KR20020071735A - Metal polish composition and polishing method - Google Patents

Metal polish composition and polishing method Download PDF

Info

Publication number
KR20020071735A
KR20020071735A KR1020020011060A KR20020011060A KR20020071735A KR 20020071735 A KR20020071735 A KR 20020071735A KR 1020020011060 A KR1020020011060 A KR 1020020011060A KR 20020011060 A KR20020011060 A KR 20020011060A KR 20020071735 A KR20020071735 A KR 20020071735A
Authority
KR
South Korea
Prior art keywords
metal
abrasive composition
composition according
metal abrasive
polishing
Prior art date
Application number
KR1020020011060A
Other languages
Korean (ko)
Inventor
우에다가즈마사
마쯔미야스오
Original Assignee
스미또모 가가꾸 고오교오 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001057925A external-priority patent/JP2002261052A/en
Application filed by 스미또모 가가꾸 고오교오 가부시끼가이샤 filed Critical 스미또모 가가꾸 고오교오 가부시끼가이샤
Publication of KR20020071735A publication Critical patent/KR20020071735A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE: Provided are a metal polish composition comprising a chelate resin particle and an inorganic particle, which can polish metals at high speed, and a polishing method of metal. CONSTITUTION: The metal polish composition comprises a chelate resin particle and an inorganic particle. The composition further comprises a polishing accelerator. The polishing accelerator is nitric acid or nitrate. The polishing accelerator is nitric acid or ammonium nitrate. The chelate resin particle is a chelate resin particle having a functional group containing at least one atom selected from the group consisting of an oxygen atom, nitrogen atom, sulfur atom and phosphorus atom. The chelate resin particle is a chelate resin particle having at least one functional group selected from the group consisting of an aminocarboxylate group, aminophosphonate group and iminodiacetate group.

Description

금속 연마재 조성물 및 연마 방법 {METAL POLISH COMPOSITION AND POLISHING METHOD}Metal Abrasive Composition and Polishing Method {METAL POLISH COMPOSITION AND POLISHING METHOD}

본 발명은 금속 연마재 조성물에 관한 것이다.The present invention relates to a metal abrasive composition.

최근, LSI 의 고집적화 및 고성능화를 위해 다양한 미세 가공 기술의 연구 개발이 진행되고 있다. 이들중에서, 연마재와 피연마체 사이의 화학적 작용과 연마재 중의 연마 입자의 기계적 작용을 복합화시킨 기술인 화학적 기계 연마 (이하, CMP 라고함) 방법은 다층 배선 형성 공정에서의 층간 절연막의 평탄화, 금속 플러그 형성, 매립 금속 배선의 형성, 매립 소자 분리 등에 중요한 기술이기 때문에, 다양한 검토가 이루어지고 있다.In recent years, research and development of various microfabrication technologies have been conducted for high integration and high performance of LSI. Among them, the chemical mechanical polishing (hereinafter referred to as CMP) technique, which combines the chemical action between the abrasive and the abrasive and the mechanical action of the abrasive particles in the abrasive, is used to planarize the interlayer insulating film, form the metal plug, Since it is an important technique for formation of a buried metal wiring, separation of a buried element, etc., various examination is made.

예컨대, 일본 공개 특허 공보 평10-310766 호에는 이산화규소 등의 연마재, 암모늄 화합물 및 물로 이루어지는 연마재 조성물이 개시되어 있고, 킬레이트성 화합물을 첨가해도 되는 것도 개시되어 있다. 그러나, 이 킬레이트성 화합물은 제품의 품질 유지나 안정화의 목적을 위해 첨가되어 있고, 이 연마재 조성물을 사용하여 연마를 실시하였지만, 만족스러운 연마 속도를 얻을 수 없었다.For example, Japanese Laid-Open Patent Publication No. 10-310766 discloses an abrasive composition comprising an abrasive such as silicon dioxide, an ammonium compound and water, and also discloses that a chelating compound may be added. However, this chelating compound was added for the purpose of maintaining the quality of the product or stabilizing the product, and polishing was performed using this abrasive composition, but a satisfactory polishing rate was not obtained.

또한, 일본 공개 특허 공보 평4-363385 호에는 킬레이트성 화합물, 알루미나, 알루미늄염 및 물로 이루어지는 연마재 조성물이 개시되어 있고, 일본 공개 특허 공보 평11-21545 호에는 킬레이트성 화합물, 이산화규소 등의 연마재, 금속염 및 물로 이루어지는 연마재 조성물이 개시되어 있다. 그러나, 이들 연마재 조성물을 사용하여 연마를 실시한 경우도, 만족스러운 연마 속도를 얻을 수 없었다.Japanese Unexamined Patent Publication No. Hei 4-363385 discloses an abrasive composition comprising a chelating compound, alumina, aluminum salt and water, and Japanese Unexamined Patent Publication No. Hei 11-21545 discloses an abrasive such as a chelate compound, silicon dioxide, and the like. An abrasive composition comprising a metal salt and water is disclosed. However, even when polishing was performed using these abrasive compositions, satisfactory polishing rate could not be obtained.

본 발명의 목적은 금속을 빠른 속도로 연마할 수 있는 금속 연마재 조성물을 제공하는 것에 있다.An object of the present invention is to provide a metal abrasive composition capable of polishing a metal at high speed.

도 1 은 pH 와 제타 전위의 관계를 나타낸다.1 shows the relationship between pH and zeta potential.

본 발명자들은 상기한 바와 같은 문제가 없는 금속 연마재 조성물을 발견하기 위해 예의 검토를 거듭한 결과, 킬레이트 수지 입자 및 무기 입자를 함유하는 금속 연마재 조성물을 반도체 장치의 금속막의 연마에 사용한 경우, 금속을 빠른 속도로 연마할 수 있음을 발견하고, 본 발명을 완성시키기에 이르렀다.The present inventors have diligently studied to find a metal abrasive composition having no problem as described above. As a result, when a metal abrasive composition containing chelated resin particles and inorganic particles is used for polishing a metal film of a semiconductor device, It has been found that polishing can be carried out at a speed, and the present invention has been completed.

즉, 본 발명은 킬레이트 수지 입자 및 무기 입자를 함유하는 금속 연마재 조성물에 관한 것이다.That is, the present invention relates to a metal abrasive composition containing chelate resin particles and inorganic particles.

발명의 실시형태Embodiment of the invention

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명의 금속 연마재 조성물은 킬레이트 수지 입자 및 무기 입자를 함유하는 것이 특징이다.The metal abrasive composition of the present invention is characterized by containing chelate resin particles and inorganic particles.

킬레이트 수지 입자는 금속과 착체를 형성하는 배위 원자를 복수개 갖는 다좌 배위자를 표면에 갖는 것이다. 일반적으로, 2 개 이상의 배위 원자를 갖는 다좌 배위자가 금속 이온에 결합되면, 킬레이트환을 형성하여, 단좌 배위자가 배위된 착체보다 안전도가 커지는 성질을 갖기 때문에, 연마 대상 금속 이온을 포착하는 능력이 커져 화학적 작용을 증대시킬 수 있다.Chelate resin particles have a multidentate ligand having a plurality of coordinating atoms forming a complex with a metal on its surface. In general, when a multidentate ligand having two or more coordinating atoms is bonded to a metal ion, a chelate ring is formed, and since the single ligand is more secure than the coordinated complex, the ability to capture the metal ion to be polished becomes large. Can enhance chemical action.

킬레이트 수지 입자가 갖는 관능기로서는, 산소 원자, 질소 원자, 황 원자 및 인 원자로 이루어지는 군에서 선택되는 1 종 이상의 원자를 함유하는 관능기를 들 수 있다.As a functional group which a chelate resin particle has, the functional group containing 1 or more types of atoms chosen from the group which consists of an oxygen atom, a nitrogen atom, a sulfur atom, and a phosphorus atom is mentioned.

이 관능기로서는, 예컨대 아미노카르복실산기, 아미노포스폰산기 및 이미노2아세트산기 등을 들 수 있는데, 금속 이온을 포착하는 능력의 관점에서 이미노2아세트산기가 바람직하다.As this functional group, an aminocarboxylic acid group, an aminophosphonic acid group, an imino diacetic acid group, etc. are mentioned, for example, An imino diacetic acid group is preferable from a viewpoint of the ability to capture | acquire metal ion.

이들 관능기를 갖는 킬레이트 수지 입자는, 일반적으로 관능기의 대이온 (counter ion) 이 나트륨 이온인 Na 형이 사용되는데, 반도체 제조 공정에 적용하는 경우, 나트륨 이온은 절연막중에 확산되는 등에 의해 장치 특성에 악영향을 주기 때문에, 본 발명에서는 대이온으로서, 반도체 장치로의 영향이 적은 수소 이온 (H 형), 또는 하기 일반식으로 표시되는 암모늄 이온 (암모늄형) 이 바람직하게 사용된다 :In the chelate resin particles having these functional groups, a Na type in which the counter ions of the functional groups are generally sodium ions is used. When applied to a semiconductor manufacturing process, sodium ions are adversely affected on the device characteristics due to diffusion in the insulating film. In the present invention, hydrogen ions (H type) having a low influence on the semiconductor device or ammonium ions (ammonium type) represented by the following general formula are preferably used as counter ions in the present invention:

+NR1R2R3R4 + NR 1 R 2 R 3 R 4

(식중, R1, R2, R3및 R4는 각각 독립적으로, 수소 원자, 탄소수 1∼5 의 알킬기 또는 벤질기를 나타낸다).(In formula, R <1> , R <2> , R <3> and R <4> show a hydrogen atom, a C1-C5 alkyl group, or a benzyl group each independently.

R1, R2, R3및 R4는 수소 원자 또는 탄소수 1∼5 의 알킬기인 것이 바람직하고, 수소 원자인 것이 보다 바람직하다. 탄소수 1∼5 의 포화 알킬기로서는, 예컨대 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, sec-부틸기, tert-부틸기, 펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기 등을 들 수 있다.It is preferable that R <1> , R <2> , R <3> and R <4> are a hydrogen atom or a C1-C5 alkyl group, and it is more preferable that it is a hydrogen atom. Examples of the saturated alkyl group having 1 to 5 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group and tert -Pentyl group, etc. are mentioned.

아미노카르복실산기, 아미노포스폰산기 및 이미노2아세트산기를 관능기로서 갖는 킬레이트 수지 입자는 공지된 방법에 의해 제조할 수 있다. 예컨대, 목적으로 하는 관능기를 갖는 단량체를 중합시키는 방법, 중합된 중합체 입자가 갖는 관능기를 목적으로 하는 관능기로 화학 변환시키는 방법 등을 들 수 있다.Chelate resin particles having an aminocarboxylic acid group, an aminophosphonic acid group and an imino diacetic acid group as a functional group can be produced by a known method. For example, the method of superposing | polymerizing the monomer which has a target functional group, the method of chemically converting the functional group which the polymerized polymer particle has into the target functional group, etc. are mentioned.

관능기의 대이온을, H 형 및 상기 일반식의 암모늄형으로 이루어지는 군에서 선택된 1 종 이상으로 하는 방법도, 공지된 방법을 적용할 수 있다. 예컨대, 원료 단계에서 목적의 대이온으로 하는 방법, 다른 대이온을 이온 교환법에 의해 목적의 대이온으로 하는 방법 등을 들 수 있다. 이온 교환법에서는, 예컨대 대이온을 Na 형으로 하여 제조한 킬레이트 수지 입자를 컬럼에 충전하고, 염산 수용액을 통과시킴으로써 H 형으로 할 수 있고, 이것에 다시 아민 수용액을 통과시킴으로써 암모늄형으로 할 수 있다. 이온 교환법에서는, 컬럼을 사용하여 통과시키는 방법외에, 교반 등에 의한 배치로 (batch-wise) 처리할 수도 있다.A well-known method can be applied also to the method of making counterion of a functional group into 1 or more types chosen from the group which consists of H type and the said ammonium type of the said general formula. For example, the method of making a target counter ion in the raw material stage, the method of making another counter ion into a target counter ion by the ion exchange method, etc. are mentioned. In the ion exchange method, for example, a chelate resin particle produced by using a counter ion as Na type can be filled into a column and passed through an aqueous hydrochloric acid solution to form H, and then passed through an aqueous amine solution to form ammonium. In the ion exchange method, in addition to the method of passing through a column, it may be treated in a batch-wise manner by stirring or the like.

킬레이트 수지 입자의 관능기는 수지의 입자 표면에 존재하는 것이 바람직하지만, 입자 표면에 존재하지 않아도, 연마시의 응력 등으로 입자가 파쇄되거나 코팅막이 벗겨지는 등에 의해 금속을 포착하는 관능기가 표면에 노출되어 피연마 금속과 접촉할 수 있는 것이면, 동일한 효과를 얻을 수 있어 바람직하게 사용된다.Although the functional groups of the chelate resin particles are preferably present on the surface of the particles of the resin, even if they are not present on the surface of the particles, a functional group that traps the metal is exposed to the surface due to fracture of the particles or peeling of the coating film due to stress during polishing or the like. As long as it can contact with a to-be-polished metal, the same effect can be acquired and it is used preferably.

킬레이트 수지 입자는 평균 입경이 1.0 ㎛ 이하의 입자인 것이 바람직하다. 이 입자의 평균 입경이 1.0 ㎛ 이하에서는, 연마 표면의 가공 정밀도가 더욱 향상되기 때문에 바람직하다. 여기서, 평균 입경이란, 본 발명에서 동적 광산란법에 의해 측정한 평균 입경 (평균 2 차 입경) 을 말한다.It is preferable that a chelate resin particle is particle whose average particle diameter is 1.0 micrometer or less. If the average particle diameter of this particle | grain is 1.0 micrometer or less, since the processing precision of a grinding | polishing surface further improves, it is preferable. Here, an average particle diameter means the average particle diameter (average secondary particle diameter) measured by the dynamic light scattering method in this invention.

평균 입경이 1.0 ㎛ 이하인 킬레이트 수지 입자는 중합에 의해 직접 제조할 수도 있지만, 평균 입경이 1.0 ㎛ 보다 큰 중합체 입자를 습식 분쇄함으로써 얻을 수도 있다.The chelate resin particles having an average particle diameter of 1.0 µm or less can be produced directly by polymerization, but can also be obtained by wet milling polymer particles having an average particle diameter larger than 1.0 µm.

이 습식 분쇄에는, 예컨대 진동밀, 볼밀 등의 공지된 분쇄 장치를 사용할 수 있다. 분쇄 장치 등으로부터의 금속 오염을 피하기 위해, 접액부 (接液部) 에 지르코니아나 중합체를 사용하는 것이 바람직하다. 또한, 필요에 따라, 습식의 중력 침강, 원심 침강, 필터링 등의 조작에 의해, 조대 입자 (coarse particles) 를 분류하여 원하는 입도로 정립 (整粒) 하여 사용해도 된다.For this wet grinding, a known grinding device such as a vibration mill or a ball mill can be used. In order to avoid metal contamination from a crushing apparatus etc., it is preferable to use a zirconia and a polymer for a liquid contact part. If necessary, coarse particles may be classified and sized to a desired particle size by operations such as wet gravity sedimentation, centrifugal sedimentation, and filtering.

또한, 습식 분쇄를 실시하기 전에 건식 분쇄에 의해 조쇄 (coarse grinding) 처리를 실시하는 것은, 습식 분쇄시의 분쇄 효율을 높일 수 있기 때문에 적합하다. 건식 분쇄의 방법으로는, 예컨대 죠 크러셔 (jaw crusher), 자이레토리 크러셔 (gyratory crusher), 롤 크러셔 (roll crusher), 에지 러너 (edge runner), 해머 크러셔 (hammer crusher), 볼밀 (ball mill), 제트밀 (jet mill), 디스크 크러셔 (disk crusher) 등의 공지된 분쇄 장치를 사용할 수 있다. 분쇄 장치 등으로부터의 금속 오염을 피하기 위해, 접촉부에 지르코니아나 중합체를 사용하는 것이 바람직하다. 또한, 필요에 따라, 건식의 풍력 분류 장치 등의 장치에 의해, 조대 입자를 분류하여 원하는 입도로 정립하여 사용해도 된다.In addition, coarse grinding by dry grinding prior to wet grinding is suitable because the grinding efficiency during wet grinding can be improved. Dry grinding methods include, for example, jaw crusher, gyratory crusher, roll crusher, edge runner, hammer crusher, ball mill, ball mill, Known crushing apparatuses such as a jet mill, a disk crusher can be used. In order to avoid metal contamination from the grinding device or the like, it is preferable to use zirconia or a polymer at the contact portion. In addition, you may classify coarse particle | grains by using apparatuses, such as a dry wind sorting apparatus, as needed, and may use it, setting to a desired granularity.

습식 분쇄하는 킬레이트 수지의 관능기의 대이온은 H 형 및 상기 일반식의 암모늄형으로 이루어지는 군에서 선택된 1 종 이상인 것이 바람직하지만, 대이온이 H 형 또는 암모늄형이 아닌 경우에는, 습식 분쇄 후, 이온 교환함으로써 대이온을 H 형 또는 암모늄형으로 해도 된다. 예컨대, Na 형의 킬레이트 수지를 습식 분쇄한 후, 염산, 질산 등의 프로톤산을 첨가하여 나트륨 이온을 유리시키고, 막여과 등에 의해 나트륨 이온을 제거함으로써 H 형을 얻을 수 있다. 또한, H 형으로 한 것에 아민을 첨가함으로써 암모늄형을 얻을 수 있다.The counter ion of the functional group of the chelate resin to be wet-pulverized is preferably at least one selected from the group consisting of H type and ammonium type of the above general formula, but when the counter ion is not H type or ammonium type, after the wet grinding, the ion By exchange, the counterion may be H type or ammonium type. For example, H type can be obtained by wet-pulverizing a Na type chelating resin, then freeing sodium ions by adding protonic acid, such as hydrochloric acid and nitric acid, and removing sodium ions by membrane filtration or the like. Moreover, an ammonium type can be obtained by adding an amine to what was made into H type.

본 발명의 연마재 조성물에서의 킬레이트 수지 입자의 농도는 0.1∼20 중량% 가 바람직하다. 킬레이트 수지 입자의 농도가 0.1 중량% 미만에서는, 충분한 연마 속도를 얻을 수 없는 경향이 있고, 반면 킬레이트 수지 입자의 농도가 20 중량% 를 초과하면, 첨가 농도에 알맞은 연마 속도의 향상은 관찰되지 않는 경향이 있다.The concentration of the chelate resin particles in the abrasive composition of the present invention is preferably 0.1 to 20% by weight. If the concentration of the chelate resin particles is less than 0.1 wt%, a sufficient polishing rate tends not to be obtained, whereas if the concentration of the chelate resin particles exceeds 20 wt%, an improvement in the polishing rate suitable for the addition concentration tends not to be observed. There is this.

본 발명의 연마재 조성물에서의 킬레이트 수지 입자의 제타 전위와 무기 입자의 제타 전위는 동부호인 것이 바람직하고, 모두 음의 제타 전위를 갖는 것이 보다 바람직하다. 킬레이트 수지 입자의 제타 전위와 무기 입자의 제타 전위가 역부호인 경우, 충분한 연마 속도를 가질 수 없게 되는 경향이 있다. 또한, 제타 전위는 레이저 도플러법 제타 전위 측정 장치 (상품명 : Coulter DELSA 440SX, Coulter 제조) 에 의해 측정하였다.The zeta potential of the chelate resin particles and the zeta potential of the inorganic particles in the abrasive composition of the present invention are preferably in the eastern arc, and more preferably all have a negative zeta potential. When the zeta potential of the chelate resin particles and the zeta potential of the inorganic particles are inverse signs, there is a tendency that they cannot have sufficient polishing rates. In addition, the zeta potential was measured by a laser Doppler method zeta potential measuring apparatus (trade name: Coulter DELSA 440SX, manufactured by Coulter).

본 발명에 사용되는 무기 입자로서는, 예컨대 실리카, 알루미노 실리케이트, 산화세륨, 이산화망간, 지르코니아 등의 금속 산화물로 이루어지는 무기 입자를 들 수 있다. 이들 무기 입자중에서, 경도가 다른 무기 입자보다 유연하여 금속막에 스크래치를 잘 발생시키지 않고, 또한 물에 대해 비중이 가깝기 때문에 잘 침강되지 않는다는 관점에서 실리카 입자가 바람직하며, 염가이면서 입자의 형상이 구형에 가깝기 때문에 스크래치를 잘 발생시키지 않는다는 관점에서 콜로이드성 실리카가 보다 바람직하다. 이들 무기 입자는 단독으로 사용해도, 2 종 이상을 조합하여 사용해도 된다.As an inorganic particle used for this invention, the inorganic particle which consists of metal oxides, such as a silica, an aluminosilicate, a cerium oxide, manganese dioxide, a zirconia, is mentioned, for example. Among these inorganic particles, silica particles are preferable from the viewpoint of hardness that is softer than other inorganic particles, does not easily scratch the metal film, and does not settle well because of its specific gravity close to water, and is inexpensive and spherical in shape. Colloidal silica is more preferable from the standpoint of hardly scratching because it is close to. These inorganic particles may be used alone or in combination of two or more thereof.

킬레이트 수지 입자의 평균 입경을 A, 무기 입자의 평균 입경을 B 로 했을 때, 평균 입경의 비 (A/B) 가 30 이상인 것이 바람직하다. 평균 입경의 비 (A/B) 가 30 미만인 경우, 본 발명의 효과가 작아지는 경향이 있다.When the average particle diameter of a chelate resin particle is A and the average particle diameter of an inorganic particle is B, it is preferable that ratio (A / B) of an average particle diameter is 30 or more. When ratio (A / B) of an average particle diameter is less than 30, there exists a tendency for the effect of this invention to become small.

본 발명의 연마재 조성물에서의 무기 입자의 농도는 특별히 한정되지 않지만, 금속막과 절연막의 연마 속도비를 향상시키기 위해서는, 0.1 중량% 이상 6 중량% 미만인 것이 바람직하고, 금속막의 연마 속도를 더욱 향상시키기 위해서는, 6 중량% 이상이 바람직하다. 무기 입자의 농도가 0.1 중량% 미만에서는 충분한 연마 속도를 얻을 수 없는 경향이 있다.Although the concentration of the inorganic particles in the abrasive composition of the present invention is not particularly limited, in order to improve the polishing rate ratio between the metal film and the insulating film, it is preferable that the concentration is 0.1 wt% or more and less than 6 wt%, and further improving the polishing rate of the metal film. In order to do this, 6 weight% or more is preferable. If the concentration of the inorganic particles is less than 0.1% by weight, a sufficient polishing rate tends not to be obtained.

본 발명의 연마재 조성물은 추가로 연마 촉진제를 함유하고 있어도 되고, 이 연마 촉진제로서는, 예컨대 질산 또는 그의 염을 들 수 있다. 구체적으로는, 질산, 및 질산의 암모늄염, 나트륨염, 칼륨염, 리튬염, 베릴륨염, 마그네슘염 및 칼슘염을 들 수 있다. 그러나, 적용되는 기판이 반도체 집적 회로용 실리콘 기판 등인 경우는, 알칼리 금속, 알칼리 토금속 등에 의한 오염을 피하기 위해, 질산 또는 질산암모늄이 바람직하게 사용된다.The abrasive composition of the present invention may further contain a polishing accelerator, and examples thereof include nitric acid or a salt thereof. Specifically, nitric acid and ammonium salt, sodium salt, potassium salt, lithium salt, beryllium salt, magnesium salt, and calcium salt of nitric acid are mentioned. However, when the substrate to be applied is a silicon substrate for a semiconductor integrated circuit or the like, in order to avoid contamination by alkali metals, alkaline earth metals, or the like, nitrate or ammonium nitrate is preferably used.

본 발명의 연마재 조성물에서의 연마 촉진제의 농도는 0.1∼20 중량% 가 바람직하다. 연마 촉진제의 농도가 0.1 중량% 미만에서는 충분한 연마 속도를 가질 수 없게 되는 경향이 있고, 반면 연마 촉진제의 농도가 20 중량% 를 초과하면 첨가 농도에 알맞은 연마 속도의 향상은 관찰되지 않는 경향이 있다.The concentration of the polishing accelerator in the abrasive composition of the present invention is preferably 0.1 to 20% by weight. If the concentration of the polishing accelerator is less than 0.1% by weight, there is a tendency that it is impossible to have a sufficient polishing rate. On the other hand, if the concentration of the polishing accelerator is more than 20% by weight, an improvement in the polishing rate suitable for the addition concentration tends not to be observed.

본 발명의 연마재 조성물은 통상 물에 분산되어 슬러리로 사용되며, 그 때의 pH 는 3∼9 가 바람직하고, 보다 바람직한 pH 는 4∼8 이다.The abrasive composition of the present invention is usually dispersed in water and used as a slurry. The pH at that time is preferably 3 to 9, and more preferably 4 to 8 pH.

이 연마재 조성물에는 pH 조정제를 첨가해도 되고, 이 pH 조정제로서는 공지된 산 및 알칼리를 사용할 수 있지만, 금속 이온을 함유하지 않는 질산, 인산, 황산, 수산화암모늄, 아민 등의 산 및 알칼리를 사용하는 것이 바람직하다.A pH adjuster may be added to this abrasive composition, and well-known acids and alkalis can be used as the pH adjuster, but it is preferable to use acids and alkalis such as nitric acid, phosphoric acid, sulfuric acid, ammonium hydroxide, and amine that do not contain metal ions. desirable.

본 발명의 연마재 조성물은 연마 입자의 침강 방지, 제품의 품질 유지, 장기 안정성 제공, 스크래치 및 디싱 방지 등을 목적으로 계면활성제를 첨가하여 사용할 수도 있다.The abrasive composition of the present invention may be used by adding a surfactant for the purpose of preventing sedimentation of abrasive particles, maintaining product quality, providing long-term stability, preventing scratches and dishing, and the like.

계면활성제로서는, 음이온계, 양이온계, 비이온계 및 양성계를 사용할 수 있고, 2 종 이상을 조합하여 사용할 수도 있다.As surfactant, anionic type, cationic type, nonionic type, and amphoteric type can be used, and can also be used in combination of 2 or more type.

본 발명의 연마재 조성물은 피연마 대상막의 종류에 따라, 스크래치 및 디싱 등을 발생시키지 않도록, 부식 방지제 등을 첨가하여 사용할 수도 있다. 부식 방지제로서는 공지된 부식 방지제를 사용할 수 있는데, 벤조트리아졸 및 벤조트리아졸 유도체를 사용하는 것이 바람직하다. 부식 방지제의 농도는 상기 조성물에 대해 약 0.01∼1.0 중량% 의 범위인 것이 바람직하다.The abrasive composition of the present invention may be used by adding a corrosion inhibitor or the like so as not to cause scratches, dishing, or the like depending on the kind of the film to be polished. As a corrosion inhibitor, well-known corrosion inhibitor can be used, It is preferable to use a benzotriazole and a benzotriazole derivative. The concentration of corrosion inhibitor is preferably in the range of about 0.01 to 1.0% by weight based on the composition.

본 발명의 연마재 조성물에는 추가로 산화제를 배합함으로써, 금속막의 연마 속도를 향상시킬 수 있다.By further mix | blending an oxidizing agent with the abrasive | polishing agent composition of this invention, the polishing rate of a metal film can be improved.

산화제로서는, 예컨대 과산화수소, 요오드산, 요오드산염 등의 공지된 산화제를 들 수 있고, 이들중에서 과산화수소가 바람직하다.As an oxidizing agent, well-known oxidizing agents, such as hydrogen peroxide, iodic acid, and iodide, are mentioned, for example, hydrogen peroxide is preferable among these.

산화제의 함유량은 통상 상기 조성물에 대해 약 0.1∼15 중량% 이다. 이 산화제의 농도가 0.1 중량% 미만인 경우에는, 연마 속도를 향상시키는 효과가 발현되기 어려운 경향이 있고, 또한 15 중량% 를 초과해도, 첨가 농도에 알맞은 연마 속도의 향상은 관찰되지 않는 경향이 있다.The content of the oxidizing agent is usually about 0.1 to 15% by weight based on the composition. When the concentration of this oxidant is less than 0.1% by weight, the effect of improving the polishing rate tends to be less likely to be expressed, and even when it exceeds 15% by weight, the improvement of the polishing rate suitable for the addition concentration tends not to be observed.

본 발명의 연마재 조성물의 제조에서 혼합 순서 등은 특별히 제한되는 것은 아니다. 물에 분산시켜 슬러리로 하는 경우에는, 공지된 방법, 예컨대 호모게니저 (homogenizer), 초음파, 습식 매체밀 (wet medium mill) 등에 의한 분산 방법을 적용할 수 있다.In the preparation of the abrasive composition of the present invention, the mixing order and the like are not particularly limited. In the case of dispersing in water to form a slurry, a known method such as a homogenizer, an ultrasonic wave, a wet medium mill or the like may be applied.

또한, 산화제를 배합하는 경우에는, 미리 모든 성분을 혼합해도 되고, 또는 산화제와 기타 성분을 각각 제조하여, 사용시에 양자를 혼합하여 본 발명의 조성물로 해도 된다.In addition, when mix | blending an oxidizing agent, you may mix all components beforehand, or you may manufacture an oxidizing agent and other components, respectively, and mix them both at the time of use, and may be set as the composition of this invention.

또한, 본 발명의 연마재 조성물은 비교적 고농도의 원액을 제조하여, 사용시에 희석하여 실제 연마 가공시에 사용해도 된다.In addition, the abrasive composition of the present invention may be prepared at a relatively high concentration of the stock solution, diluted at the time of use, and used during actual polishing.

이와 같이 하여 얻어지는 본 발명의 연마재 조성물은 반도체 장치 제조시의 금속막 연마 용도에 바람직하게 사용된다.Thus, the abrasive | polishing agent composition of this invention obtained is used suitably for the metal film polishing use at the time of semiconductor device manufacture.

피연마 대상 금속막으로는, 순수 알루미늄 (Al) 막, 알루미늄-실리카-구리 (AlSiCu) 합금, 알루미늄-구리 (AlCu) 합금 등의 알루미늄을 주성분으로 하는 합금으로 이루어지는 막, 순수 구리 (Cu) 막, 텅스텐막, 티탄막, 질화티탄막, 탄탈막, 질화탄탈막 등을 들 수 있는데, 바람직하게는 탄탈을 함유하는 금속막, 보다 바람직하게는 탄탈막 및 질화탄탈막을 들 수 있다.Examples of the metal film to be polished include a film made of an aluminum-based alloy such as a pure aluminum (Al) film, an aluminum-silica-copper (AlSiCu) alloy, an aluminum-copper (AlCu) alloy, and a pure copper (Cu) film. , Tungsten film, titanium film, titanium nitride film, tantalum film, tantalum nitride film and the like, and preferably a metal film containing tantalum, more preferably a tantalum film and tantalum nitride film.

본 발명의 연마 방법은 금속을 화학적 기계 연마에 의해 연마하는 방법으로서, 연마재 조성물로서 본 발명의 금속 연마재 조성물을 사용하는 것이 특징이다.The polishing method of the present invention is a method of polishing a metal by chemical mechanical polishing, and is characterized by using the metal abrasive composition of the present invention as an abrasive composition.

본 발명의 연마 방법에 의하면, 금속막을 고속으로 연마할 수 있다.According to the polishing method of the present invention, the metal film can be polished at high speed.

실시예Example

이하, 본 발명을 실시예에 의해 설명하지만, 본 발명이 실시예에 의해 한정되지 않는 것은 물론이다.Hereinafter, although an Example demonstrates this invention, it cannot be overemphasized that this invention is not limited by an Example.

슬러리중의 입자의 평균 입경은 마이크로 트랙 (micro track) UPA 입도 분석계 (Nikkiso K.K. 제조) 에 의해 누적 50 % 직경을 측정하여, 이것을 평균 입경으로 하였다.The average particle diameter of the particles in the slurry was measured by cumulative 50% diameter by a micro track UPA particle size analyzer (manufactured by Nikkoso K.K.), which was taken as the average particle diameter.

연마 속도는 스퍼터링으로 막형성한 탄탈막 (Ta 막) 이 부착된 웨이퍼, 또는 절연막 (SiO2막) 이 부착된 웨이퍼를 하기 조건으로 연마함으로써 측정하였다.The polishing rate was measured by polishing a wafer with a tantalum film (Ta film) formed by sputtering or a wafer with an insulating film (SiO 2 film) attached under the following conditions.

[연마 조건][Polishing condition]

연마기 : MECAPOL E-460 (PRESI 사)Polishing Machine: MECAPOL E-460 (PRESI)

패드 : 폴리우레탄 타입Pad: Polyurethane Type

회전 정반의 회전수 : 60 rpmNumber of revolutions of the rotating table: 60 rpm

웨이퍼 지지대의 회전수 : 60 rpmRotational speed of wafer support: 60 rpm

연마 압력 : 200 g/㎠Polishing Pressure: 200 g / ㎠

연마재 유량 : 100 ㎖/분Abrasive flow rate: 100 ml / min

연마 시간 : 1 분Polishing time: 1 minute

실시예 1Example 1

(킬레이트 수지 슬러리의 제조)(Production of Chelate Resin Slurry)

이미노2아세트산기를 관능기로 갖는 킬레이트 수지 (상품명 : Sumichelate MC-700, Sumitomo Chemical Co., Ltd. 제조, 대이온 : Na 형) 3 ㎏ 을 해머밀 (회전수 : 14000 rpm, 스크린 직경 : φ1.0 ㎜) 로 건식 분쇄하였다. 평균 입경은 126 ㎛ 였다. 얻어진 분쇄품을 다시 해머밀 (회전수 : 14000 rpm, 스크린 직경 : φ0.3 ㎜) 로 건식 분쇄하였다. 평균 입경은 91 ㎛ 였다. 얻어진 분쇄품 300 g 에 순수 310 g 을 첨가하고, 5 ㎜φ의 지르코니아 볼을 사용하여, 회전수 70 rpm 및 처리 시간 30 시간의 조건에서 볼밀 처리하였다. 얻어진 슬러리중의 수지 입자의 평균 입경은 0.344 ㎛ 였다.Chelate resin having an imino diacetic acid group as a functional group (trade name: Sumichelate MC-700, manufactured by Sumitomo Chemical Co., Ltd., counter ion: Na type), 3 kg of a hammer mill (rotation speed: 14000 rpm, screen diameter: φ1. 0 mm) to dry grinding. The average particle diameter was 126 micrometers. The obtained pulverized product was again dry pulverized with a hammer mill (rotational speed: 14000 rpm, screen diameter: phi 0.3 mm). The average particle diameter was 91 micrometers. 310 g of pure water was added to 300 g of the obtained pulverized products, and ball milling was performed under conditions of a rotation speed of 70 rpm and a treatment time of 30 hours using a 5 mmφ zirconia ball. The average particle diameter of the resin particle in the obtained slurry was 0.344 micrometers.

이렇게 하여 얻어진 수지 입자 슬러리를 0.01 N 염화칼륨수의 완충액에 분산시키고, 이 수분산체의 pH 를 염산 또는 수산화칼륨에 의해 pH 약 2∼11 로 조정하고, 각 pH 에서의 제타 전위를 레이저 도플러법 제타 전위 측정 장치 (상품명 : Coulter DELSA 440SX, Coulter 제조) 에 의해 측정하였다. 또한, 이하의 실시예에서 사용하는 무기 입자 슬러리 및 염화비닐 라텍스 슬러리를 0.01 N 염화칼륨수의완충액에 분산시키고, 상기와 동일하게 하여 각각의 제타 전위를 측정하였다. 결과를 표 1 및 도 1 에 나타낸다.The resin particle slurry thus obtained was dispersed in a buffer of 0.01 N potassium chloride water, the pH of this aqueous dispersion was adjusted to pH 2 to 11 with hydrochloric acid or potassium hydroxide, and the zeta potential at each pH was adjusted by the laser Doppler method zeta potential. It measured by the measuring apparatus (brand name: Coulter DELSA 440SX, Coulter make). In addition, the inorganic particle slurry and the vinyl chloride latex slurry which are used by the following example were disperse | distributed to the buffer solution of 0.01 N potassium chloride aqueous solution, and it carried out similarly to the above, and measured each zeta potential. The results are shown in Table 1 and FIG. 1.

킬레이트 수지Chelate resin 염화비닐 라텍스Vinyl chloride latex 콜로이드성 실리카 AColloidal Silica A 콜로이드성 실리카 BColloidal Silica B pHpH ξ전위 (㎷)ξpotential (㎷) pHpH ξ전위 (㎷)ξpotential (㎷) pHpH ξ전위 (㎷)ξpotential (㎷) pHpH ξ전위 (㎷)ξpotential (㎷) 2.92.9 -44.5-44.5 2.92.9 10.910.9 3.33.3 -32.4-32.4 2.92.9 -35.9-35.9 4.34.3 -44.1-44.1 4.04.0 12.312.3 4.04.0 -35.6-35.6 3.53.5 -38.3-38.3 6.36.3 -39.3-39.3 5.25.2 -8.0-8.0 5.75.7 -40.9-40.9 6.16.1 -44.9-44.9 9.19.1 -33.0-33.0 8.58.5 -63.0-63.0 7.97.9 -42.2-42.2 8.88.8 -62.7-62.7 10.310.3 -40.2-40.2 10.010.0 -62.5-62.5 10.010.0 -48.5-48.5 10.210.2 -63.9-63.9

(연마재의 제조)(Manufacture of Abrasive Materials)

얻어진 수지 입자 슬러리와, 무기 입자로서의 콜로이드성 실리카 A (평균 입경 : 0.010 ㎛) 및 산화제로서의 과산화수소를 표 2 의 조성으로 혼합한 후, 질산을 사용하여 pH 를 4 로 함으로써 연마재를 얻었다. 연마 결과는 표 2 에 나타낸다.After mixing the obtained resin particle slurry, colloidal silica A (average particle diameter: 0.010 micrometer) as an inorganic particle, and hydrogen peroxide as an oxidizing agent in the composition of Table 2, the abrasive was obtained by making pH 4 using nitric acid. Polishing results are shown in Table 2.

도 1 의 pH 와 제타 전위의 상관 관계를 나타내는 그래프로부터 판독한, pH 4 에서의 킬레이트 수지 입자의 제타 전위는 약 -44 ㎷, 콜로이드성 실리카 A 의 제타 전위는 약 -35.6 ㎷ 로, 동부호였다.The zeta potential of the chelate resin particles at pH 4, which was read from a graph showing the correlation between the pH and zeta potential of FIG. 1, was about -44 mA, and the zeta potential of colloidal silica A was about -35.6 Hz, which was the eastern arc. .

비교예 1 및 2Comparative Examples 1 and 2

상기 수지 입자 슬러리의 제조에서 얻어진 수지 입자 단독의 연마재를 비교예 1 로, 상기 콜로이드성 실리카 A (평균 입경 : 0.010 ㎛) 단독의 연마재를 비교예 2 로 하여, 각각 표 2 의 조성이 되도록 제조한 후, 질산을 사용하여 pH 를 4 로 함으로써 연마재를 얻었다. 연마 결과는 표 2 에 나타낸다.The abrasive of the resin particles alone obtained in the preparation of the above resin particle slurry was prepared as Comparative Example 1, and the abrasive of the colloidal silica A (average particle diameter: 0.010 µm) alone was used as Comparative Example 2, so as to obtain the compositions shown in Table 2, respectively. Then, abrasive was obtained by making pH into 4 using nitric acid. Polishing results are shown in Table 2.

비교예 3 및 4Comparative Examples 3 and 4

이미노2아세트산기를 관능기로 갖는 킬레이트 수지를 분쇄한 수지 입자 슬러리 대신에 염화비닐 라텍스 슬러리 (평균 입경 : 0.349 ㎛) 를 사용하고, 염화비닐 라텍스 단독의 연마재를 비교예 3 으로, 상기 콜로이드성 실리카 A 와의 혼합계의 연마재를 비교예 4 로 하여, 각각 표 2 의 조성이 되도록 제조한 후, 질산을 사용하여 pH 를 4 로 함으로써 연마재를 얻었다. 연마 결과는 표 2 에 나타낸다.A vinyl chloride latex slurry (average particle size: 0.349 占 퐉) was used in place of the pulverized resin particle slurry in which the chelate resin having an imino diacetic acid group as a functional group was used. The abrasive of the mixed system with a comparative example 4 was prepared so that it might become the composition of Table 2, respectively, and the abrasive was obtained by making pH 4 using nitric acid. Polishing results are shown in Table 2.

도 1 의 pH 와 제타 전위의 상관 관계를 나타내는 그래프로부터 판독한, pH 4 에서의 염화비닐 라텍스의 제타 전위는 +12.3 ㎷, 콜로이드성 실리카 A 의 제타 전위는 약 -35.6 ㎷ 로, 역부호였다.The zeta potential of vinyl chloride latex at pH 4 was +12.3 kV and the zeta potential of colloidal silica A was approximately -35.6 kV, which was read from a graph showing the correlation between pH and zeta potential of FIG.

실시예 2Example 2

상기 실시예 1 에서 얻어진 수지 입자 슬러리와, 무기 입자로서의 콜로이드성 실리카 B (평균 입경 : 0.122 ㎛) 및 산화제로서의 과산화수소를 표 2 의 조성으로 혼합한 후, 질산을 사용하여 pH 를 4 로 함으로써 연마재를 얻었다. 연마 결과는 표 2 에 나타낸다.After mixing the resin particle slurry obtained in Example 1, the colloidal silica B (average particle diameter: 0.122 micrometer) as an inorganic particle, and hydrogen peroxide as an oxidizing agent in the composition of Table 2, the abrasive material was made into pH 4 using nitric acid. Got it. Polishing results are shown in Table 2.

도 1 의 pH 와 제타 전위의 상관 관계를 나타내는 그래프로부터 판독한, pH 4 에서의 킬레이트 수지 입자의 제타 전위는 약 -44 ㎷, 콜로이드성 실리카 B 의 제타 전위는 약 -40 ㎷ 로, 동부호였다.The zeta potential of the chelate resin particles at pH 4, read from a graph showing the correlation between the pH and zeta potential of FIG. 1, was about -44 mA, and the zeta potential of colloidal silica B was about -40 mA, which was the eastern arc. .

비교예 5Comparative Example 5

상기 콜로이드성 실리카 B (평균 입경 : 0.122 ㎛) 단독의 연마재를 비교예 5 로 하여, 표 2 의 조성이 되도록 제조한 후, 질산을 사용하여 pH 를 4 로 함으로써 연마재를 얻었다. 연마 결과는 표 2 에 나타낸다.After preparing the colloidal silica B (average particle diameter: 0.122 micrometer) single abrasive as the comparative example 5, it was made so that it may become the composition of Table 2, and the abrasive was obtained by making pH 4 using nitric acid. Polishing results are shown in Table 2.

슬러리 조성 (중량%)Slurry Composition (% by weight) 실시예 1Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 실시예 2Example 2 비교예 5Comparative Example 5 수지 입자Resin particles 5.05.0 10.010.0 10.010.0 5.05.0 5.05.0 무기 입자Inorganic particles 5.05.0 10.010.0 5.05.0 5.05.0 10.010.0 산화제Oxidant 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 연마 속도 (Å/분)Polishing Speed (Å / min) 724724 3737 214214 66 212212 350350 230230

표 2 의 결과로부터, 킬레이트 수지 입자와 무기 입자를 혼합한 연마재에 의한 연마에서는, 탄탈막을 고속으로 연마할 수 있었다. 또한, 연마후의 표면에 스크래치는 관찰되지 않았다. 반면, 킬레이트 수지 입자 단독의 연마재 및 무기 입자 단독의 연마재에서는, 탄탈막의 연마 속도는 낮았다. 또한, 킬레이트 수지 이외의 수지 입자와 무기 입자를 혼합한 연마재에 의한 연마에서도, 탄탈막의 연마 속도는 낮았다.From the results of Table 2, the tantalum film could be polished at high speed in the polishing by the abrasive material in which the chelate resin particles and the inorganic particles were mixed. In addition, no scratch was observed on the surface after polishing. On the other hand, in the abrasive of the chelate resin particles alone and the abrasive of the inorganic particles alone, the polishing rate of the tantalum film was low. Further, even in polishing by an abrasive material in which resin particles other than chelate resin and inorganic particles were mixed, the polishing rate of the tantalum film was low.

실시예 3Example 3

(연마재의 제조)(Manufacture of Abrasive Materials)

실시예 1 에서 얻어진 수지 입자 슬러리와, 무기 입자로서의 콜로이드성 실리카 A (평균 입경 : 0.010 ㎛), 연마 촉진제로서의 질산 및 산화제로서의 과산화수소를 표 3 의 조성으로 혼합하여 연마재 조성물을 얻었다. 결과를 표 3 에 나타낸다.The resin particle slurry obtained in Example 1, colloidal silica A (average particle diameter: 0.010 m) as inorganic particles, nitric acid as a polishing accelerator and hydrogen peroxide as an oxidizing agent were mixed in the composition of Table 3 to obtain an abrasive composition. The results are shown in Table 3.

실시예 4Example 4

질산을 질산암모늄으로 변경한 것 이외는 실시예 3 과 동일하게 하여 연마재조성물을 얻었다. 결과를 표 3 에 나타낸다.An abrasive composition was obtained in the same manner as in Example 3 except that the nitric acid was changed to ammonium nitrate. The results are shown in Table 3.

비교예 6Comparative Example 6

상기 수지 입자 슬러리의 제조에서 얻어진 수지 입자와, 연마 촉진제로서의 질산암모늄 및 산화제로서의 과산화수소를 표 3 의 조성으로 혼합하여 연마재 조성물을 얻었다. 결과를 표 3 에 나타낸다.The resin particle obtained by manufacture of the said resin particle slurry, and ammonium nitrate as a polishing accelerator, and hydrogen peroxide as an oxidizing agent were mixed by the composition of Table 3, and the abrasive composition was obtained. The results are shown in Table 3.

비교예 7Comparative Example 7

상기 콜로이드성 실리카 A (평균 입경 : 0.010 ㎛) 와, 연마 촉진제로서의 질산암모늄 및 산화제로서의 과산화수소를 표 3 의 조성으로 혼합하여 연마재 조성물을 얻었다. 결과를 표 3 에 나타낸다.Said colloidal silica A (average particle diameter: 0.010 micrometer), ammonium nitrate as a polishing accelerator, and hydrogen peroxide as an oxidizing agent were mixed by the composition of Table 3, and the abrasive composition was obtained. The results are shown in Table 3.

비교예 8Comparative Example 8

킬레이트 수지를 분쇄한 수지 입자 슬러리 대신에 킬레이트성 화합물로서 글리신을 사용하고, 연마 촉진제로서의 질산암모늄 및 산화제로서의 과산화수소를 표 3 의 조성으로 혼합하여 연마재 조성물을 얻었다. 결과를 표 3 에 나타낸다.Glycine was used as a chelating compound in place of the slurry of the pulverized chelate resin, and ammonium nitrate as a polishing accelerator and hydrogen peroxide as an oxidizing agent were mixed in the composition shown in Table 3 to obtain an abrasive composition. The results are shown in Table 3.

실시예 5Example 5

실시예 1 에서 얻어진 수지 입자 슬러리와, 무기 입자로서의 콜로이드성 실리카 B (평균 입경 : 0.122 ㎛), 연마 촉진제로서의 질산암모늄 및 산화제로서의 과산화수소를 표 3 의 조성으로 혼합하여 연마재 조성물을 얻었다. 결과를 표 3 에 나타낸다.The resin particle slurry obtained in Example 1, the colloidal silica B (average particle diameter: 0.122 micrometer) as an inorganic particle, ammonium nitrate as a polishing accelerator, and hydrogen peroxide as an oxidizing agent were mixed by the composition of Table 3, and the abrasive composition was obtained. The results are shown in Table 3.

비교예 9Comparative Example 9

상기 콜로이드성 실리카 B (평균 입경 : 0.122 ㎛), 연마 촉진제로서의 질산암모늄 및 산화제로서의 과산화수소를 표 3 의 조성으로 혼합하여 연마재 조성물을 얻었다. 결과를 표 3 에 나타낸다.The colloidal silica B (average particle diameter: 0.122 µm), ammonium nitrate as a polishing accelerator and hydrogen peroxide as an oxidizing agent were mixed in the compositions shown in Table 3 to obtain an abrasive composition. The results are shown in Table 3.

슬러리 조성 (중량%)Slurry Composition (% by weight) 실시예 3Example 3 실시예 4Example 4 비교예 6Comparative Example 6 비교예 7Comparative Example 7 비교예 8Comparative Example 8 실시예 5Example 5 비교예 9Comparative Example 9 킬레이트 수지 입자Chelate resin particles 1010 1010 1010 1010 킬레이트성 화합물Chelating compounds 1010 무기 입자Inorganic particles 8.38.3 8.38.3 8.38.3 8.38.3 8.38.3 8.38.3 연마 촉진제Polishing accelerator 2.02.0 2.62.6 2.62.6 2.62.6 2.62.6 2.62.6 2.62.6 산화제Oxidant 2.52.5 2.52.5 2.52.5 2.52.5 2.52.5 2.52.5 2.52.5 pHpH 4.04.0 8.68.6 8.78.7 4.04.0 5.05.0 8.98.9 7.17.1 연마 속도 (Å/분)Polishing Speed (Å / min) 922922 632632 4040 355355 277277 480480 369369

표 3 의 결과로부터, 킬레이트 수지 입자와 무기 입자 및 질산 또는 질산염을 혼합한 연마재에 의한 연마에서는, 탄탈막을 고속으로 연마할 수 있었다. 또한, 연마후의 표면에 스크래치는 관찰되지 않았다. 반면, 킬레이트 수지 대신에 킬레이트제를 사용한 연마재로는, 탄탈막의 연마 속도는 낮았다.From the results in Table 3, the tantalum film could be polished at high speed in the polishing by the abrasive mixed with the chelating resin particles, the inorganic particles and the nitric acid or the nitrate. In addition, no scratch was observed on the surface after polishing. On the other hand, as an abrasive using a chelating agent instead of a chelating resin, the polishing rate of the tantalum film was low.

실시예 6Example 6

(연마재의 제조)(Manufacture of Abrasive Materials)

실시예 1 에서 얻어진 수지 입자 슬러리와, 무기 입자로서의 콜로이드성 실리카 A (평균 입경 : 0.010 ㎛), 연마 촉진제로서의 질산암모늄 및 산화제로서의 과산화수소를 표 4 의 조성으로 혼합하여 연마재 조성물을 얻었다. 결과를 표 4 에 나타낸다.The resin particle slurry obtained in Example 1, the colloidal silica A (average particle diameter: 0.010 micrometer) as an inorganic particle, ammonium nitrate as a polishing accelerator, and hydrogen peroxide as an oxidizing agent were mixed by the composition of Table 4, and the abrasive composition was obtained. The results are shown in Table 4.

비교예 10Comparative Example 10

실시예 1 의 수지 입자 슬러리의 제조에서 얻어진 수지 입자와, 연마 촉진제로서의 질산암모늄 및 산화제로서의 과산화수소를 표 4 의 조성으로 혼합하여 연마재 조성물을 얻었다. 결과를 표 4 에 나타낸다.The resin particle obtained by manufacture of the resin particle slurry of Example 1, and ammonium nitrate as a polishing accelerator and hydrogen peroxide as an oxidizing agent were mixed by the composition of Table 4, and the abrasive composition was obtained. The results are shown in Table 4.

비교예 11Comparative Example 11

실시예 1 의 수지 입자 슬러리 대신에 킬레이트성 화합물로서 글리신을 사용하고, 연마 촉진제로서의 질산암모늄 및 산화제로서의 과산화수소를 표 4 의 조성으로 혼합하여 연마재 조성물을 얻었다. 결과를 표 4 에 나타낸다.Instead of the resin particle slurry of Example 1, glycine was used as a chelating compound, and ammonium nitrate as a polishing accelerator and hydrogen peroxide as an oxidizing agent were mixed in the composition of Table 4 to obtain an abrasive composition. The results are shown in Table 4.

실시예 7Example 7

(킬레이트 수지 슬러리의 제조)(Production of Chelate Resin Slurry)

관능기로서 이미노2아세트산기를 갖는 킬레이트 수지 (상품명 : Sumichelate MC-700, Sumitomo Chemical Co., Ltd. 제조, 대이온 : Na 형) 1 ℓ를 컬럼에 충전하여 초순수로 세정한 후, 2 N 염산 수용액 10 ℓ를 통과시키고, 다시 초순수로 세정하여 H 형의 킬레이트 수지로 하였다. 또한, 2 N 암모니아수 10 ℓ를 통과시키고, 다시 초순수로 세정ㆍ탈수시킴으로써 암모늄형의 킬레이트 수지를 얻었다. 동일하게 처리하여 얻은 암모늄형의 킬레이트 수지 27.5 ㎏ 을 임펠러밀 (Impeller mill) (상품명, Seishin Kigyosha K.K. 제조) 로 건식 분쇄하였다. 로터 회전수 6000 rpm 및 공급량 15 ㎏/hr 의 분쇄 조건에서 상기 분쇄를 실시하여 분쇄품 23.3 ㎏ 을 얻었다. 분쇄품의 평균 입경은 43 ㎛ 였다.1 L of a chelate resin having an imino diacetic acid group as a functional group (brand name: Sumichelate MC-700, manufactured by Sumitomo Chemical Co., Ltd., counter ion: Na type) was charged to a column and washed with ultrapure water, followed by 2N hydrochloric acid aqueous solution. After passing through 10 L, it was further washed with ultrapure water to obtain a H-type chelate resin. Furthermore, ammonium chelate resin was obtained by passing 10 L of 2N ammonia water and washing and dehydrating with ultrapure water again. 27.5 kg of an ammonium chelate resin obtained by the same treatment was dry pulverized with an Impeller mill (trade name, manufactured by Seishin Kigyosha K.K.). The grinding was carried out under grinding conditions of a rotor speed of 6000 rpm and a supply amount of 15 kg / hr to obtain 23.3 kg of a pulverized product. The average particle diameter of the pulverized product was 43 µm.

얻어진 분쇄품 2.6 ㎏ 에 초순수 6.9 ㎏ 을 첨가하고 교반하여 분산액을 얻고, 이것을 다이노소어밀 (Dinosaur mill) (상품명, Shinmal Enterprise K.K. 제조) 로 습식 분쇄하였다. 주변 속도 14 m/초 및 공급량 0.5 ℓ/분의 분쇄 조건에서 상기 분쇄를 10 회 실시하였다. 얻어진 킬레이트 수지 입자의 평균 입경은 0.32 ㎛ 였다.6.9 kg of ultrapure water was added to 2.6 kg of the obtained pulverized product, followed by stirring to obtain a dispersion liquid, which was wet pulverized with a Dinosaur mill (trade name, manufactured by Shinmal Enterprise K.K.). The grinding was carried out 10 times at a grinding speed of an ambient speed of 14 m / sec and a feed amount of 0.5 L / min. The average particle diameter of the obtained chelate resin particles was 0.32 μm.

얻어진 슬러리에, 무기 입자로서의 콜로이드성 실리카 A (평균 입경 : 0.010 ㎛), 연마 촉진제로서의 질산암모늄 및 산화제로서의 과산화수소를 표 4 의 조성으로 혼합하여 연마재 조성물을 얻었다. 결과를 표 4 에 나타낸다.To the obtained slurry, colloidal silica A (average particle diameter: 0.010 m) as inorganic particles, ammonium nitrate as a polishing accelerator and hydrogen peroxide as an oxidizing agent were mixed in the compositions shown in Table 4 to obtain an abrasive composition. The results are shown in Table 4.

슬러리 조성 (중량%)Slurry Composition (% by weight) 실시예 6Example 6 비교예 10Comparative Example 10 비교예 11Comparative Example 11 실시예 7Example 7 킬레이트 수지 입자Chelate resin particles 1.01.0 1.01.0 1.01.0 킬레이트성 화합물Chelating compounds 1.01.0 무기 입자Inorganic particles 1.01.0 1.01.0 1.01.0 연마 촉진제Polishing accelerator 2.62.6 2.62.6 2.62.6 2.62.6 산화제Oxidant 6.06.0 6.06.0 6.06.0 6.06.0 pHpH 7.67.6 7.87.8 4.74.7 6.16.1 Ta 연마 속도 (Å/분)Ta polishing rate (Å / min) 453453 22 270270 495495 SiO2연마 속도 (Å/분)SiO 2 polishing rate (ms / min) 1111 33 1010 77 Ta/SiO2선택비Ta / SiO 2 selectivity 4141 0.70.7 2727 7171

표 4 의 결과로부터, 킬레이트 수지 입자와 무기 입자 및 연마 촉진제를 혼합한 연마재에 의한 연마에서는, 금속막과 절연막의 연마 속도비가 높아, 금속막을 선택적으로 연마할 수 있었다. 또한, 연마후의 표면에 스크래치는 관찰되지 않았다. 반면, 킬레이트 수지 대신에 킬레이트제를 사용한 연마재로는, 금속막과 절연막의 연마 속도비가 낮아, 금속막을 선택적으로 연마할 수 없었다.From the results in Table 4, in the polishing by the abrasive material in which the chelating resin particles, the inorganic particles and the polishing accelerator were mixed, the polishing rate ratio between the metal film and the insulating film was high, and the metal film could be selectively polished. In addition, no scratch was observed on the surface after polishing. On the other hand, with an abrasive using a chelating agent instead of a chelating resin, the polishing rate ratio between the metal film and the insulating film was low, and the metal film could not be selectively polished.

본 발명에 의하면, 반도체 장치 제조시에 금속막을 빠른 속도로 연마하는 것이 가능해진다.According to the present invention, the metal film can be polished at a high speed in manufacturing the semiconductor device.

Claims (19)

킬레이트 수지 입자 및 무기 입자를 함유하는 금속 연마재 조성물.Metal abrasive composition containing a chelate resin particle and an inorganic particle. 제 1 항에 있어서, 추가로 연마 촉진제를 함유하는 금속 연마재 조성물.The metal abrasive composition according to claim 1, further comprising a polishing accelerator. 제 2 항에 있어서, 연마 촉진제가 질산 또는 질산염인 금속 연마재 조성물.The metal abrasive composition according to claim 2, wherein the polishing accelerator is nitric acid or nitrate. 제 2 항에 있어서, 연마 촉진제가 질산 또는 질산암모늄인 금속 연마재 조성물.3. The metal abrasive composition of claim 2, wherein the polishing promoter is nitrate or ammonium nitrate. 제 1 항에 있어서, 킬레이트 수지 입자가, 산소 원자, 질소 원자, 황 원자 및 인 원자로 이루어지는 군에서 선택된 1 종 이상의 원자를 함유하는 관능기를 갖는 킬레이트 수지 입자인 금속 연마재 조성물.The metal abrasive composition according to claim 1, wherein the chelate resin particles are chelate resin particles having a functional group containing at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom and a phosphorus atom. 제 1 항에 있어서, 킬레이트 수지 입자가, 아미노카르복실산기, 아미노포스폰산기 및 이미노2아세트산기로 이루어지는 군에서 선택된 1 종 이상의 관능기를 갖는 킬레이트 수지 입자인 금속 연마재 조성물.The metal abrasive composition according to claim 1, wherein the chelating resin particles are chelating resin particles having at least one functional group selected from the group consisting of aminocarboxylic acid groups, aminophosphonic acid groups and imino diacetic acid groups. 제 1 항에 있어서, 킬레이트 수지 입자의 관능기가, 수소 이온 및 하기 일반식으로 표시되는 암모늄 이온으로 이루어지는 군에서 선택된 1 종 이상의 대이온을 갖는 관능기인 금속 연마재 조성물 :The metal abrasive composition according to claim 1, wherein the functional group of the chelate resin particles is a functional group having at least one kind of counter ions selected from the group consisting of hydrogen ions and ammonium ions represented by the following general formula: +NR1R2R3R4 + NR 1 R 2 R 3 R 4 (식중, R1, R2, R3및 R4는 각각 독립적으로, 수소 원자, 탄소수 1∼5 의 알킬기 또는 벤질기를 나타냄).(Wherein R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a benzyl group). 제 7 항에 있어서, R1, R2, R3및 R4가 수소 원자인 금속 연마재 조성물.The metal abrasive composition according to claim 7, wherein R 1 , R 2 , R 3 and R 4 are hydrogen atoms. 제 1 항에 있어서, 킬레이트 수지 입자가, 평균 입경이 1.0 ㎛ 이하의 입자인 금속 연마재 조성물.The metal abrasive composition according to claim 1, wherein the chelate resin particles are particles having an average particle diameter of 1.0 m or less. 제 1 항에 있어서, 킬레이트 수지 입자의 제타 전위와 무기 입자의 제타 전위가 동부호인 금속 연마재 조성물.The metal abrasive composition according to claim 1, wherein the zeta potential of the chelate resin particles and the zeta potential of the inorganic particles are the eastern arc. 제 1 항에 있어서, 무기 입자가 콜로이드성 실리카인 금속 연마재 조성물.The metal abrasive composition according to claim 1, wherein the inorganic particles are colloidal silica. 제 1 항에 있어서, 킬레이트 수지 입자의 평균 입경을 A, 무기 입자의 평균 입경을 B 로 했을 때, 그 평균 입경의 비 (A/B) 가 30 이상인 금속 연마재 조성물.The metal abrasive composition according to claim 1, wherein when the average particle diameter of the chelate resin particles is A and the average particle diameter of the inorganic particles is B, the ratio (A / B) of the average particle diameter is 30 or more. 제 2 항에 있어서, 추가로 산화제를 함유하는 금속 연마재 조성물.The metal abrasive composition according to claim 2, further comprising an oxidizing agent. 제 13 항에 있어서, 산화제가 과산화수소인 금속 연마재 조성물.The metal abrasive composition according to claim 13, wherein the oxidant is hydrogen peroxide. 제 1 항에 있어서, 수용액으로 했을 경우, 이 수용액의 pH 가 3∼9 인 금속 연마재 조성물.The metal abrasive composition of Claim 1 whose pH is 3-9 of this aqueous solution, when it is set as aqueous solution. 제 1 항에 있어서, 금속이, 탄탈을 함유하는 금속인 금속 연마재 조성물.The metal abrasive composition according to claim 1, wherein the metal is a metal containing tantalum. 제 1 항에 있어서, 금속이 금속 탄탈 또는 질화탄탈인 금속 연마재 조성물.The metal abrasive composition according to claim 1, wherein the metal is metal tantalum or tantalum nitride. 제 1 항에 기재된 금속 연마재 조성물을 사용하는 금속의 연마 방법.A metal polishing method using the metal abrasive composition according to claim 1. 제 1 항에 기재된 금속 연마재 조성물을 사용하는 반도체 장치의 금속막의 연마 방법.The polishing method of the metal film of the semiconductor device using the metal abrasive composition of Claim 1.
KR1020020011060A 2001-03-02 2002-02-28 Metal polish composition and polishing method KR20020071735A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JPJP-P-2001-00057925 2001-03-02
JP2001057925A JP2002261052A (en) 2001-03-02 2001-03-02 Grinding agent and polishing method
JP2001208980 2001-07-10
JPJP-P-2001-00208980 2001-07-10
JP2001234645 2001-08-02
JPJP-P-2001-00234645 2001-08-02

Publications (1)

Publication Number Publication Date
KR20020071735A true KR20020071735A (en) 2002-09-13

Family

ID=27346152

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020011060A KR20020071735A (en) 2001-03-02 2002-02-28 Metal polish composition and polishing method

Country Status (2)

Country Link
US (1) US20030017785A1 (en)
KR (1) KR20020071735A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100458729B1 (en) * 2004-04-28 2004-12-03 박승근 The mixture for processing inner surface of vessel and method therefor
KR100496501B1 (en) * 2002-05-29 2005-06-22 동우 화인켐 주식회사 Cmp slurry composition for a diffusion barrier comprising tantalum metal or its derivation in a copper interconnect

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172606A (en) * 2002-11-08 2004-06-17 Sumitomo Chem Co Ltd Metal polishing material composition and polishing method
WO2005000984A1 (en) * 2003-06-27 2005-01-06 Showa Denko K.K. Polishing composition and method for polishing substrate using the composition
US7427361B2 (en) * 2003-10-10 2008-09-23 Dupont Air Products Nanomaterials Llc Particulate or particle-bound chelating agents
JP3892846B2 (en) * 2003-11-27 2007-03-14 株式会社東芝 CMP slurry, polishing method, and semiconductor device manufacturing method
US6997785B1 (en) 2004-12-23 2006-02-14 3M Innovative Properties Company Wafer planarization composition and method of use
KR100959439B1 (en) * 2005-04-14 2010-05-25 미쓰이 가가쿠 가부시키가이샤 Polishing slurry and polishing material using same
US7820067B2 (en) * 2006-03-23 2010-10-26 Cabot Microelectronics Corporation Halide anions for metal removal rate control
US8591763B2 (en) * 2006-03-23 2013-11-26 Cabot Microelectronics Corporation Halide anions for metal removal rate control
US7691287B2 (en) * 2007-01-31 2010-04-06 Dupont Air Products Nanomaterials Llc Method for immobilizing ligands and organometallic compounds on silica surface, and their application in chemical mechanical planarization
DE102007062571A1 (en) * 2007-12-22 2009-06-25 Evonik Degussa Gmbh Ceria and phyllosilicate-containing dispersion
JP5877940B2 (en) * 2010-04-08 2016-03-08 株式会社フジミインコーポレーテッド Method for polishing a wafer with copper and silicon exposed on the surface

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732887A (en) * 1984-10-12 1988-03-22 Asahi Kasei Kogyo Kabushiki Kaisha Composite porous material, process for production and separation of metallic element
US5783489A (en) * 1996-09-24 1998-07-21 Cabot Corporation Multi-oxidizer slurry for chemical mechanical polishing
US6190237B1 (en) * 1997-11-06 2001-02-20 International Business Machines Corporation pH-buffered slurry and use thereof for polishing
US6177026B1 (en) * 1998-05-26 2001-01-23 Cabot Microelectronics Corporation CMP slurry containing a solid catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496501B1 (en) * 2002-05-29 2005-06-22 동우 화인켐 주식회사 Cmp slurry composition for a diffusion barrier comprising tantalum metal or its derivation in a copper interconnect
KR100458729B1 (en) * 2004-04-28 2004-12-03 박승근 The mixture for processing inner surface of vessel and method therefor

Also Published As

Publication number Publication date
US20030017785A1 (en) 2003-01-23

Similar Documents

Publication Publication Date Title
KR102145405B1 (en) Composite particles, method of refining and use thereof
CN1053933C (en) Improved compositions and methods for polishing
CN101372089B (en) Method and slurry for tuning low-k versus copper removal rates during chemical mechanical polishing
KR101173753B1 (en) Copper-passivating cmp compositions and methods
US20040067649A1 (en) Silica and silica-based slurry
JP2002511650A (en) Slurry for polishing chemical-mechanical metal surfaces
CN109722172A (en) Composite particles, method for refining same, and use thereof
KR20020071735A (en) Metal polish composition and polishing method
CN1238812A (en) Multi-oxidizer slurry for chemical mechanical polishing
US6805812B2 (en) Phosphono compound-containing polishing composition and method of using same
US20080274620A1 (en) Chemical mechanical polishing agent kit and chemical mechanical polishing method using the same
WO1999047618A1 (en) Chemical mechanical polishing slurry useful for copper substrates
CN1312845A (en) Chemical mechanical polishing slurry useful for copper/tantalum substrate
TWI388638B (en) Ruthenium cmp compositions and methods
JP2006249129A (en) Method for producing polishing agent and polishing agent
JP2003514949A (en) Surface planarization composition and method
KR20010070475A (en) Abrasive for metal
JP2003517194A (en) Polishing composition for semiconductor substrate
KR20190132951A (en) Chemical mechanical polishing tungsten buffing slurries
JP3849091B2 (en) Aqueous dispersion for chemical mechanical polishing
US6447693B1 (en) Slurries of abrasive inorganic oxide particles and method for polishing copper containing surfaces
JP4657408B2 (en) Metal film abrasive
CN102477259A (en) Chemically mechanical polishing slurry
JP2001115146A (en) Abrasive for barrier film
CN102559059A (en) Chemical-mechanical polishing liquid

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid