nitrogen oxides such as aqueous hydrogen peroxide HO 2 And NO react and NO, which occupies most of the nitrogen oxides, is converted to NO 2 according to the following reaction formula.

HO2+ NO → NO2+ OHHO 2 + NO → NO 2 + OH

과산화수소수내에 과산화수소의 함량은 바람직하게 1-15중량%이다. 그 이유는 너무 적은 양의 과산화수소가 포함되면 NO2전환율이 저하되며 그리고 너무 많은 양의 과산화수소가 포함되면 과산화수소의 산성에 의해 배관이 부식될 수 있으며 경제적으로도 비용이 많이 들 수 있기 때문이다. 보다 바람직한 과산화수소의 함량은 0.5-3중량%이다.The content of hydrogen peroxide in the hydrogen peroxide water is preferably 1-15% by weight. This is because the inclusion of too little hydrogen peroxide lowers the NO 2 conversion, and the inclusion of too much hydrogen peroxide can corrode the piping by the acidity of hydrogen peroxide and can be economically expensive. More preferred hydrogen peroxide content is 0.5-3% by weight.

일반적으로, 버너, 디젤엔진 또는 공업용로등에서 배출되는 배기가스는 대부분이 다량인 일산화질소(NO)등 질소산화물(NOx)을 함유하고 있다. 그리고 이러한 배기가스는 연소과정을 마친 후 배기관으로 빠져나와 연돌을 통하여 대기로 방출되며, 이때 상기 버너 혹은 공업용로의 연소실 바로 후단의 배기관내 배기가스 온도는 약 900℃ 정도가 된다. 따라서, 이때 연소실 바로 후단의 배기관(400-800℃ 지점)에 과산화수소수(H2O2(aq.)), 알코올 또는 과산화수소수와 알코올의 혼합물을 분사하여 상기 질소산화물(NOx)을 함유하는 배기가스와 접촉되도록 하면, 배기가스 온도가 약간 저하되어 NO와 OH의 화학반응이 최대로 활성화되어 대부분의 NO가 상기한 바와 같은 반응에 의해 NO2로 전환된다.In general, exhaust gases emitted from burners, diesel engines or industrial furnaces contain nitrogen oxides (NOx) such as nitrogen monoxide (NO) in large amounts. The exhaust gas exits the exhaust pipe after the combustion process and is discharged to the atmosphere through a stack. At this time, the exhaust gas temperature in the exhaust pipe immediately after the combustion chamber of the burner or industrial furnace is about 900 ° C. Therefore, the exhaust gas containing nitrogen oxides (NOx) is injected by injecting hydrogen peroxide (H 2 O 2 (aq.)), Alcohol or a mixture of hydrogen peroxide and alcohol into an exhaust pipe immediately after the combustion chamber (at 400-800 ° C.). In contact with the gas, the exhaust gas temperature is slightly lowered to maximize the chemical reaction of NO and OH so that most of the NO is converted to NO 2 by the reaction as described above.

알코올 및 과산화수소수와 알코올의 혼합물이 또한 질소산화물 처리에 사용될 수 있다. 알코올이 사용되는 경우, 하기 반응식 4와 같이 H2O2가 형성되며 그 후 상기 반응식 1 내지 3과 같이 반응하여 질소산화물이 제거된다.Alcohols and mixtures of hydrogen peroxide water and alcohols can also be used for nitrogen oxide treatment. When alcohol is used, H 2 O 2 is formed as in Scheme 4 below, and then reacted as in Schemes 1 to 3 to remove nitrogen oxides.

OH + OH → 2OHOH + OH → 2OH

식 중, OH는 알코올에 기인한다.In the formula, OH is attributable to alcohol.

2OH → H2O2 2OH → H 2 O 2

과산화수소수와 알코올의 혼합물이 사용되는 경우, 또한, 상기 반응식들에서와 같이 질소산화물과 반응한다.If a mixture of hydrogen peroxide and alcohol is used, it is also reacted with nitrogen oxides as in the above schemes.

본 발명에 사용되는 상기 알코올은 1-15%알코올을 함유하는 것이 바람직하며, 이 보다 농도가 낮을 경우는 배기가스중의 매연의 증가를 가져오고, 이보다 높을 경우 필요 이상의 화학반응의 활성화, 즉, 추가적인 연소반응으로 질소산화물의 농도가 오히려 증가하기 때문이다.It is preferable that the alcohol used in the present invention contains 1-15% alcohol, and if the concentration is lower than this, the soot increases in the exhaust gas, and if it is higher than this, activation of chemical reaction more than necessary, i.e. This is because the additional combustion reaction increases the concentration of nitrogen oxides.

과산화수소수와 알코올의 혼합물인 경우 그 혼합중량비는 반응의 최적화와 비용 최소화의 양 측면에서 과산화수소:물:알콜이 1-7.5:1-7.5:85-98중량비로, 바람직하게는 1-5:5-10:94-85중량비인 것이 좋다. 본 발명에 적절한 알코올은 메탄올 및 에탄올이며, 특히 메탄올은 저온에서 가장 쉽게 CH2, OH2등으로 분해되기 때문에, 본 발명에 바람직한 알코올이다.In the case of a mixture of hydrogen peroxide and alcohol, the mixing weight ratio is 1-7.5: 1-7.5: 85-98 weight ratio of hydrogen peroxide: water: alcohol, preferably 1-5: 5 in terms of both optimization and cost minimization of the reaction. -10: 94-85 weight ratio is good. Alcohols suitable for the present invention are methanol and ethanol, and in particular, methanol is a preferred alcohol for the present invention because methanol is most easily decomposed into CH 2 , OH 2 , and the like at low temperatures.

또한, 본 발명의 방법 의해 그밖의 RH계, 즉 탄화수소계 성분과 같은 다른 매연 성분들이 또한 동시에 제거된다. 즉, RH로 대표되는 탄화수소계 연료는 본 발명의 방법에 의한 질소산화물 처리도중 OH 혹은 HO2와 반응하여 CO2로 제거된다.In addition, other soot components, such as other RH based, ie hydrocarbon based components, are also removed simultaneously by the process of the invention. That is, the hydrocarbon-based fuel represented by RH is removed with CO 2 by reacting with OH or HO 2 during nitrogen oxide treatment by the method of the present invention.

그 후, 이러한 방식으로 전환된 반응물에 후속적으로 물을 분사함으로써 상기 반응물을 수용액으로 응축시킨다. NO2는 물에 잘 용해되는 성질을 가지고 있기 때문에, 물을 분사함으로써 쉽게 NO2함유 수용액이 얻어진다.The reactant is then condensed into an aqueous solution by subsequently spraying water on the reactant converted in this manner. Since NO 2 has a property of dissolving well in water, an aqueous solution of NO 2 containing is easily obtained by spraying water.

과산화수소수, 알코올 또는 과산화수소수와 알코올의 혼합물은 질소산화물(NOx)을 함유하는 배기가스가 방출되는 연소실 후단에 직접 적용될 수있다. 보다 구체적으로는 연소실 후단과 배기관이 시작되는 부분에 직접 적용될 수 있다. 상기 고온의 연소실 후단의 온도는 약 400∼800℃로서 연소실 후단에 질소산화물 처리제는 배기가스가 방출되는 연소실후단에 직접 적용, 바람직하게는 분무되어 질소산화물과 상기한 바와 같이 반응한다.Hydrogen peroxide, alcohol or a mixture of hydrogen peroxide and alcohol can be applied directly to the rear of the combustion chamber in which exhaust gases containing nitrogen oxides (NOx) are released. More specifically, it may be directly applied to the rear end of the combustion chamber and the start portion of the exhaust pipe. The temperature of the rear end of the high temperature combustion chamber is about 400 to 800 ° C. The nitrogen oxide treatment agent is directly applied to the rear end of the combustion chamber in which exhaust gas is emitted, preferably sprayed to react with the nitrogen oxides as described above.

상기 물을 분무하여 얻어진 NO2함유 수용액을 저장하여 후처리할 수 있다. NO2함유 수용액은 일반적으로 피트내에 포집하여 저장하며, 피트는 수평방향으로 이동하는 수용액이 하중에 의해 하강하도록 후술하는 도 2의 부호20과 같이 절곡되어 다른 배기가스 성분으로부터 상기 NO2함유 수용액이 쉽게 분리되도록 하는 것이 바람직하다.The aqueous solution containing NO 2 obtained by spraying the water can be stored for post-treatment. NO 2 containing aqueous solution is generally and collected by storing in the pit, the pit is in the aqueous solution to move in the horizontal direction bending as shown in reference numeral 20 of the second to be described later so as to fall by a load of the NO 2 contained in the aqueous solution was obtained from the other exhaust gas components It is desirable to allow easy separation.

본 발명에 사용되는 피트는 NO2함유 수용액의 강한 산성에 부식되지 않는 내열 플라스틱 또는 스테인리스강으로 이루지는 것이 바람직하다.The pit used in the present invention is preferably made of heat-resistant plastic or stainless steel that does not corrode in the strong acidity of the NO 2 -containing aqueous solution.

나아가, 상기 포집된 NO2함유 수용액은 그 후, 미생물을 이용한 폐수처리로 분해될 수 있다. 상기 미생물을 이용한 폐수처리는 NO2가 미생물의 먹이로 이용되어 분해되는 이 기술분야에 알려진 일반적인 미생물 폐수처리이다.Furthermore, the collected NO 2 -containing aqueous solution may then be decomposed by wastewater treatment using microorganisms. Wastewater treatment using the microorganism is a general microbial wastewater treatment known in the art that NO 2 is used as food for microorganisms to be decomposed.

본 발명의 방법은 일 구체화로 도 1에 나타낸 바와 같은 시스템으로 적용될 수 있다. 버너 또는 공업용로와 같은 연소실1로부터 방출되는 배기가스는 반응조2에서 반응제 탱크4와 연결된 반응제 분사노즐3으로부터 분사되는 H2O2(aq.) 및/또는 알코올과 반응하게된다. 그 다음 상기 반응물은 냉각탑5로 이동되어 물 분사노즐6에 의해 분사되는 물과 반응하여 수용액으로 전환된다. 상기 수용액은 냉각탑 하단부에 위치한 폐기물 저장 피트에 포집되고 일정량이 모이면 미생물 폐수처리와 같은 방법으로 수처리된다.The method of the present invention may be applied to a system as shown in FIG. 1 in one embodiment. Exhaust gases emitted from combustion chamber 1 , such as burners or industrial furnaces, react with H 2 O 2 (aq.) And / or alcohols injected from reactant injection nozzles 3 connected to reactant tank 4 in reactor 2 . The reactant is then transferred to cooling tower 5 and reacted with water sprayed by the water jet nozzle 6 to convert it into an aqueous solution. The aqueous solution is collected in a waste storage pit located at the bottom of the cooling tower, and when a certain amount is collected, the water is treated in the same manner as microbial wastewater treatment.

나아가 디젤엔진에 적용하는 경우에는 상기 과산화수소수 분사시 배기관내의 과도한 온도강하를 방지하기위해 분사하기전에 상기 과산화수소수를 예비가열하는 것이 바람직하다. 과산화수소수의 예비가열은 예를 들어, 과산화수소를 담고있는 반응제 탱크를 도 2와 같이 엔진 실린더 블록에 부착함으로써 이루어질 수 있다. 이러한 경우 본 발명의 방법은 도 2에 나타낸 바와 같은 시스템으로 적용될 수 있다. 도 2와 같이 엔진 실린더 블록8에 H2O2(aq.)및/또는 알코올이 담긴 반응제 탱크4와 연결된 반응제 분사노즐3이 부착된다. 분사노즐은 또한 배기관9의 시작부에 위치함으로써 분사시 배기가스와 반응제가 반응하도록 한다. 그 다음 상기 반응물은 물 분사노즐6에 의해 분사되는 물과 반응하여 수용액으로 전환되고 배기물 저장용기7에 포집된다. 질소산화물 및 매연이 제거된 나머지 배기가스는 머플러10을 통과하여 배기관으로 배출된다.Furthermore, when applied to a diesel engine, it is preferable to preheat the hydrogen peroxide water before injection to prevent excessive temperature drop in the exhaust pipe during the hydrogen peroxide water injection. Preheating of the hydrogen peroxide water can be achieved, for example, by attaching a reactant tank containing hydrogen peroxide to the engine cylinder block as shown in FIG. 2. In this case, the method of the present invention can be applied to a system as shown in FIG. As shown in FIG. 2, the reactant injection nozzle 3 connected to the reactant tank 4 containing H 2 O 2 (aq.) And / or alcohol is attached to the engine cylinder block 8 . The injection nozzle is also located at the beginning of the exhaust pipe 9 to allow the exhaust gases and reactants to react during the injection. The reactant is then reacted with water sprayed by the water jet nozzle 6 to be converted into an aqueous solution and collected in an exhaust reservoir 7 . Nitrogen oxides and the remaining exhaust gas are exhausted through the muffler 10 to the exhaust pipe.

본 발명의 방법은 버너를 사용하는 어떠한 공장의 가열, 연소 및 소각 시설 그리고 디젤엔진이 장착된 어떠한 기계 장치(예, 자동차 및 선박 등)에 적용할 수 있다.The method of the present invention can be applied to heating, combustion and incineration plants in any plant using burners and to any mechanical device (e.g. automobiles and ships) equipped with diesel engines.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

도 3은 본 실시예에 사용된 실험 장치를 나타낸다. 가변 선회 버너12가 장착된 소각로11에 배기덕트15가 연결되어 있으며, 탄화수소(CH4, CH2Cl2) 분사는13에서, 메탄올 및 과산화수소 분사는14에서 이루어졌으며 배기가스 측정은15에서 이루어졌다. 도 3에서 길이의 단위는 m이다.3 shows the experimental apparatus used in this example. Exhaust duct 15 was connected to incinerator 11 with variable swing burner 12 , hydrocarbon (CH 4 , CH 2 Cl 2 ) injection at 13 , methanol and hydrogen peroxide injection at 14 and exhaust gas measurement at 15 . . In FIG. 3, the unit of length is m.

가변 선회 버너 12는 300kW(259,200kcal/h)용량의 보일러 시뮬레이터 장치이며, 분사물로서 과산화수소수는 15% 과산화수소수를 메탄올은 15% 메탄올을, 과산화수소수+메탄올의 혼합 수용액은 과산화수소:메탄올:물을 7.5:7.5:85중량비로 혼합하여 사용하였다. 분사물과 배기가스는 0.5-3.2초동안 반응시켰다. 이는 반응시간과 전체거리 14m로부터 역산한 것이며, 배기가스 유속은 4.375-28m/s, 반응대의 온도 범위는 600K-1100K, 반응대에서 온도 저하율은 188K/s로 하였으며, 온도가 500K인 지점에서 배기가스를 채취하였다.The variable swing burner 12 is a 300 kW (259,200 kcal / h) boiler simulator device, with 15% hydrogen peroxide, 15% methanol for methanol, and 15% methanol for hydrogen peroxide. Was mixed in a 7.5: 7.5: 85 weight ratio. The injection and exhaust gas were reacted for 0.5-3.2 seconds. This was inverted from the reaction time and the total distance of 14m. The exhaust gas flow rate was 4.375-28m / s, the temperature range of the reactor was 600K-1100K, the temperature drop rate was 188K / s in the reactor, and the exhaust was exhausted at the point of 500K. Gas was collected.

실시예 1Example 1

상기 조건하에서, 초기 NO농도 [NO]i는 200ppm, 그리고 반응대 온도는 650-1100K로 하여 과산화수소수(15%용액), 메탄올(15%용액) 및 과산화수소수+메탄올(과산화수소:메탄올:물=7.5:7.5:85)을 각각 300ppm씩 배기관 입구에서 분사하여 온도변화에 따른 잔존 NO량을 측정하여 도 4에 나타내었다. 반응후 잔존산소 농도는 3.8%(공기비 1.22)이었다.Under these conditions, the initial NO concentration [NO] i was 200 ppm and the reaction zone temperature was 650-1100K, with hydrogen peroxide (15% solution), methanol (15% solution) and hydrogen peroxide + methanol (hydrogen peroxide: methanol: water = 7.5: 7.5: 85) was sprayed at the inlet of the exhaust pipe 300 ppm each, and the residual NO amount according to the temperature change was measured and shown in FIG. 4. The residual oxygen concentration after the reaction was 3.8% (air ratio 1.22).

과산화수소수, 메탄올, 및 과산화수소수+메탄올 혼합액 모두 NO를 현저하게 감소시켰으며, 과산화수소수와 과산화수소수+메탄올 혼합액은 780K부근에서 그리고 메탄올은 830K 부근에서 가장 효과적이었다.Hydrogen peroxide, methanol, and hydrogen peroxide + methanol mixtures all significantly reduced NO.

실시예 2Example 2

상기 조건하에서, 초기 NO농도 [NO]i는 80-500ppm, 그리고 반응대 온도는 780K로 하여 과산화수소수(15%용액), 메탄올(15%용액) 및 과산화수소수+메탄올(과산화수소:메탄올:물=7.5:7.5:85)을 각각 300ppm씩 배기관 입구에서 분사하고 초기 NO농도 즉, [NO]i 변화에 따른 잔존 NO량을 측정하여 도 5에 나타내었다. 잔존산소 농도는 3.8%(공기비 1.22)이었다.Under these conditions, the initial NO concentration [NO] i is 80-500 ppm, and the reaction zone temperature is 780 K, with hydrogen peroxide (15% solution), methanol (15% solution) and hydrogen peroxide + methanol (hydrogen peroxide: methanol: water = 7.5: 7.5: 85) were injected at the inlet of the exhaust pipe at 300 ppm each, and the residual NO amount according to the change of the initial NO concentration, that is, [NO] i was measured and shown in FIG. 5. The residual oxygen concentration was 3.8% (air ratio 1.22).

과산화수소수(15%용액)를 분사한 경우, 초기 NO농도가 낮은 80ppm에서는 잔존 NO량은 6.4ppm이었으며, 그 후 초기 NO농도에 관계없이 잔존 NO량은 200, 300, 400 및 500ppm에 대하여 각각 20, 30, 40 및 50ppm으로 10%수준을 유지하였다.In case of spraying hydrogen peroxide solution (15% solution), the residual NO amount was 6.4 ppm at 80 ppm with low initial NO concentration, and the residual NO amount was 20 for 200, 300, 400, and 500 ppm, respectively, regardless of the initial NO concentration. 10, 30, 40 and 50 ppm levels were maintained.

과산화수소수+메탄올 용액을 분사한 경우, 초기 NO농도가 낮은 80ppm에서는 잔존 NO량은 1.6ppm이었으며, 그 후 초기 NO농도에 관계없이 잔존 NO량은 200, 300, 400 및 500ppm에 대하여 각각 8, 12, 16 및 20ppm으로 4%수준을 유지하였다.When the hydrogen peroxide + methanol solution was sprayed, the residual NO amount was 1.6 ppm at 80 ppm with low initial NO concentration, and the residual NO amount was 8, 12 for 200, 300, 400 and 500 ppm, respectively, regardless of the initial NO concentration. 4, 16 and 20 ppm were maintained.

메탄올을 분사한 경우, 초기 NO농도에 반비례하여 잔존 NO량은 감소하였다.When methanol was injected, the amount of remaining NO decreased in inverse proportion to the initial NO concentration.

실시예 3Example 3

상기 조건하에서, 초기 NO농도 [NO]i는 200ppm, 그리고 반응대 온도는 780K로 하여 과산화수소수(15%용액), 메탄올(15%용액) 및 과산화수소수+메탄올(과산화수소:메탄올:물=7.5:7.5:85)을 각각 [NO]i의 1, 1.5 및 3배(즉, 200, 300 및 600ppm)로 변화시키면서 배기관 입구에서 분사하고 상기 각 분사물의 변화량에 따른 잔존 NO량을 측정하여 도 6에 나타내었다. 잔존산소 농도는 3.8%(공기비 1.22)이었다.Under the above conditions, the initial NO concentration [NO] i was 200 ppm and the reaction zone temperature was 780 K, with hydrogen peroxide solution (15% solution), methanol (15% solution) and hydrogen peroxide + methanol (hydrogen peroxide: methanol: water = 7.5: 7.5: 85) is injected from the exhaust pipe inlet while changing to 1, 1.5 and 3 times (ie, 200, 300 and 600 ppm) of [NO] i, respectively, and the remaining amount of NO according to the change amount of each injection is measured and FIG. Shown in The residual oxygen concentration was 3.8% (air ratio 1.22).

NO농도에 대한 분사물의 농도가 높을수록 NO저감 효과가 우수하였으며 분사물의 농도가 [NO]i의 3배일 때 가장 우수한 NO저감 효과를 나타내었다.The higher the concentration of the injection to the NO concentration, the better the reduction effect of NO. When the concentration of the injection was three times that of [NO] i, it showed the best reduction effect of NO.

실시예 4Example 4

상기 조건하에서, 초기 NO농도 [NO]i는 200ppm, 그리고 반응대 온도는 780K로 하여 과산화수소수(15%용액), 메탄올(15%용액) 및 과산화수소수+메탄올(과산화수소:메탄올:물=7.5:7.5:85)을 각각 [NO]i의 1.5배(즉, 300ppm)로 하여 배기관 입구에서 분사하고 잔존 산소 농도 변화량에 따른 잔존 NO량을 측정하여 도 7에 나타내었다.Under the above conditions, the initial NO concentration [NO] i was 200 ppm and the reaction zone temperature was 780 K, with hydrogen peroxide solution (15% solution), methanol (15% solution) and hydrogen peroxide + methanol (hydrogen peroxide: methanol: water = 7.5: 7.5: 85) was injected at the inlet of the exhaust pipe at 1.5 times (ie, 300 ppm) of [NO] i, respectively, and the residual NO amount according to the residual oxygen concentration change was measured and shown in FIG. 7.

NO 저감효과는 잔존 산소농도 1.5%까지 메탄올, 과산화수소수+메탄올, 과산화수소수의 순으로 우수하였으나, 잔존 산소농도 3%이상에서는 메탄올 및 과산화수소수+메탄올의 경우 잔존 NO량은 약 12ppm, 과산화수소수의 경우 잔존 NO량은 약 30ppm을 나타내었다.The NO reduction effect was excellent in order of residual oxygen concentration up to 1.5% in order of methanol, hydrogen peroxide + methanol, and hydrogen peroxide solution. In the case of residual NO amount was about 30ppm.

실시예 5Example 5

상기 조건하에서, 초기 NO농도, [NO]i는 200ppm, 초기 SO3농도, [SO3]i는 100ppm 그리고 반응대 온도는 650-1100K로 하여 과산화수소수(15%용액), 메탄올(15%용액) 및 과산화수소수+메탄올(과산화수소:메탄올:물=7.5:7.5:85)을 각각 [NO+SO3]i의 1.5배(즉, 450ppm)로 하여 배기관 입구에서 분사하고 반응대 온도 변화에 따른 잔존 SO3농도를 측정하여 도 8에 나타내었다. 잔존 산소농도는 3.8%이었다.Under these conditions, the initial NO concentration, [NO] i is 200 ppm, the initial SO 3 concentration, [SO 3 ] i is 100 ppm and the reaction zone temperature is 650-1100K, hydrogen peroxide (15% solution), methanol (15% solution). ) And hydrogen peroxide + methanol (hydrogen peroxide: methanol: water = 7.5: 7.5: 85) are each injected at the inlet of the exhaust pipe at 1.5 times (ie 450 ppm) of [NO + SO 3 ] i and remain with the temperature change of the reaction zone. The concentration of SO 3 was measured and shown in FIG. 8. The residual oxygen concentration was 3.8%.

과산화수소수를 분사한 경우에 810K에서 가장 효과가 우수하였으며 잔존 SO3 농도는 180ppm이었으며, 과산화수소수+메탄올을 분사한 경우에 780K에서 가장 효과가 우수하였으며 잔존 SO3농도는 90ppm이었으며 그리고 메탄올을 분사한 경우는 970K 근처에서 가장 효과가 우수하였으며 잔존 SO3농도는 132ppm이었다.Was most effective solid at 810K in case of injecting a hydrogen peroxide residual SO3 concentration is 180ppm was, was most effective solid at 780K in aqueous hydrogen peroxide + when the injection of methanol remaining SO 3 concentration was 90ppm, and if the injection of methanol Was most effective near 970K and the residual SO 3 concentration was 132ppm.

실시예 6Example 6

상기 조건하에서, 초기 NO농도 [NO]i는 200ppm, 초기 SO3농도 [SO3]i는 30, 60 및 100ppm 그리고 반응대 온도는 780K로 하여 과산화수소수(15%용액), 메탄올(15%용액) 및 과산화수소수+메탄올(과산화수소:메탄올:물=7.5:7.5:85)을 [NO+SO3]i의 1.5배(즉, 345, 390 및 450ppm)로 하여 배기관 입구에서 분사하고 초기SO3농도 [SO3]i의 변화에 따른 잔존 SO3농도를 측정하여 도 9에 나타내었다.Under the above conditions, the initial NO concentration [NO] i is 200 ppm, the initial SO 3 concentration [SO 3 ] i is 30, 60 and 100 ppm and the reaction zone temperature is 780 K. Hydrogen peroxide (15% solution), methanol (15% solution) ) And hydrogen peroxide + methanol (hydrogen peroxide: methanol: water = 7.5: 7.5: 85) were injected at the inlet of the exhaust pipe at 1.5 times (ie 345, 390 and 450 ppm) of [NO + SO 3 ] i and the initial concentration of SO 3 The residual SO 3 concentration according to the change of [SO 3 ] i was measured and shown in FIG. 9.

SO3저감 효과는 과산화수소수+메탄올이 가장 우수하며, 그 다음 메탄올 그리고 과산화수소수 순이었다. 초기 SO3농도가 높으면 이에 비례하여 저감되는 SO3량도 증가하였다.Hydrogen peroxide + methanol was the most effective in reducing SO 3 , followed by methanol and hydrogen peroxide. If the initial SO 3 concentration is high, the amount of SO 3 decreased in proportion to it.

실시예 7Example 7

상기 조건하에서, 초기 NO농도 [NO]i는 200ppm, 초기 CH4농도 [CH4]i는 45ppm 그리고 반응대 온도는 650-1100K로 하여 과산화수소수(15%용액)는 [H2O2]/[NO+CH4]i의 1.5배(즉, 367.5ppm) 그리고 메탄은 300ppm으로 배기관 입구에서 메탄 단독 또는 메탄과 과산화수소수를 병행분사하고 반응대 온도 변화에 따른 잔존 CH4농도를 도 10에 나타내었다. (메탄 단독 분사시 분사량 300ppm, 메탄과 과산화수소수 병행 분사시 분사중량비 50:50).Under these conditions, the initial NO concentration [NO] i was 200 ppm, the initial CH 4 concentration [CH 4 ] i was 45 ppm and the reaction zone temperature was 650-1100K. The hydrogen peroxide solution (15% solution) was [H 2 O 2 ] / [NO + CH 4] 1.5 times of i (i.e., 367.5ppm) and methane is injected in parallel the number of methane or methane and hydrogen peroxide alone at the exhaust pipe inlet with 300ppm and represents the residual CH 4 concentration of the reaction zone temperature to 10 It was. (300 ppm injection rate when methane alone injection, 50:50 injection weight ratio when injection of methane and hydrogen peroxide in parallel).

메탄을 단독으로 분사한 경우에 850K이상에서 잔존 메탄 농도가 감소하기 시작하였으며, 970K이상에서는 거의 잔존하지 않았다. 이에 비하여, 과산화수소수와 메탄을 병행하여 분사한 경우에는 680K 근처에서 잔존 메탄 농도가 감소하기 시작하여 890K 근처에서 가장 우수한 효과를 나타내었다.When the methane alone was injected, the residual methane concentration began to decrease above 850 K, and hardly remained above 970 K. On the other hand, when hydrogen peroxide and methane were sprayed in parallel, the residual methane concentration began to decrease near 680K, showing the best effect near 890K.

실시예 8Example 8

상기 조건하에서, 초기 NO농도, [NO]i는 200ppm, 초기 CH2Cl2농도, [CH2Cl2]i는 37ppm 그리고 반응대 온도는 650-1100K로 하여 과산화수소수(15%용액)는 [H2O2]/[NO+CH2Cl2]i의 1.5배(즉, 355.5ppm) 그리고 CH2Cl2은 300ppm으로 배기관 입구에서 CH2Cl2단독 분사 또는 CH2Cl2과 과산화수소수를 병행분사하고 반응대 온도 변화에 따른 잔존 CH2Cl2농도를 도 11에 나타내었다 (CH2Cl2단독 분사시 분사량 300ppm, CH2Cl2과 과산화수소수 병행 분사시 분사중량비 50:50).Under these conditions, the initial NO concentration, [NO] i is 200ppm, the initial CH 2 Cl 2 concentration, [CH 2 Cl 2 ] i is 37ppm and the reaction zone temperature is 650-1100K so that the hydrogen peroxide solution (15% solution) is [ H 2 O 2] / [NO + CH 2 Cl 2] 1.5 times of i (i.e., 355.5ppm) and CH 2 Cl 2 is solely injected CH 2 Cl 2 in the exhaust pipe inlet with 300ppm or CH 2 Cl 2 and the hydrogen peroxide solution Concurrent injection and residual CH 2 Cl 2 concentration according to the temperature of the reaction zone are shown in FIG. 11 (injection amount 300ppm when CH 2 Cl 2 alone injection, injection weight ratio 50:50 when CH 2 Cl 2 and hydrogen peroxide parallel injection).

CH2Cl2을 단독으로 분사한 경우에 750K이상에서 잔존 CH2Cl2농도가 감소하기 시작하였으며, 1100K 근처에서 가장 우수한 효과를 나타내었다. 이에 비하여, 과산화수소수와 CH2Cl2을 병행하여 분사한 경우에는 660K 근처에서 잔존 CH2Cl2농도가 감소하기 시작하여 1010K 근처에서 가장 우수한 효과를 나타내었다. 이때 중간 반응물로 생성되는 CO는 750K부터 발생하였으나 약 810K 근처에서 최대 농도를 형성한 후 감소하여 1010K에서 최소 농도를 나타내었다.When CH 2 Cl 2 was sprayed alone, the residual CH 2 Cl 2 concentration began to decrease above 750K and showed the best effect near 1100K. In contrast, when hydrogen peroxide and CH 2 Cl 2 were sprayed in parallel, the residual CH 2 Cl 2 concentration began to decrease near 660K, showing the best effect near 1010K. At this time, the CO produced as an intermediate reactant was generated from 750K, but decreased after forming a maximum concentration near about 810K, showing a minimum concentration at 1010K.

실시예 9Example 9

상기 조건하에서, 초기 NO농도 [NO]i는 200ppm, 초기 C6H6농도 [C6H6]i는 17ppm 그리고 반응대 온도는 650-1100K로 하여 과산화수소수(15%용액)는 [H2O2]/[NO+C6H6]i의 1.5배(즉, 325.5ppm) 그리고 C6H6은 300ppm으로 배기관 입구에서C6H6단독 또는 C6H6과 과산화수소수를 병행분사하고 반응대 온도 변화에 따른 잔존 C6H6농도를 도 12에 나타내었다. 중간 반응물로서 CO의 농도를 함께 나타내었다.(C6H6단독 분사 분사량 300ppm, C6H6과 과산화수소수 병행분사시 분사중량비 50:50)Under the above conditions, the initial NO concentration [NO] i was 200 ppm, the initial C 6 H 6 concentration [C 6 H 6 ] i was 17 ppm, and the reaction zone temperature was 650-1100K, and the hydrogen peroxide solution (15% solution) was [H 2]. 1.5 times of O 2 ] / [NO + C 6 H 6 ] i (i.e. 325.5 ppm) and 300 ppm of C 6 H 6 , injecting C 6 H 6 alone or C 6 H 6 and hydrogen peroxide in parallel at the inlet of the exhaust pipe. Residual C 6 H 6 concentration according to the reaction zone temperature is shown in FIG. The concentration of CO was also shown as an intermediate reactant (injection weight of 300 ppm of C 6 H 6 alone, and injection weight ratio of 50:50 for the simultaneous injection of C 6 H 6 and hydrogen peroxide).

C6H6을 단독으로 분사한 경우에 850K이상에서 잔존 C6H6농도가 감소하기 시작하였으며, 990K 근처에서 가장 우수한 효과를 나타내었다. 이에 비하여, 과산화수소수와 C6H6을 병행하여 분사한 경우에는 660K 근처에서 잔존 C6H6농도가 감소하기 시작하여 930K 근처에서 가장 우수한 효과를 나타내었다.When C 6 H 6 was sprayed alone, the residual C 6 H 6 concentration began to decrease above 850K and showed the best effect near 990K. In contrast, when hydrogen peroxide and C 6 H 6 were sprayed in parallel, the residual C 6 H 6 concentration began to decrease near 660K, showing the best effect near 930K.

실시예 10Example 10

상기 조건 가저하에서, 컴퓨터를 이용하여 NO농도 저감을 시뮬레이션하였다. 초기 NO농도, [NO]i는 200ppm 그리고 반응대 온도는 650-1100K로 하여 과산화수소수(15%용액), 메탄올(15%용액) 및 과산화수소수+메탄올(과산화수소:메탄올:물=7.5:7.5:85)을 [NO]i의 1.5배(즉, 300ppm)로 배기관 입구에서 분사하는 것으로 가정하였다(잔존 산소농도는 3.8%로 가정). 도 13은 반응대 온도 변화에 따른 잔존 NO 농도 변화를 컴퓨터를 이용하여 화학동역학적으로 계산한 결과를 나타낸다(모두 기체 상태로 가정하여 계산함).Under the above conditions, the NO concentration reduction was simulated using a computer. Initial NO concentration, [NO] i is 200ppm and reaction zone temperature is 650-1100K, hydrogen peroxide (15% solution), methanol (15% solution) and hydrogen peroxide + methanol (hydrogen peroxide: methanol: water = 7.5: 7.5: 85) is assumed to be injected at the inlet of the exhaust pipe at 1.5 times [NO] i (ie 300 ppm) (residual oxygen concentration is assumed to be 3.8%). FIG. 13 shows the results of the chemical dynamic calculation of the residual NO concentration change according to the reaction zone temperature (all assumed to be in gaseous state).

과산화수소수와 과산화수소수+메탄올 기체는 유사한 NO 농도 저감 효과를 나타냈으며 650-980K 온도범위에서 가장 효과적이었다. 메탄올 단독인 경우에는 850-1050K에서 NO 농도 저감 효과를 나타냈으며 900-950K에서 가장 효과적이었다.Hydrogen peroxide and hydrogen peroxide + methanol gas showed similar NO reduction and were most effective in the temperature range of 650-980K. Methanol alone showed NO concentration reduction at 850-1050K and was most effective at 900-950K.

본 실시예를 통해 본 발명의 최적 반응조건은 초기 NO농도 200ppm을 기준으로, 온도 780K, 잔존 산소농도 3%이상 그리고 H2O2및/또는 메탄올 분사농도 450ppm임을 알수 있다.Through the present embodiment it can be seen that the optimum reaction conditions of the present invention based on the initial NO concentration of 200ppm, the temperature of 780K, the residual oxygen concentration of more than 3% and H 2 O 2 and / or methanol injection concentration of 450ppm.

본 발명의 방법은 과산화수소수 또는 알코올과 과산화수소수의 혼합물을 사용함으로써 배기가스중에 함유되어 있는 질소산화물 및 매연을 효과적으로 제거할 수 있으며, 취급이 안전하고 비용이 저렴하다. 또한 본 발명의 방법은 각종 연소로 및 디젤엔진에 쉽게 적용할 수 있다.The method of the present invention can effectively remove nitrogen oxides and soot contained in the exhaust gas by using hydrogen peroxide water or a mixture of alcohol and hydrogen peroxide water, and the handling is safe and inexpensive. In addition, the method of the present invention can be easily applied to various combustion furnaces and diesel engines.

Claims (12)

400-800 에서 질소산화물(NOx)을 함유하는 배기가스에 과산화수소수, 알코올 또는 과산화수소수와 알코올의 혼합물을 적용하는 단계; 및Applying hydrogen peroxide water, alcohol or a mixture of hydrogen peroxide and alcohol to exhaust gas containing nitrogen oxides (NOx) at 400-800; And 그 후, 물을 적용하여 수용액으로 응축시키는 단계;Thereafter, applying water to condense into an aqueous solution; 를 포함하여 이루어지는 질소산화물 저감 및 처리방법.Nitrogen oxide reduction and treatment method comprising a. 질소산화물(NOx)을 함유하는 배기가스가 방출되는 연소실 후단에 과산화수소수, 알코올 또는 과산화수소수와 알코올의 혼합물을 적용하는 단계; 및Applying hydrogen peroxide, alcohol or a mixture of hydrogen peroxide and alcohol to the rear of the combustion chamber in which exhaust gas containing nitrogen oxides (NOx) is discharged; And 그 후, 물을 적용하여 수용액으로 응축시키는 단계;Thereafter, applying water to condense into an aqueous solution; 를 포함하여 이루어지는 질소산화물 저감 및 처리방법.Nitrogen oxide reduction and treatment method comprising a. 제 1항 또는 2항에 있어서, 상기 과산화수소수는 과산화수소 함량이 1-15중량%임을 특징으로 하는 방법.The method according to claim 1 or 2, wherein the hydrogen peroxide water has a hydrogen peroxide content of 1-15% by weight. 제 1항 또는 2항에 있어서, 상기 알코올은 알코올 함량이 1-15중량%임을 특징으로 하는 방법.The method of claim 1 or 2, wherein the alcohol has an alcohol content of 1-15% by weight. 제 1항 또는 2항에 있어서, 상기 과산화수소수와 알코올의 혼합물은 과산화수소:물:알코올의 혼합중량비가 1-7.5:1-7.5:85-98임을 특징으로 하는 방법.The method according to claim 1 or 2, wherein the mixture of hydrogen peroxide and alcohol has a mixed weight ratio of hydrogen peroxide: water: alcohol of 1-7.5: 1-7.5: 85-98. 제 2항에 있어서, 상기 연소실 후단의 온도는 400-800 임을 특징으로 하는 방법.The method of claim 2, wherein the temperature at the rear end of the combustion chamber is 400-800. 제 1항 또는 6항에 있어서, 상기 온도는 550-800 임을 특징으로 하는 방법.7. The method of claim 1 or 6, wherein the temperature is 550-800. 제 1항 또는 2항에 있어서, 나아가 상기 과산화수소수, 알코올 또는 과산화수소수와 알코올의 혼합물을 분사하기전에 예비가열함을 특징으로 하는 방법.The method according to claim 1 or 2, further characterized in that the preheating is carried out before the injection of the hydrogen peroxide water, alcohol or a mixture of hydrogen peroxide water and alcohol. 제 1항 또는 2항에 있어서, 상기 응축된 수용액은 수평방향으로 이동하는 수용액이 하중에 의해 하강하도록 절곡된 피트내에 포집함을 특징으로 하는 방법.The method of claim 1 or 2, wherein the condensed aqueous solution is collected in a pit that is bent so that the aqueous solution moving in the horizontal direction is lowered by a load. 제 9항에 있어서, 상기 피트는 내열 플라스틱 또는 스테인리스강으로 이루어짐을 특징으로 하는 방법.10. The method of claim 9, wherein the pit is made of heat resistant plastic or stainless steel. 제 1항 또는 2항에 있어서, 상기 알코올은 메탄올임을 특징으로 하는 방법.The method of claim 1 or 2, wherein the alcohol is methanol. 제 9항에 있어서, 나아가 상기 포집된 수용액을 미생물을 이용한 폐수처리로 분해하는 단계를 포함함을 특징으로 하는 방법.The method of claim 9, further comprising the step of decomposing the collected aqueous solution by wastewater treatment using microorganisms.
KR1020010021535A 2001-04-20 2001-04-20 Method of nitric oxides reduction and soot treatment by using hydrogen peroxide solution, alcohol or hydrogen peroxide solution /alcohol mixture KR20020081940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010021535A KR20020081940A (en) 2001-04-20 2001-04-20 Method of nitric oxides reduction and soot treatment by using hydrogen peroxide solution, alcohol or hydrogen peroxide solution /alcohol mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010021535A KR20020081940A (en) 2001-04-20 2001-04-20 Method of nitric oxides reduction and soot treatment by using hydrogen peroxide solution, alcohol or hydrogen peroxide solution /alcohol mixture

Publications (1)

Publication Number Publication Date
KR20020081940A true KR20020081940A (en) 2002-10-30

Family

ID=27702034

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010021535A KR20020081940A (en) 2001-04-20 2001-04-20 Method of nitric oxides reduction and soot treatment by using hydrogen peroxide solution, alcohol or hydrogen peroxide solution /alcohol mixture

Country Status (1)

Country Link
KR (1) KR20020081940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451285B1 (en) * 2001-07-12 2004-10-06 박현 The reduction method of nitrogen oxides and sulfur oxides using hydrogen peroxide solution and calcium oxide solution
CN104524972A (en) * 2014-12-22 2015-04-22 上海电气电站环保工程有限公司 Design method of ammonia nozzle of SCR denitration device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5291776A (en) * 1976-01-30 1977-08-02 Mitsubishi Heavy Ind Ltd Treatment of nitrogen oxides in exhaust gas
EP0008488A1 (en) * 1978-08-15 1980-03-05 FMC Corporation Process of removing nitrogen oxides from gaseous mixtures
JPH01148331A (en) * 1987-12-04 1989-06-09 Iwatani Internatl Corp Method for making hydride-based waste gas harmless
US5112587A (en) * 1990-05-12 1992-05-12 Degussa Ag Method for the denitration of waste gases with obtention of hno3
JPH06142440A (en) * 1992-11-13 1994-05-24 Nippon Steel Corp Oxidation treatment of gas containing harmful gas and device for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5291776A (en) * 1976-01-30 1977-08-02 Mitsubishi Heavy Ind Ltd Treatment of nitrogen oxides in exhaust gas
EP0008488A1 (en) * 1978-08-15 1980-03-05 FMC Corporation Process of removing nitrogen oxides from gaseous mixtures
JPH01148331A (en) * 1987-12-04 1989-06-09 Iwatani Internatl Corp Method for making hydride-based waste gas harmless
US5112587A (en) * 1990-05-12 1992-05-12 Degussa Ag Method for the denitration of waste gases with obtention of hno3
JPH06142440A (en) * 1992-11-13 1994-05-24 Nippon Steel Corp Oxidation treatment of gas containing harmful gas and device for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451285B1 (en) * 2001-07-12 2004-10-06 박현 The reduction method of nitrogen oxides and sulfur oxides using hydrogen peroxide solution and calcium oxide solution
CN104524972A (en) * 2014-12-22 2015-04-22 上海电气电站环保工程有限公司 Design method of ammonia nozzle of SCR denitration device

Similar Documents

Publication Publication Date Title
US4208386A (en) Urea reduction of NOx in combustion effluents
US4849192A (en) Methods for preventing formation of sulfuric acid and related products in combustion effluents
JP2011230120A (en) SYSTEM AND METHOD FOR CONTROLLING AND REDUCING NOx EMISSION
KR101807996B1 (en) Combined De-NOx System using Heterogeneous Reducing agent for Reducing Yellow Plume and NOx
JP2011230121A (en) SYSTEM AND METHOD FOR CONTROLLING AND REDUCING NOx EMISSION
US4743436A (en) Methods for preventing ammonium bisulfate formation during the noncatalytic reduction of nitric oxide
CN110102160A (en) The low-temperature denitration method of hydrogen peroxide oxidation combination selective catalytic reduction
US20040265200A1 (en) Cleaning method of NO2 visible gas from stationary sources
KR102607313B1 (en) Method and system for removing hazardous compounds from flue gas using SCR catalyst
US6793903B1 (en) High temperature decomposition of hydrogen peroxide
KR101774254B1 (en) Selective non-catalytic reduction solution for nitrogen oxides removal
KR20020081940A (en) Method of nitric oxides reduction and soot treatment by using hydrogen peroxide solution, alcohol or hydrogen peroxide solution /alcohol mixture
JPH05503662A (en) Catalytic decomposition of cyanuric acid and use of its products to reduce nitrogen oxide emissions
KR102099885B1 (en) NOx and SOx removal device and removal process in wet scrubber using pyrolysis of hydrogen peroxide
KR100451285B1 (en) The reduction method of nitrogen oxides and sulfur oxides using hydrogen peroxide solution and calcium oxide solution
KR102310469B1 (en) Method and system for removing particulate matter and hazardous compounds from flue gas using ceramic filter with SCR catalyst
EP2583741B1 (en) Systemfor Controlling and Reducing NOx Emissions
CN212594914U (en) Waste liquid incinerator tail gas CO, NOx integration desorption device
KR102359124B1 (en) Method and system for removing hazardous compounds from flue gases using fabric filter bags with SCR catalyst
KR101096317B1 (en) The removal system and the method of air pollutants from exhaust gas by using the catalytic converter
EP2112988A1 (en) Decomposition of hydrogen peroxide and oxidation of nitric oxide
CN106861422A (en) A kind of processing method of industrial nitrous oxides exhaust gas
CN216799303U (en) Chemical storage tank waste gas RTO administers device
KR100289168B1 (en) Process for Reducing Nitrogen Oxides in Exausted Gas
KR20080071324A (en) Nox reducing solution reagent using sewage sludge extrants in a sewage and wastewater treatment process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application