KR20020077998A - Spherical shape red color luminescence composition - Google Patents

Spherical shape red color luminescence composition Download PDF

Info

Publication number
KR20020077998A
KR20020077998A KR1020010017782A KR20010017782A KR20020077998A KR 20020077998 A KR20020077998 A KR 20020077998A KR 1020010017782 A KR1020010017782 A KR 1020010017782A KR 20010017782 A KR20010017782 A KR 20010017782A KR 20020077998 A KR20020077998 A KR 20020077998A
Authority
KR
South Korea
Prior art keywords
phosphor
borate
hours
phosphor material
europium
Prior art date
Application number
KR1020010017782A
Other languages
Korean (ko)
Other versions
KR100388278B1 (en
Inventor
조태환
이임열
장정필
Original Assignee
조태환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조태환 filed Critical 조태환
Priority to KR10-2001-0017782A priority Critical patent/KR100388278B1/en
Publication of KR20020077998A publication Critical patent/KR20020077998A/en
Application granted granted Critical
Publication of KR100388278B1 publication Critical patent/KR100388278B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7797Borates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE: Provided is a spherical red light emitting phosphor which shows uniform spherical particle size, which is produced by forming a phosphor material by coprecipitation, pyrolyzing and heat treating the phosphor material. CONSTITUTION: The phosphor is produced by the steps of (i) dissolving each phosphor material selected from the group consisting of soluble yttrium salt such as Y(NO3)3, Y2(SO4)3, YCl3, a boron compound, such as ammonium borate, potassium borate, sodium borate, lithium borate, and a soluble europium salt such as Eu(NO3)3, Eu2(SO4)3, EuCl3, in water; (ii) mixing the resulting aqueous solution of phosphor material with stirring, so as to obtain hydrate of the phosphor material; (iii) pyrolyzing the hydrate in a high pressure reactor at 150-250 deg.C for 6-48 hours, and sintering the pyrolyzed hydrate in neutral or reducing atmosphere at 800-1100 deg.C for 1-6 hours.

Description

구형의 적색 발광 형광체 {Spherical shape red color luminescence composition}Spherical shape red color luminescence composition

본 발명은 구형의 적색 발광 형광체에 관한 것이다. 보다 상세하게는 본 발명은 공침법에 의하여 형광체 원료를 제조한 후 열분해 및 열처리 공정에 의하여 구형의 균일한 입도를 갖는 구형의 적색 발광 형광체에 관한 것이다.The present invention relates to a spherical red light emitting phosphor. More specifically, the present invention relates to a spherical red light-emitting phosphor having a spherical uniform particle size by a pyrolysis and heat treatment process after preparing a phosphor raw material by coprecipitation method.

일반적으로 형광체는 수 미크론 정도의 입경을 갖는 입자로 되어 있고, 유기바인더(organic binder) 등을 매체로 하여 형성해야 할 초자면 등에 형광체 입자를 부착시켜 이용하고 있다.In general, phosphors are particles having a particle diameter of several microns, and are used by attaching phosphor particles to a vitreous surface to be formed using an organic binder or the like as a medium.

종래의 경우, 형광체 입자는 원료 혼합물을 소정의 비율로 혼합하여 조성물로 만들고, 이 조성물을 수 시간 동안 전기로에서 소결하여 얻어진다. 전기로에서의 소결에 의한 형광체의 제조에는 많은 시간이 소요되어 생산성이 저하되는 문제점이 있었으며, 이러한 소결공정을 개량하기 위하여 일본 특공소 45-37296 호 및 일본 특개소 52-37581 호 등에는 형광체의 원료가 되는 원료 혼합물을 용융시킨 후, 노즐을 사용하여 용융된 형광체 원료를 분사시켜 입상으로 제조하는 기술을 설명하고 있다. 세라믹 제조기술을 형광체 제조에 적용한 일본 특개소 62-201989 호에는 고주파 플라즈마를 사용하여 형광체 원료를 용융하여 형광체를 제조하는 방법을 기술하고 있으며, 유사한 방법으로 대한민국 특허공개 제 2000-73329 호(특허출원 제1999-16555 호)에는 초음파 분무열분해법에 의한 형광체의 제조방법이 기술되어 있다. 그러나, 이들 종래의 방법들은 여전히 공업적으로는 실용적이지 못하다. 예를 들어, 일본 특공소 45-37296 호 및 일본 특개소 52-37581 호들의 경우에는 가열원이 액체 연소염이므로 형광체 원료를 산화시키는 것은 용이하지만 형광체 원료를 환원 혹은 분해시키는 반응에는 적당하지 않다. 또한 일본 특개소 62-201989 호의 경우에는 고주파 플라즈마를 사용하여 형광체 원료를 용융시킬 때 반응시의 분위기를 산화, 환원 또는 중성으로 유지, 제어하기에는 용이하나, 사용 가열원이 고주파 플라즈마이므로 고주차 전원을 사용해야 하며, 실용적이지 못하다는 문제점이 있었다. 또한, 대한민국 특허공개 제 2000-73329 호에 기술된 초음파 분무열분해법에 의하여 제조되는 형광체 입자는 내부가 빈 형태의 속빈입자(hollow particle)가 형성되고, 추후 공정 등에서 처리시 형광체가 깨지는 등 형광체에서 요구되는 사항을 조절하는 데 일부 제한이 되고 있다. 또한 초음파 분무로 형성된 분체의 회수가 비교적 곤란하고, 그 수율도 낮아 공업적으로 적용하기에는 문제점들이 있었다. 그외에 고상법의 문제점을 해결하기 위하여 액상법도 많이 연구되었다. (Ravichandran D., Journal of Luminescence, 71, 291-297, 1997 및 대한민국 특허제 254169 호 등 참조). 이들 공침법이나 졸-겔법과 같은 액상법은 고상법과는 달리 매우 낮은 온도에서 원하는 형광체를 제조할 수 있는 장점을 가지고 있으며, 분자 수준에서 도핑물질의 혼합이 가능하기 때문에, 보다 낮은 열처리 온도에서 좋은 형광특성을 기대할 수 있다. 그러나, 액상법에 의하여 제조되는 산화물 형광체들도 입자의 형태가 매우 불균일하기 때문에 균일한 크기와 형태를 요구하는 디스플레이용으로는 사용하기 어려운 문제점을 가지고 있다.In the conventional case, the phosphor particles are obtained by mixing the raw material mixture in a predetermined ratio into a composition and sintering the composition in an electric furnace for several hours. The production of the phosphor by sintering in an electric furnace takes a long time, and there is a problem in that the productivity decreases. To improve such a sintering process, Japanese Patent Application No. 45-37296 and Japanese Patent Application No. 52-37581 are used as raw materials for the phosphor. After melt | dissolving the raw material mixture used, the technique of spraying a molten fluorescent material raw material using a nozzle and manufacturing into granular form is demonstrated. Japanese Patent Laid-Open No. 62-201989, which applies a ceramic manufacturing technique to the manufacture of phosphors, describes a method of manufacturing a phosphor by melting a phosphor raw material using a high frequency plasma, and in a similar manner, Korean Patent Publication No. 2000-73329 (patent application) No. 1999-16555) describes a method for producing a phosphor by ultrasonic spray pyrolysis. However, these conventional methods are still not practical in industry. For example, in Japanese Unexamined Patent Publications No. 45-37296 and Japanese Unexamined Patent Publication No. 52-37581, since the heating source is a liquid combustion salt, it is easy to oxidize the phosphor raw material, but it is not suitable for the reaction for reducing or decomposing the phosphor raw material. In addition, in Japanese Patent Application Laid-Open No. 62-201989, it is easy to maintain and control the atmosphere during the reaction as oxidizing, reducing, or neutral when melting the phosphor raw material using a high frequency plasma. It had to be used and not practical. In addition, the phosphor particles produced by the ultrasonic spray pyrolysis method described in Korean Patent Publication No. 2000-73329 are hollow particles in the form of hollows, and the phosphors are broken during the processing in a later process. There are some restrictions on controlling what is required. In addition, the recovery of the powder formed by the ultrasonic spray is relatively difficult, the yield is low, there are problems to apply industrially. In addition, the liquid phase method has been studied a lot to solve the problems of the solid phase method. (See Ravichandran D., Journal of Luminescence, 71, 291-297, 1997 and Korean Patent No. 254169, etc.). Unlike the solid phase method, liquid phase methods such as coprecipitation method and sol-gel method have the advantage of producing a desired phosphor at a very low temperature, and because the doping material can be mixed at the molecular level, good fluorescence at a lower heat treatment temperature is possible. You can expect the characteristics. However, oxide phosphors produced by the liquid phase method also have a problem that it is difficult to use for displays requiring a uniform size and shape because the shape of the particles is very uneven.

형광체를 구형으로 함으로써 얻어지는 효과를 형광등을 예로 들어 설명하면 다음과 같다.The effect obtained by making a fluorescent substance spherical is demonstrated as follows by taking a fluorescent lamp as an example.

첫째, 총괄밀도(bulk density)가 크다. 즉, 같은 중량이면서 겉보기 체적이 적어, 작은 용기에 보관할 수 있다.First, the bulk density is large. That is, they are the same weight but have a smaller apparent volume and can be stored in a small container.

둘째, 유동성이 좋다. 현탁액(suspension)을 만들 때 분산성이 좋으므로 현탁이 용이하다. 따라서, 응집물에 의한 막결함이 적어 균일하고, 충진율이 높은 형광막을 얻을 수 있고, 종래 형광체와 비교하여 중량 당 막두께가 얇아진다. 얇은 막은 일반적으로 잘 벗겨지지 않는다.Second, liquidity is good. The suspension is easy to disperse when making a suspension. Therefore, a fluorescent film with a small amount of film defects due to aggregates and uniformity and a high filling rate can be obtained, and the film thickness per weight becomes thinner as compared with conventional fluorescent materials. Thin membranes generally do not peel off well.

셋째, 현탁액을 사용하여 도포할 때 물리적 성질을 조절하기 용이한 구형 형광체를 사용하여 형광체의 부착율을 쉽게 변경할 수 있다.Third, the adhesion rate of the phosphor can be easily changed by using a spherical phosphor that is easy to control physical properties when applied using the suspension.

넷째, 형광체의 비표면적이 작으며, 입자 표면의 열화하기 쉬운 부분이 감소하여 공정에 있어서의 열열화(熱劣化)나 발광특성의 경시변화를 제어할 수 있다.Fourth, the specific surface area of the phosphor is small, and the portion where the surface of the particle is likely to deteriorate is reduced, so that it is possible to control thermal deterioration in the process and change in luminescence properties over time.

다섯째, 비표면적이 작아 열처리 공정이나 가열 배기과정의 탈가스가 용이해지며, 형광등의 작동 중에 가스 방출이 적어진다.Fifth, since the specific surface area is small, the degassing of the heat treatment process or the heat exhaust process is facilitated, and the gas emission is reduced during the operation of the fluorescent lamp.

여섯째, 형광체 중의 확산투과율이 커지며, 그 결과 산란손실이 적어 광속(光束)향상의 가능성이 있다.Sixth, the diffusion transmittance in the phosphor is increased, and as a result, the scattering loss is small and there is a possibility of improving the luminous flux.

따라서, 본 발명자들은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 종래의 고상법이나 분무열분해법과는 달리 공침법으로 형광체 원료를 제조한 후, 수득된 형광체 원료를 고압반응기에 넣어 열분해시켰을 때 구형의 균일한 형태로 결정화도 및 발광특성이 우수한 형광체를 제조할 수 있음을 확인하고 본 발명을 완성하였다.Therefore, the present inventors have been devised to solve the problems of the prior art as described above, and unlike the conventional solid-phase method or spray pyrolysis method, after preparing the phosphor raw material by coprecipitation method, the obtained phosphor raw material is put into a high pressure reactor and pyrolyzed. When the present invention was confirmed that it was possible to produce a phosphor having excellent crystallinity and luminescence properties in a spherical uniform form and completed the present invention.

본 발명의 목적은 액상반응에 의한 공침공정, 열분해공정 및 열처리공정 등의 일련의 공정들에 의해 구형의 균일한 형태를 갖는 형광체를 제공하는 데 있다.An object of the present invention is to provide a phosphor having a spherical uniform form by a series of processes such as a coprecipitation process, a pyrolysis process and a heat treatment process by a liquid phase reaction.

도 1은 본 발명의 하나의 구체적인 실시예에 따라 제조된 형광체의 전자현미경사진이다.1 is an electron micrograph of a phosphor prepared according to one specific embodiment of the present invention.

도 2는 본 발명에 따른 형광체에서의 유로퓸의 함량 변화에 따른 발광강도의 변화를 나타내는 그래프이다.2 is a graph showing the change in emission intensity according to the change in the content of europium in the phosphor according to the present invention.

도 3은 본 발명에 따른 형광체에서의 유로퓸의 함량 변화에 따른 색순도의 변화를 나타내는 그래프이다.3 is a graph showing the change in color purity according to the content of europium in the phosphor according to the present invention.

본 발명에 따른 구형의 적색 발광 형광체는, 유로퓸 활성 붕산이트륨 적색 형광체(Y1-xBO3:Eux)(여기에서 x는 0.01 내지 0.2g원자/몰임)의 조성을 갖도록 Y(NO3)3, Y2(SO4)3, YCl3등과 같은 수용성 이트륨염, 붕산암모늄, 붕산칼륨, 붕산나트륨, 붕산리튬 등과 같은 붕소화합물 및 Eu(NO3)3, Eu2(SO4)3, EuCl3등과 같은 수용성유로퓸염들로 이루어지는 그룹 중에서 선택된 각 형광체 원료들을 물에 용해시킨 원료수용액들을 교반시키면서 혼합시켜 수득되는 윈료수화물을 고압반응기 내에서 150내지 250℃에서 6 내지 48시간 동안 열분해시킨 후, 중성분위기 또는 환원성분위기중에서 800 내지 1100℃에서 1 내지 6시간 동안 소결시켜서 이루어진다.The spherical red light-emitting phosphor according to the present invention is Y (NO 3 ) 3 to have a composition of europium activated yttrium borate red phosphor (Y 1-x BO 3 : Eu x ), where x is 0.01 to 0.2 g atom / mole. Water-soluble yttrium salts, such as Y 2 (SO 4 ) 3 , YCl 3 , boron compounds such as ammonium borate, potassium borate, sodium borate, lithium borate, and Eu (NO 3 ) 3 , Eu 2 (SO 4 ) 3 , EuCl 3 The winyohydrate obtained by mixing each of the phosphor raw materials selected from the group consisting of water-soluble europium salts, dissolved in water with stirring, was thermally decomposed in a high pressure reactor at 150 to 250 ° C. for 6 to 48 hours, and then neutralized. It is made by sintering at 800 to 1100 ° C. for 1 to 6 hours in an atmosphere or a reducing component atmosphere.

이하, 본 발명의 구체적인 실시예를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 구형의 적색 발광 형광체는, 유로퓸 활성 붕산이트륨 적색 형광체(Y1-xBO3:Eux)(여기에서 x는 0.01 내지 0.2g원자/몰임)의 조성을 갖도록 Y(NO3)3, Y2(SO4)3, YCl3등과 같은 수용성 이트륨염, 붕산암모늄, 붕산칼륨, 붕산나트륨, 붕산리튬 등과 같은 붕소화합물 및 Eu(NO3)3, Eu2(SO4)3, EuCl3등과 같은 수용성 유로퓸염들로 이루어지는 그룹 중에서 선택된 각 형광체 원료들을 물에 용해시킨 원료수용액들을 교반시키면서 혼합시켜 수득되는 원료수화물을 고압반응기 내에서 150내지 250℃에서 6 내지 48시간 동안 열분해시킨 후, 중성분위기 또는 환원성분위기중에서 800 내지 1100℃에서 1 내지 6시간 동안 소결시켜서 이루어짐을 특징으로 한다.The spherical red light-emitting phosphor according to the present invention is Y (NO 3 ) 3 to have a composition of europium activated yttrium borate red phosphor (Y 1-x BO 3 : Eu x ), where x is 0.01 to 0.2 g atom / mole. Water-soluble yttrium salts, such as Y 2 (SO 4 ) 3 , YCl 3 , boron compounds such as ammonium borate, potassium borate, sodium borate, lithium borate, and Eu (NO 3 ) 3 , Eu 2 (SO 4 ) 3 , EuCl 3 The raw material hydrate obtained by mixing each of the phosphor raw materials selected from the group consisting of water-soluble europium salts, dissolved in water with stirring, was thermally decomposed in a high pressure reactor at 150 to 250 ° C. for 6 to 48 hours, and then neutralized. It is made by sintering for 1 to 6 hours at 800 to 1100 ℃ in the atmosphere or reducing component atmosphere.

본 발명은 제조하려는 형광체의 양론비에 맞도록 하여 각 형광체 원료들을 물에 용해시켜 수용액으로 제조한 후, 이들 각 수응액들을 혼합, 교반시켜 충분히 반응시키므로써 공침에 의하여 원료수화물을 제조하고, 이를 고압반응기 등을 사용하여 열분해시키고, 소결시켜 결정상의 형광체 조성물로 제조하는 점에 특징이 있는 것이다. 이때 각 형광체 원료들은 모체(host) 및 상기 모체에 도핑물질로 포함되는 활성제(activator)로 구성되며, 이들은 물에 잘 용해되는 금속의 염, 즉 금속의 황산염, 질산염, 할로겐화물 등을 사용한다. 모체로는 이트륨의 수용성염과 붕소화합물을 사용하고, 활성제로는 유로퓸의 수용성염 사용한다.According to the present invention, the raw materials of the phosphor are prepared by dissolving each of the raw materials of the phosphor in water to make an aqueous solution, and then mixing and stirring each of the aqueous solutions to sufficiently react to prepare raw material hydrates by coprecipitation. It is characterized by pyrolysis using a high pressure reactor or the like and sintering to produce a crystalline phosphor composition. At this time, each of the phosphor raw materials are composed of a host and an activator included as a doping material in the parent, and they use salts of metals that are well dissolved in water, that is, sulfates, nitrates, and halides of metals. As the mother, a water-soluble salt of yttrium and a boron compound are used, and an active salt of europium is used as an active agent.

형광체 원료는 수용성 이트륨염, 붕소화합물 및 수용성 유로퓸염들로 이루어지는 그룹 중에서 선택된 것들이 될 수 있으며, 일단 수용액으로 만들어진 후 반응 및 공침시키는 것에 의하여 구형의 형광체를 수득할 수 있게 된다.The phosphor raw material may be selected from the group consisting of water-soluble yttrium salts, boron compounds, and water-soluble europium salts, and spherical phosphors may be obtained by reacting and coprecipitation once made into an aqueous solution.

계속해서, 상기 각 형광체 원료들의 수용액들 즉, 이트륨염 수용액, 붕소화합물 수용액 및 유로퓸염 수용액 등의 원료수용액들을 실온 또는 가열 상태에서 교반하면서 혼합하여 공침법으로 무결정이며, 수화물 상태인 원료수화물을 수득하게 된다. 상기에서 수득된 원료수화물은 계속해서 고압반응기 내에서 150 내지 250℃에서 6내지 48시간 동안 열분해시켜 구형의 입자로 전환 된다. 열분해가 150℃ 미만의 온도에서 진행되는 경우, 충분한 탈수 및 결정화가 이루어지지 않게 되는 문제점이 있을 수 있으며, 반대로 250℃를 초과하는 경우, 높은 증기압에 의한 안전상의 문제점이 있을 수 있다.Subsequently, the aqueous solutions of each of the phosphor raw materials, i.e., an aqueous yttrium salt solution, an aqueous boron compound solution and an europium salt aqueous solution, are mixed with agitation at room temperature or in a heated state, and co-precipitated to obtain an amorphous, hydrated raw material hydrate. To obtain. The raw material hydrate obtained above is subsequently pyrolyzed at 150 to 250 ° C. for 6 to 48 hours in a high pressure reactor to be converted into spherical particles. If the pyrolysis proceeds at a temperature of less than 150 ℃, there may be a problem that the sufficient dehydration and crystallization is not made, if the temperature exceeds 250 ℃, there may be a safety problem due to high vapor pressure.

이 열분해에 의하여 상기 무결정이며, 수화물 상태인 원료수화물로부터 물이 분리되며, 산화물들이 규칙적으로 재배열되는 결정화를 통하여 입자로 전환되어 구형의 형광체가 제조된다. 또한, 상기 열분해에 의하여 수득되는 생성물을 중성분위기 또는 환원성분위기 중에서 200 내지 1100℃에서 1 내지 6시간 동안 소결시켜 결정화시키고 활성화시킬 수 있다. 상기 열분해에 의해 얻어진 형광체의 입자를 알루미나 도가니, 석영 도가니 등과 같은 내열성 용기에 충진한 후, 소결시키게 된다. 소결시간은 내열성 용기에 충진되는 형광체의 양, 소결온도 등에 따라 달라질 수 있으나, 800 내지 1100℃에서 1 내지 6시간 동안, 바람직하게는 2 내지 4시간 동안 소결시켜 결정화시키고 활성화시킬 수 있다. 소결온도가 800℃ 미만으로 되는 경우 소결에 과다한 시간이 요구되며, 또한 결정의 성장이 충분히 이루어지지 않게되는 문제점이 있을 수 있으며, 반대로 1100℃를 초과하는 것은 결정의 성장 등에 무관하여 큰 의미가 없다.By this pyrolysis, water is separated from the raw material hydrate in the amorphous state and in a hydrate state, and oxides are converted into particles through crystallization in which rearrangements are regularly rearranged to produce spherical phosphors. In addition, the product obtained by the pyrolysis may be crystallized and activated by sintering at 200 to 1100 ° C. for 1 to 6 hours in a heavy or reducing atmosphere. Particles of the phosphor obtained by the thermal decomposition are filled in a heat resistant container such as an alumina crucible, a quartz crucible, or the like and then sintered. The sintering time may vary depending on the amount of phosphor filled in the heat resistant container, the sintering temperature, etc., but may be crystallized and activated by sintering at 800 to 1100 ° C. for 1 to 6 hours, preferably 2 to 4 hours. If the sintering temperature is less than 800 ℃ excessive time is required for the sintering, and there may be a problem that the crystal growth is not sufficiently made, on the contrary, exceeding 1100 ℃ is not significant regardless of the growth of the crystal .

상기한 바와 같은 소결에 의하여 형광체의 입도를 성장시킬 수 있으며, 또한 결정화 및 활성화가 완료될 수 있게 된다.By sintering as described above, the particle size of the phosphor can be grown, and crystallization and activation can be completed.

소결 후 얻어지는 소결물은 자외선, 전자선, 진공자외선 등에 의하여 여기되어 고휘도의 적색 발광을 나타내는 유로퓸 활성 붕산이트륨 형광체(Y1-xBo3:Eux)(여기에서x는 0.01 내지 0.2g원자/몰임)이다.The sintered product obtained after sintering is excited by ultraviolet rays, electron beams, vacuum ultraviolet rays or the like, and is a europium-activated yttrium borate phosphor (Y 1-x Bo 3 : Eu x ) exhibiting high luminance of red light emission (where x is 0.01 to 0.2 g atom / mole) )to be.

이하에서 본 발명이 바람직한 실시예 및 비교예들이 기술되어질 것이다.Hereinafter, preferred embodiments and comparative examples of the present invention will be described.

이하의 실시예들은 본 발명을 예증하기 위한 것으로서 본 발명의 범위를 국한시키는 것으로 이해되어져서는 안될 것이다.The following examples are intended to illustrate the invention and should not be understood as limiting the scope of the invention.

실시예 1Example 1

Y1-xBO3Eux(여기에서 x는 0.01 내지 0.2g원자/몰임)에서 x가 0.01이 되도록 질산이 트륨(Y(NO3)3) 4.2577g, 붕산(H3BO3) 0.6943g, 질산유로퓸(Eu(NO3)3) 0.0481g을 칭량하고, 각각 250㎖의 물에 용해시켜 수용액으로 만든 후, 40℃의 온도에서통상의 마크네틱 교반기로 약 300rpm의 속도로 교반시키면서 혼합하고, 생성된 침전물을 분리하여 고압반응기에 넣고 200℃의 온도에서 48시간 열분해시켜 구형의 형광체 입자로 전환시키고, 수득된 형광체 입자를 알루미나 도가니에 충진시키고, 소량의 수소를 포함하는 질소 분위기하 1100℃의 온도로 2시간 동안 소결하여 형광체 조성물을 수득하였다.Y 1-x BO 3 Eu x (where x is from 0.01 to 0.2 g atoms / mole) 4.2577 g of yttrium nitrate (Y (NO 3 ) 3 ), boric acid (H 3 BO 3 ) 0.6943 g such that x is 0.01 0.0481 g of europium nitrate (Eu (NO 3 ) 3 ) was weighed, dissolved in 250 ml of water to form an aqueous solution, and then mixed at 40 ° C. while stirring at a speed of about 300 rpm using a normal mechanical stirrer. The resulting precipitate was separated, placed in a high pressure reactor and pyrolyzed at a temperature of 200 ° C. for 48 hours to be converted into spherical phosphor particles, and the obtained phosphor particles were charged in an alumina crucible and 1100 ° C. under a nitrogen atmosphere containing a small amount of hydrogen. Sintering was carried out at a temperature of 2 hours to obtain a phosphor composition.

수득된 형광체의 주사전자현미경사진을 도 1에 나타내었다. 또한, 자외선(주파장147nm) 여기 하에서의 활성제인 유로퓸의 함량에 따른 발광특성 그래프를 도 2에 나타내었으며, 색순도 그래프를 도 3에 나타내었다. 또한, 색좌표를 하기 표 1에 나타내었다.Scanning electron micrographs of the obtained phosphors are shown in FIG. 1. In addition, a graph of light emission characteristics according to the content of europium, which is an activator under ultraviolet (wavelength 147 nm) excitation, is shown in FIG. 2, and a graph of color purity is shown in FIG. 3. In addition, the color coordinates are shown in Table 1 below.

실시예 2Example 2

Y1-xBO3:Eux에서 x가 0.05가 되도록 질산이트륨(Y(NO3)3) 4.0692g, 붕산(H3BO3) 0.6915g, 질산유로퓸(Eu(NO3)3) 0.2393g을 사용하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 형광체 조성물을 수득하였다.Y 1-x BO 3 : 4.0692 g of yttrium nitrate (Y (NO 3 ) 3 ), boric acid (H 3 BO 3 ) 0.6915 g, europium nitrate (Eu (NO 3 ) 3 ) 0.2393 g so that x is 0.05 in Eu x Except for using the same as in Example 1 to obtain a phosphor composition.

수득된 형광체 자외선(주파장 147nm) 여기 하에서의 활성제인 유로퓸의 함량에 따른 발광특성 그래프를 도 2에 나타내었으며, 색순도 그래프를 도 3에 나타내었다.The luminescence properties according to the content of europium, an activator under the obtained phosphor ultraviolet (wavelength 147 nm) excitation, are shown in FIG. 2, and a graph of color purity is shown in FIG. 3.

실시예 3Example 3

Y1-xBO3:Eux에서 x가 0.1이 되도록 질산이트륨(Y(NO)3)3) 3.8357g, 붕산(H3BO3) 0.6880g, 질산유로퓸(Eu(NO3)3) 0.4763g을 사용하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 형광체 조성물을 수득하였다.Y 1-x BO 3 : yttrium nitrate (Y (NO) 3 ) 3 ) 3.8357 g, boric acid (H 3 BO 3 ) 0.6880 g, europium nitrate (Eu (NO 3 ) 3 ) 0.4763 so that x is 0.1 in Eu x Except for using g was carried out in the same manner as in Example 1 to obtain a phosphor composition.

수득된 형광체 자외선(주파장 147nm) 여기 하에서의 활성제인 유로퓸의 함량에 따른 발광특성 그래프를 도 2에 나타내었으며, 색순도 그래프를 도 3에 나타내었다.The luminescence properties according to the content of europium, an activator under the obtained phosphor ultraviolet (wavelength 147 nm) excitation, are shown in FIG. 2, and a graph of color purity is shown in FIG. 3.

실시예 4Example 4

Y1-xBO3:Eux에서 x가 0.15가 되도록 질산이트륨(Y(NO3)3) 3.6045g, 붕산(H3BO3) 0.6846g, 질산유로퓸(Eu(NO3)3) 0.7109g을 사용하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 형광체 조성물을 수득하였다.Y 1-x BO 3 : yttrium nitrate (Y (NO 3 ) 3 ) 3.6045 g, boric acid (H 3 BO 3 ) 0.6846 g, europium nitrate (Eu (NO 3 ) 3 ) 0.7109 g so that x is 0.15 in Eu x Except for using the same as in Example 1 to obtain a phosphor composition.

수득된 형광체 자외선(주파장 147nm) 여기 하에서의 활성제인 유로퓸의 함량에 따른 발광특성 그래프를 도 2에 나타내었으며, 색순도 그래프를 도 3에 나타내었다.The luminescence properties according to the content of europium, an activator under the obtained phosphor ultraviolet (wavelength 147 nm) excitation, are shown in FIG. 2, and a graph of color purity is shown in FIG. 3.

실시예 5Example 5

Y1-xBO3:Eux에서 x가 0.2가 되도록 질산이트륨(Y(NO3)3) 3.3757g, 붕산(H3BO3) 0.6812g, 질산유로퓸(Eu(NO3)3) 0.9431g을 사용하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 형광체 조성물을 수득하였다.Y 1-x BO 3 : 3.3757 g of yttrium nitrate (Y (NO 3 ) 3 ), boric acid (H 3 BO 3 ) 0.6812 g, europium nitrate (Eu (NO 3 ) 3 ) 0.9431 g so that x is 0.2 in Eu x Except for using the same as in Example 1 to obtain a phosphor composition.

수득된 형광체 자외선(주파장 147nm) 여기 하에서의 활성제인 유로퓸의 함량에 따른 발광특성 그래프를 도 2에 나타내었으며, 색순도 그래프를 도 3에 나타내었다.The luminescence properties according to the content of europium, an activator under the obtained phosphor ultraviolet (wavelength 147 nm) excitation, are shown in FIG. 2, and a graph of color purity is shown in FIG. 3.

따라서, 본 발명에 의하면 고압반응기를 이용하여 구형의 균일한 형광체 입자를 제공하는 효과가 있으며, 다른 방법으로 제조된 형광체 보다 낮은 온도와 짧은 후처리 시간으로도 충분한 발광특성을 갖는 것으로 확인되어 우수한 생산성을 제공하는 효과가 있다.Therefore, according to the present invention, it is effective to provide spherical uniform phosphor particles using a high pressure reactor, and has been found to have sufficient light emission characteristics even at a lower temperature and a shorter post-treatment time than the phosphors prepared by other methods. Has the effect of providing.

이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although the present invention has been described in detail only with respect to the described embodiments, it will be apparent to those skilled in the art that various modifications and variations are possible within the technical scope of the present invention, and such modifications and modifications are within the scope of the appended claims.

Claims (1)

유로퓸 활성 붕산이트륨 적색 형광체(Y1-xBO3:Eux)(여기에서 x는 0.01 내지 0.2g원자/몰임)의 조성을 갖도록 Y(NO3)3, Y2(SO4)3, YCl3등과 같은 수용성 이트륨염, 붕산암모늄, 붕산칼륨, 붕산나트륨, 붕산리튬 등과 같은 붕소화합물 및 Eu(NO3)3), Eu2(SO4)3, EuCl3등과 같은 수용성 유로퓸염들로 이루어지는 그룹 중에서 선택된 각 형광체 원료들을 물에 용해시킨 원료수용액들을 교반시키면서 혼합시켜 수득되는 원료수화물을 고압반응기 내에서 150 내지 250℃에서 6 내지 48시간 동안 열분해시킨 후, 중성분위기 또는 환원성분위기 중에서 800 내지 1100℃에서 1 내지 6시간 동안 소결시켜서 이루어짐을 특징으로 하는 구형의 적색 발광 형광체.Y (NO 3 ) 3 , Y 2 (SO 4 ) 3 , YCl 3 to have a composition of europium activated yttrium borate red phosphor (Y 1-x BO 3 : Eu x ), where x is from 0.01 to 0.2 g atoms / mole Water soluble yttrium salt such as ammonium borate, potassium borate, sodium borate, lithium borate and the like, and a group consisting of water soluble europium salts such as Eu (NO 3 ) 3 ), Eu 2 (SO 4 ) 3 and EuCl 3 The raw material hydrate obtained by mixing the selected raw material solutions dissolved in water with stirring was thermally decomposed in a high pressure reactor at 150 to 250 ° C. for 6 to 48 hours, and then at 800 to 1100 ° C. in a medium or reducing atmosphere. Spherical red light emitting phosphor, characterized in that made by sintering for 1 to 6 hours.
KR10-2001-0017782A 2001-04-03 2001-04-03 Spherical shape red color luminescence composition KR100388278B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0017782A KR100388278B1 (en) 2001-04-03 2001-04-03 Spherical shape red color luminescence composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0017782A KR100388278B1 (en) 2001-04-03 2001-04-03 Spherical shape red color luminescence composition

Publications (2)

Publication Number Publication Date
KR20020077998A true KR20020077998A (en) 2002-10-18
KR100388278B1 KR100388278B1 (en) 2003-06-19

Family

ID=27699810

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0017782A KR100388278B1 (en) 2001-04-03 2001-04-03 Spherical shape red color luminescence composition

Country Status (1)

Country Link
KR (1) KR100388278B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101893000B1 (en) 2017-03-09 2018-08-29 성균관대학교 산학협력단 Chloride based electron emitting materials and manufacturing method of the same

Also Published As

Publication number Publication date
KR100388278B1 (en) 2003-06-19

Similar Documents

Publication Publication Date Title
KR100293330B1 (en) A preparing method for green fluorescent body based orthosilicate
WO2002088275A1 (en) Phosphor and production method therefor
KR100547522B1 (en) Method for producing high brightness small particle red emitting phosphor
US7378038B2 (en) Process for producing phosphors
JP2005060557A (en) Method for producing fluorescent material powder, fluorescent material powder and fluorescent material composition
KR100309707B1 (en) Process for Preparing Oxidized Phosphor Particles by Spray Pyrolysis Employing Flux
KR100388278B1 (en) Spherical shape red color luminescence composition
Gu et al. Nitridation from core-shell oxides for tunable luminescence of BaSi 2 O 2 N 2: Eu 2+ LED phosphors
JP5315501B2 (en) Method for producing fluorescent light emitting powder and fluorescent light emitting powder
JP2001172620A (en) Method for producing red light emitting fluorescent microparticle
JP2000336353A (en) Production of fluorescent aluminate
KR100487454B1 (en) Method for Producing Rare Earth Borates, and Use of the Resulting Borates in Luminescence
KR100416019B1 (en) Manufacturing method of fluorescent
KR100390775B1 (en) Preparation of red phosphor particles for PDP by spray pyrolysis
Kang et al. Green-emitting yttrium silicate phosphor particles prepared by large scale ultrasonic spray pyrolysis
KR100411176B1 (en) Preparation method of blue and green emitting Barium-Magnesium-aluminate phosphor particles by spray pyrolysis using non-organic polymer solution
KR100424861B1 (en) Preparing process for spherical red phosphor based on borates using hydrolysis
KR102425861B1 (en) DC fluorescent particle, Method for preparing thereof and fluorescent ink including the same
JP2000109825A (en) Preparation of terbium-activated yttrium aluminate fluorescent substance
CN108531176B (en) Self-assembly preparation method of nano cubic fence fluorescent material
JP3367359B2 (en) Phosphor and its manufacturing method
JP2004026995A (en) Phosphor for vacuum-ultraviolet-excitable luminescent element and vacuum-ultraviolet-excitable luminescent element using the phosphor
JP2004027036A (en) Phosphor for vacuum-ultraviolet-excitable luminescent element and vacuum-ultraviolet-excitable luminescent element using the phosphor
JP2001107042A (en) Production method of phosphor powder
KR20040019205A (en) Silicate phosphor and a preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee