KR20020069934A - Manufacturing method of strontium aluminate phosphor by the sol-gel method - Google Patents

Manufacturing method of strontium aluminate phosphor by the sol-gel method Download PDF

Info

Publication number
KR20020069934A
KR20020069934A KR1020010010530A KR20010010530A KR20020069934A KR 20020069934 A KR20020069934 A KR 20020069934A KR 1020010010530 A KR1020010010530 A KR 1020010010530A KR 20010010530 A KR20010010530 A KR 20010010530A KR 20020069934 A KR20020069934 A KR 20020069934A
Authority
KR
South Korea
Prior art keywords
mol
sol
phosphor
hours
mole
Prior art date
Application number
KR1020010010530A
Other languages
Korean (ko)
Other versions
KR100387659B1 (en
Inventor
한상목
신대용
Original Assignee
한상목
신대용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한상목, 신대용 filed Critical 한상목
Priority to KR10-2001-0010530A priority Critical patent/KR100387659B1/en
Publication of KR20020069934A publication Critical patent/KR20020069934A/en
Application granted granted Critical
Publication of KR100387659B1 publication Critical patent/KR100387659B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7786Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Structural Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE: Provided is a process for producing a strontium aluminate phosphor by using sol-gel method capable of producing a phosphor which is excellent in luminance and long persistence and can be calcined at relatively low temperature. CONSTITUTION: The process comprises the steps of (i) mixing 200-220 mol of distilled water(H2O) and 4-5 mol of isopropanol(iso-C3H7OH) and 0.1-0.3 mol of HCl which is catalyst, into 1 mol of Al(O-nC3H7)3 and stirring the mixture until pH of the mixture is not changed at about 80 deg.C; (ii) sequentially adding 55-65 mol of distilled water, and 0.02-0.03 mol of Eu(NO3)3.6H2O and Dy(NO3)3.6H2O respectively, and 0.1-0.3 mol of HNO3(which is catalyst) into 0.95 mol of Sr(NO3)2 and stirring the mixture until pH of the mixture is not changed; (iii) mixing solutions formed in the steps (i) and (ii) and stirring the mixture until pH of the mixture is not changed, so as to obtain a sol, and drying the sol at 100 deg.C for 48 hours and pulverizing the dried sol; (iv) calcining the pulverized powder in atmosphere of 1200 deg.C or more for 4 hours and re-pulverizing the powder; and (v) heat-treating the repulverized powder under reducing atmosphere of mixed gas of nitrogen and hydrogen in 9:1 at 1300 deg.C for 3 hours.

Description

졸겔법을 이용한 스트론튬알루미네이트 형광체의 제조방법{Manufacturing method of strontium aluminate phosphor by the sol-gel method}Manufacturing method of strontium aluminate phosphor by the sol-gel method

본 발명은 스트론튬알루미네이트 형광체의 제조방법에 관한 것으로, 보다 상세하게는 발광특성 및 잔광특성 등의 형광특성이 우수한 SrAl2O4:Eu2+,Dy3+형광체를 졸겔법을 이용하여 제조할 수 있도록 한 졸겔법을 이용한 스트론튬알루미네이트 형광체의 제조방법에 관한 것이다.The present invention relates to a method for producing a strontium aluminate phosphor, and more particularly, SrAl 2 O 4 : Eu 2+ and Dy 3+ phosphors having excellent fluorescence characteristics such as luminescence and afterglow characteristics can be prepared by using a sol-gel method. It relates to a method for producing a strontium aluminate phosphor using the sol-gel method.

일반적으로 형광체는 자외선 또는 방사선으로부터 여기된 에너지를 흡수한 후, 여기광원을 차단하여도 에너지를 빛으로 방출하는 소재를 말한다. 상기 형광체에는 축광형과 자발광형이 있으며, 자발광형 형광체는 여기원으로 방사성 물질을 포함하고 있어 연속적이고 긴 발광 시간을 갖고 있으나 사용 후 폐기상에 문제점이 있다. 또, 축광성 형광체는 태양광이나 전등 등의 여기 에너지를 축적하여 이 에너지를 가시광으로 환원하여 장시간 발광하는 형광체을 말하는 것으로 야광도료 등에 주로 이용되고 있다.In general, a phosphor refers to a material that absorbs energy excited from ultraviolet rays or radiation and then emits energy as light even when the excitation light source is blocked. The phosphor has a photoluminescent type and a self-luminous type, and the self-luminous type phosphor has a radioactive material as an excitation source, and thus has a continuous and long emission time, but there is a problem in disposal after use. In addition, the phosphorescent phosphor refers to a phosphor that accumulates excitation energy such as sunlight or light, reduces the energy to visible light, and emits light for a long time, and is mainly used for luminous paints and the like.

대표적인 장잔광성 형광체로는 ZnS:Cu 녹색형광체가 알려져 있으며, 상기 ZnS:Cu 녹색형광체는 1920년대부터 연구되어 야광도료, 야광시계, 방재표시 등의 여러 용도에 이용되고 있다. 그러나, 이 형광체는 잔광시간이 짧고 발광의 감소가 크며 입자를 미세화시켜 도료화, 잉크화하여 사용할 경우 잔광휘도가 급격하게 감소하는 단점으로 인하여 사용이 제한되고 있는 실정이다.As a representative long afterglow phosphor, ZnS: Cu green phosphors are known, and the ZnS: Cu green phosphors have been studied since the 1920's and are used in various applications such as luminous paints, luminous clocks, and disaster prevention displays. However, this phosphor has a short afterglow time, a large decrease in light emission, and the use of the phosphor is limited due to a disadvantage that the afterglow luminance is drastically reduced when the particle is made finer and used as a paint or ink.

따라서, 종래의 축광재료에 비하여 장잔광특성 뿐만 아니라 화학적, 환경적으로도 안정한 범용의 새로운 축광재료, 특히 산화물계 장잔광 축광재료의 개발이 절실히 요구된다.Therefore, there is an urgent need for the development of a general-purpose new photoluminescent material, in particular an oxide-based afterglow photoluminescent material, which is chemically and environmentally stable as well as long afterglow property compared to the conventional photoluminescent material.

이로 인하여 알려진 축광재료중의 하나가 바로 스트론튬알루미네이트(SrO-Al2O3)계 형광체로 특히, SrAl2O4:Eu2+,Dy3+축광성 형광체가 널리 알려져 있다. 상기 SrO-Al2O3계 형광체는 화학적으로 안정할 뿐만 아니라 내구성이 우수하며, 여기원으로서 방사성 물질을 갖고 있지 않으면서도 우수한 안정성으로 인하여 최근 널리 연구되고 있는 형광체 중의 하나이다. 특히, 상기 SrAl2O4:Eu2+,Dy3+형광체의 잔광휘도, 잔광수명은 ZnS:Cu 형광체와 비교하여 약 10배정도 향상되었으며 내광성이 우수하여 실외의 자외선에 장시간 노출시켜도 뛰어난 안정성을 보여준다.Therefore, one of the known photoluminescent materials is a strontium aluminate (SrO-Al 2 O 3 ) -based phosphor, and in particular, SrAl 2 O 4 : Eu 2+ and Dy 3+ photoluminescent phosphors are widely known. The SrO-Al 2 O 3 -based phosphor is not only chemically stable but also excellent in durability, and is one of phosphors that have been widely studied recently because of its excellent stability without having a radioactive material as an excitation source. In particular, afterglow luminance and afterlife life of the SrAl 2 O 4 : Eu 2+ and Dy 3+ phosphors are improved by about 10 times compared to those of ZnS: Cu phosphors, and have excellent light resistance and show excellent stability even when exposed to outdoor UV light for a long time. .

상기 SrAl2O4:Eu2+,Dy3+형광체의 제조방법으로 플로팅존(floating Zone)법과 수열합성법 및 고상반응법 등이 알려져 있다. 그러나, 상기 플로팅존법은 제조시 고가의 장비를 필요로하므로 단가를 상승시키는 단점이 있다. 또, 수열합성법은 출발물질이 저렴하고, 입자크기, 화학양론비 등을 비교적 자유롭게 제어할 수 있다는 이점이 있으나 고가의 장비가 필요하다는 단점이 있다.Floating zone method, hydrothermal synthesis method, solid phase reaction method and the like are known as methods for producing the SrAl 2 O 4 : Eu 2+ and Dy 3+ phosphors. However, since the floating zone method requires expensive equipment in manufacturing, there is a disadvantage in that the unit cost is increased. In addition, the hydrothermal synthesis method has the advantage that the starting material is inexpensive, and the particle size, stoichiometric ratio, etc. can be controlled relatively freely, but expensive equipment is required.

또한 고상반응법은 상기 SrAl2O4:Eu2+형광체를 제조하기 위하여 융제를 첨가하지 않은 상태에서 SrCO3, Eu2O3, Al2O3등과 같은 원료분말을 혼합분하여 1400℃ 이상의 고온에서 열처리하여 제조하는 것으로 높은 소성온도와 긴 소성시간을 필요로 하고 있어 입자형상과 크기의 조절이 어렵다는 단점이 있다.In addition, in the solid phase reaction method, raw materials such as SrCO 3 , Eu 2 O 3 , Al 2 O 3, and the like are mixed and powdered without a flux to prepare the SrAl 2 O 4 : Eu 2+ phosphor. It is difficult to control particle shape and size because it requires high firing temperature and long firing time because it is manufactured by heat treatment at.

이에 본 발명은 형광특성이 우수한 SrAl2O4:EU2+,Dy3+형광체를 제조하기 위하여 입자의 형상 및 크기 조절이 용이한 졸-겔법을 이용함으로서 비교적 낮은 온도에서 소성이 가능할 뿐만 아니라 발광 및 잔광특성이 우수한 형광체의 제조가 가능하도록 한 졸겔법을 이용한 스트론튬알루미네이트 형광체의 제조방법을 제공하는데 그 목적이 있다.Accordingly, the present invention uses a sol-gel method that can easily adjust the shape and size of particles to prepare SrAl 2 O 4 : EU 2+ , Dy 3+ phosphors having excellent fluorescence characteristics, and thus, can be fired at a relatively low temperature and emit light. And to provide a method for producing a strontium aluminate phosphor using a sol-gel method to enable the production of a phosphor having excellent afterglow characteristics.

도 1은 하소 온도의 변화에 따른 형광체의 X선 회절분석 결과를 나타낸 도면.1 is a view showing the results of X-ray diffraction analysis of the phosphor according to the change in calcination temperature.

도 2는 Eu(NO3)3·6H2O와 Dy(NO3)3·6H2O의 첨가량 변화에 따른 형광체의 발광스펙트럼을 나타낸 도면.FIG. 2 is a diagram showing emission spectra of phosphors according to changes in the addition amount of Eu (NO 3 ) 3 .6H 2 O and Dy (NO 3 ) 3 .6H 2 O.

도 3은 Eu(NO3)3·6H2O와 Dy(NO3)3·6H2O의 첨가량 변화에 따른 형광체의 잔광특성을 나타낸 도면.3 is a view showing the afterglow characteristic of a phosphor according to the addition amount of Eu (NO 3 ) 3 .6H 2 O and Dy (NO 3 ) 3 .6H 2 O.

도 4는 제조된 형광체의 분쇄 입도에 따른 발광스펙트럼을 나타낸 도면.4 is a view showing a light emission spectrum according to the crushed particle size of the prepared phosphor.

도 5는 제조된 형광체의 분쇄 입도에 따른 잔광특성을 나타낸 도면.5 is a view showing afterglow characteristics according to the pulverized particle size of the manufactured phosphor.

상기한 목적을 달성하기 위하여 본 발명은The present invention to achieve the above object

Al(O-nC3H7)31몰에 대하여 증류수(H2O) 200몰 내지 220몰과 이소프로판올(iso-C3H7OH) 4몰 내지 5몰 및 촉매로 염산(HCl) 0.1몰 내지 0.3몰로 혼합하고 약 80℃의 온도에서 pH의 변화가 없을 때까지 교반하고, 이와는 별도로 Sr(NO3)20.95몰에 증류수를 55몰 내지 65몰로 첨가한 후 Eu(NO3)3·6H2O와 Dy(NO3)3·6H2O를 각각 0.02몰 내지 0.03몰 첨가한 다음 촉매로 HNO3를 0.1 내지 0.3몰 첨가하여 pH의 변화가 없을 때까지 교반하고, 상기에서 제조한 각각의 용액을 혼합한 후 80℃에서 pH의 변화가 없을 때까지 교반하여 얻어진 졸을 100℃에서 48시간 이상 건조시킨 후 분쇄한 다음, 분쇄된 분말을 1200℃ 이상의 대기 중에서 4시간 동안 하소한 후 재분쇄하고, 이를 다시 1300℃에서 질소와 수소를 9:1로 혼합한 가스의 환원분위기하에서 3시간 동안 열처리하는 것을 특징으로 하는 졸겔법을 이용한 스트론튬알루미네이트 형광체의 제조방법을 제공함으로서 달성할 수 있다.200 to 220 moles of distilled water (H 2 O), 4 to 5 moles of isopropanol (iso-C 3 H 7 OH) and 0.1 hydrochloric acid (HCl) as catalyst per 1 mole of Al (O- n C 3 H 7 ) 3 Molar to 0.3 mole and stirred at a temperature of about 80 ° C. until there is no change in pH. Separately, 0.95 mole of Sr (NO 3 ) 2 is added to 55 mole to 65 moles of distilled water, followed by Eu (NO 3 ) 3. 0.02 mol to 0.03 mol of 6H 2 O and Dy (NO 3 ) 3 .6H 2 O were added, and then 0.1 to 0.3 mol of HNO 3 was added to the catalyst and stirred until there was no change in pH. After mixing the solution of and stirred at 80 ℃ until there is no change in pH, the obtained sol was dried at 100 ℃ for more than 48 hours and pulverized, and then the pulverized powder was calcined in an atmosphere of 1200 ℃ or more for 4 hours and then Pulverized and heat-treated at 1300 ° C. for 3 hours under a reducing atmosphere of a gas mixed with nitrogen and hydrogen at 9: 1. It can achieve by providing the manufacturing method of the strontium aluminate fluorescent substance using the sol-gel method.

이하 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 먼저 Al(O-nC3H7)31몰에 대하여 증류수 200몰 내지 220몰, 이소프로판올 4몰 내지 5몰 및 촉매로 염산 0.1몰 내지 0.3몰로 혼합하고 약 80℃의온도에서 교반하여 가수분해를 행하게 된다.In the present invention, first, the mixture of 200 mol to 220 mol of distilled water, 4 mol to 5 mol of isopropanol and 0.1 mol to 0.3 mol of hydrochloric acid with a catalyst is added to 1 mol of Al (O- n C 3 H 7 ) 3 and stirred at a temperature of about 80 ° C. Hydrolysis is performed.

상기에서 Al(O-nC3H7)3은 SrAl2O4:EU2+,Dy3+형광체를 구성하는 원소 중 Al2O3의 원료 물질로 사용된 것으로 졸겔법을 적용하기 위하여 상기 물질을 원료 물질로 한 것이다. 이 원료물질은 촉매와 증류수를 포함하는 용매하에서 가수분해 되어진다. 이때 촉매의 첨가량은 통상적인 촉매 첨가량의 범위내에서 첨가하였으며, 용매로는 증류수와 이소프로판올을 혼합하여 사용하였다.Al (O- n C 3 H 7 ) 3 is used as a raw material of Al 2 O 3 of the elements constituting the SrAl 2 O 4 : EU 2+ , Dy 3+ phosphor to apply the sol-gel method The material is a raw material. This raw material is hydrolyzed in a solvent containing a catalyst and distilled water. At this time, the addition amount of the catalyst was added within the range of the conventional catalyst addition amount, and distilled water and isopropanol were used as a solvent.

이때 졸-겔법을 이용하여 세라믹스를 제조시, 알콜과 같은 유기용매는 균질한 혼합을 위한 해교제로서 첨가하는 것이 일반적이며, 특히 금속알콕사이드의 알콕시기와 동일한 종류의 알콜을 사용하는 것이 일반적이다. 따라서 본 발명에서는 이소프로판올을 사용하였으며, 그 첨가량은 통상적인 졸-겔법을 이용하여 세라믹스 제조시 첨가하는 범위내에서 첨가하였다.At this time, when preparing ceramics using the sol-gel method, it is common to add an organic solvent such as alcohol as a peptizing agent for homogeneous mixing, and in particular, it is common to use an alcohol of the same kind as the alkoxy group of the metal alkoxide. Therefore, isopropanol was used in the present invention, and the amount of the isopropanol was added within the range of addition in the production of ceramics using a conventional sol-gel method.

상기와 같은 혼합비를 갖는 혼합물을 약 80℃의 온도에서 약 3시간정도 교반하게 되면 용액의 pH가 더이상 변화되지 않고 일정하게 유지되게 되는데 바로 이점이 가수분해가 완료된 지점이므로 pH가 더이상 변화되지 않을 때 반응을 종료한다. 이때의 대략적인 pH는 약 2.85부근이다When the mixture having the above mixing ratio is stirred at a temperature of about 80 ° C. for about 3 hours, the pH of the solution does not change any more and is kept constant. This is a point where the hydrolysis is completed. Terminate the reaction. Approximate pH is around 2.85

이와는 별도로 본 발명에서는 Sr(NO3)20.95몰에 증류수를 50몰 내지 70몰로 첨가한 후 Eu(NO3)3·6H2O와 Dy(NO3)3·6H2O를 각각 0.02몰 내지 0.03몰 첨가한 다음 촉매로 HNO3를 0.1몰 내지 0.3몰 첨가하여 교반하게 된다,Separately, in the present invention, 50 mol to 70 mol of distilled water is added to 0.95 mol of Sr (NO 3 ) 2, and then 0.02 mol of Eu (NO 3 ) 3 · 6H 2 O and Dy (NO 3 ) 3 · 6H 2 O, respectively. 0.03 mol is added, and then 0.1 mol to 0.3 mol of HNO 3 is added to the catalyst and stirred.

상기에서 Sr(NO3)2와 Eu(NO3)3·6H2O 및 Dy(NO3)3·6H2O는 각각 SrAl2O4:Eu2+,Dy3+형광체를 구성하는 원소 중 SrO와 Eu2O3및 Dy2O3의 원료물질로 사용된 것이다. 이때 Sr(NO3)2는 형광체 내의 구성비를 이루는 통상적인 범위가 되도록 첨가하였으며, 이를 증류수에 넣고 촉매를 사용하여 가수분해 한다.Sr (NO 3 ) 2 , Eu (NO 3 ) 3 · 6H 2 O, and Dy (NO 3 ) 3 · 6H 2 O are each SrAl 2 O 4 : Eu 2+ and Dy 3+ phosphors. It is used as raw material for SrO and Eu 2 O 3 and Dy 2 O 3 . At this time, Sr (NO 3 ) 2 was added so as to be in a general range constituting the composition ratio in the phosphor, and this was added to distilled water and hydrolyzed using a catalyst.

상기에서 Eu(NO3)3·6H2O는 형광체 내의 Eu2+를 형성하기 위한 것으로 통상적으로 SrO-Al2O3계 형광체 내에서 Eu2+는 태양광을 비롯한 여러 광에너지에 의하여 그 최외각 전자대에 있는 전자가 가전자대로 전이되고, 가전자대로 전이된 전자가 최외각전자대로 여기되는 과정에서 여기광을 방출하게 됨으로서 형광을 나타내는 역할을 한다. 이때 상기 Eu(NO3)3·6H2O의 첨가량이 0.03몰을 초과할 경우 발광강도가 높다는 이점은 있으나 상대적으로 Dy3+의 양이 줄어들어 잔광특성이 저하되는 문제점이 있으며, 0.02몰 미만일 경우 발광강도가 저하되는 단점이 있으므로 Eu(NO3)3·6H2O의 첨가량은 0.02몰 내지 0.03몰비로 첨가하는 것이 바람직하다.In the Eu (NO 3) 3 · 6H 2 O is intended to form the Eu 2+ in the phosphor typically Eu 2+ in the SrO-Al 2 O 3 based fluorescent material, by various light energy, including sunlight the outermost The electrons in the outer electron band are transferred to the valence band, and the electrons transferred to the valence band emit the excitation light in the process of being excited by the outermost electron band. At this time, when the addition amount of Eu (NO 3 ) 3 · 6H 2 O exceeds 0.03 mol, the luminous intensity is high, but the amount of Dy 3+ is relatively reduced, resulting in a problem of deterioration in afterglow characteristics. Since the luminous intensity is lowered, it is preferable to add Eu (NO 3 ) 3 .6H 2 O in an amount of 0.02 to 0.03 molar ratio.

또, Dy(NO3)3·6H2O는 형광체 내의 Dy3+를 형성하기 위한 것으로 일반적으로 Dy3+는 잔광특성에 관계한다. 즉, Eu2+의 가전자대보다 더 높은 준위로 단파장의 광에너지에 의해 전자가 전이 되고, 이로인하여 다시 전자대로 전이되는 속도가 느리기 때문에 잔광특성을 나타내는 것이다. 이때 상기 Dy(NO3)3·6H2O의 첨가량이 0.03몰을 초과할 경우 잔광특성이 우수하다는 이점은 있으나 상대적으로 Eu3+의 양이 줄어들어 발광강도가 저하되는 문제점이 있으며, 0.02몰 미만일 경우 잔광특성이 저하되는 문제점이 있으므로 Dy(NO3)3·6H2O의 첨가량은 0.01몰 내지 0.03몰비로 첨가하는 것이 바람직하다.In addition, Dy (NO 3 ) 3 .6H 2 O is for forming Dy 3+ in the phosphor, and in general, Dy 3+ is related to the afterglow property. In other words, the electrons are transferred by the light energy of short wavelength to the level higher than the valence band of Eu 2+ , and thus the afterglow characteristics are exhibited because the rate of the electron transfer is slow. At this time, when the amount of Dy (NO 3 ) 3 · 6H 2 O added exceeds 0.03 mole, there is an advantage that the afterglow property is excellent, but the amount of Eu 3+ is relatively reduced, the emission intensity is lowered, less than 0.02 mole Since there is a problem in that the afterglow property is lowered, it is preferable to add Dy (NO 3 ) 3 .6H 2 O in an amount of 0.01 mol to 0.03 mol.

상기와 같은 혼합비를 갖는 혼합물을 약 80℃의 온도로 3시간 동안 교반하게 되면 용액의 pH가 더이상 변화되지 않고 일정하게 유지되게 되는데 바로 이점이 가수분해가 완료된 지점이므로 pH가 더이상 변화되지 않을 때 반응을 종료한다. 이때의 대략적인 pH는 약 0.85부근이다When the mixture having the above mixing ratio is stirred at a temperature of about 80 ° C. for 3 hours, the pH of the solution does not change any more and is kept constant. This is a point where the hydrolysis is completed. To exit. Approximate pH is around 0.85

이렇게 제조한 각각의 용액을 혼합한 후 80℃에서 교반하면 pH가 일정하게 유지되는 지점에서 졸상태의 투명한 혼합액을 얻을 수 있다. 제조된 졸은 100℃ 이상에서 48시간이상 건조시킨 후 분쇄하게 된다.Each of the solutions thus prepared is mixed and stirred at 80 ° C. to obtain a sol-like transparent mixed solution at a point where the pH is kept constant. The prepared sol is pulverized after drying for at least 48 hours at 100 ℃ or more.

상기 분쇄된 분말은 1200℃ 이상의 대기중에서 4시간 동안 하소한 후 재분쇄하게 된다. 이과정에서 본 발명에서 얻고자 하는 Sr0-Al2O3결정을 얻을 수 있다. 즉, 하소하는 과정에서 약 800℃에서 Sr3Al2O6상이 나타나기 시작하며, 약 1000℃에서는 SrAl2O4상이 형성된다. 1100℃까지는 Sr3Al2O6상과 SrAl2O4의 결정상이 혼재하며, 1200℃에서는 SrAl2O4의 결정상이 주상을 이루게 된다. 따라서 종래 고상반응법에서 요구하는 1400℃보다 낮은 온도에서 열처리하여 얻을 수 있다는 이점이 있다.The pulverized powder is calcined in an atmosphere of 1200 ° C. or higher for 4 hours and then regrind. In this process, the Sr0-Al 2 O 3 crystal to be obtained in the present invention can be obtained. That is, in the calcination process, the Sr 3 Al 2 O 6 phase starts to appear at about 800 ° C., and at about 1000 ° C., the SrAl 2 O 4 phase is formed. The Sr 3 Al 2 O 6 phase and the SrAl 2 O 4 crystal phase are mixed up to 1100 ° C., and the SrAl 2 O 4 crystal phase forms the main phase at 1200 ° C. Therefore, there is an advantage that can be obtained by heat treatment at a temperature lower than 1400 ℃ required by the conventional solid-phase reaction method.

이때 재분쇄물의 입도가 발광 및 잔광특성에 많은 영향을 준다. 만일 입도를 20㎛ 미만으로 할 경우 발광강도가 약해지고 잔광시간이 단축되는 단점이 있으므로 분쇄시 20㎛이상으로 하는 것이 바람직하다.At this time, the particle size of the regrind greatly affects the light emission and afterglow characteristics. If the particle size is less than 20 μm, the luminous intensity is weak and the afterglow time is shortened. Therefore, the particle size is preferably 20 μm or more.

상기와 같은 온도에서 하소한 후 재분쇄한 분쇄물은 다시 1300℃에서 질소와 수소를 9:1로 혼합한 가스의 환원분위기하에서 3시간 동안 열처리하게 되면 본 발명에 의한 형광체를 제조할 수 있게 된다.After calcination at the above temperature, the pulverized powder is heat-treated again under a reducing atmosphere of a gas mixed with nitrogen and hydrogen at 9: 1 at 1300 ° C. for 3 hours to prepare a phosphor according to the present invention. .

이하 본 발명을 하기한 실시예를 통하여 보다 상세하게 설명하기로 하나 이는 본 발명의 이해를 돕기 위하여 제시된 것일 뿐 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, which are presented to aid the understanding of the present invention, but the present invention is not limited thereto.

<실시예 1><Example 1>

반응용기에 Al(O-nC3H7)3(Jamssem Chimica, Belgium) 1몰과 증류수(H2O) 210몰과 이소프로판올(iso-C3H7OH) 5몰 및 촉매로 염산(HCl) 0.2몰로 첨가 혼합하고 80±5℃의 온도에서 pH의 변화가 없을 때까지 교반한 다음 반응을 종료하였다.1 mole of Al (O- n C 3 H 7 ) 3 (Jamssem Chimica, Belgium), 210 moles of distilled water (H 2 O), 5 moles of isopropanol (iso-C 3 H 7 OH) and hydrochloric acid (HCl) as catalyst ) 0.2 mole was added and mixed, and stirred at a temperature of 80 ± 5 ° C. until there was no change in pH, and the reaction was terminated.

이와는 별도의 반응용기에 Sr(NO3)2(Wako chem. Co.,Japan) 0.95몰과 증류수 60몰, Eu(NO3)3·6H2O(Wako chem. Co., Japan) 0.02몰 및 Dy(NO3)3·6H2O(Kanto Chem. Co., Japan) 0.03몰 첨가한 다음 촉매로 HNO3를 0.2몰 첨가 혼합하고 pH의 변화가 없을 때까지 교반한 후 반응을 종료하였다.In a separate reaction vessel, 0.95 mol of Sr (NO 3 ) 2 (Wako chem. Co., Japan), 60 mol of distilled water, 0.02 mol of Eu (NO 3 ) 3 · 6H 2 O (Wako chem. Co., Japan), and 0.03 mole of Dy (NO 3 ) 3 .6H 2 O (Kanto Chem. Co., Japan) was added, followed by 0.2 mole addition of HNO 3 as a catalyst, followed by stirring until there was no change in pH.

상기에서 제조한 각각의 용액을 혼합한 후 80℃에서 pH 변화가 없을 때까지교반하여 얻어진 졸을 100℃에서 48시간동안 건조시킨 후 분쇄하고, 이를 하소온도에 따른 결정상의 변화를 알아보기 위하여 800℃, 900℃, 1000℃, 1100℃ 및 1200℃ 대기 중에서 4시간 동안 하소한 후 재분쇄한 다음, 분쇄한 분말을 다시 1300℃의 질소와 수소를 9:1로 혼합한 가스의 환원분위기하에서 3시간 동안 열처리하여 형광체를 제조하였다. 이때 최종 분쇄물의 입도는 20㎛ 내지 45㎛가 되도록 하였다.Each of the solutions prepared above was mixed and stirred at 80 ° C. until no change in pH was dried at 100 ° C. for 48 hours and then pulverized. After calcining for 4 hours in an atmosphere of 4 ° C., 900 ° C., 1000 ° C., 1100 ° C., and 1200 ° C., and then regrinding, the pulverized powder was regenerated under a reducing atmosphere of a gas containing nitrogen and hydrogen at 9: 1 Heat treatment for a time to prepare a phosphor. At this time, the particle size of the final pulverized product was 20㎛ to 45㎛.

상기 제조된 형광체의 결정을 확인하기 위하여 X선 회절분석장치(Philips. Co. Pw1720, Holland)로 CuKα, Ni 필터, 30kV, 20mA의 조건에서 측정하여 그 결과를 도1에 나타내었다In order to confirm the crystal of the prepared phosphor, an X-ray diffractometer (Philips. Co. Pw1720, Holland) was measured under CuKα, Ni filter, 30 kV, 20 mA, and the results are shown in FIG. 1.

상기 도 1에서 보는 바와 같이 800℃이상의 온도에서부터 Sr2Al2O6상의 피크가 관찰되었으며, 1000℃에서부터는 SrAl2O4의 피크가 관찰되기 시작하였다. 1000℃ 내지 1100℃에서는 Sr3Al2O6와 SrAl2O4의 결정상이 혼재하였으나, 1200℃ 이상의 온도에서는 주상으로 SrAl2O4의 결정이 생성되었음을 알 수 있다. 따라서 종래의 고상반응법으로 제조시 용제를 첨가하지 않은 SrCO3, Eu2O3, Al2O3의 혼합분말로부터 단일상의 SrAl2O4가 형성되기 위해서는 1400℃ 이상의 온도가 요구되었으나, 본 발명에 의한 경우 SrAl2O4모상결정의 제조시 결정생성온도를 낮출 수 있다는 이점이 있다.As shown in FIG. 1, a peak of the Sr 2 Al 2 O 6 phase was observed from a temperature of 800 ° C. or higher, and a peak of SrAl 2 O 4 began to be observed from 1000 ° C. FIG. It was found that the crystal phases of Sr 3 Al 2 O 6 and SrAl 2 O 4 were mixed at 1000 ° C. to 1100 ° C., but crystals of SrAl 2 O 4 were formed as the main phase at a temperature of 1200 ° C. or higher. Therefore, in order to form a single-phase SrAl 2 O 4 from a mixed powder of SrCO 3 , Eu 2 O 3 , Al 2 O 3 without adding a solvent in the conventional solid phase reaction method, the temperature of 1400 ° C. or higher was required. In the case of SrAl 2 O 4 has the advantage that the crystal formation temperature can be lowered during the preparation of the mother phase crystals.

상기 결과를 토대로 하소온도를 1200℃로 한 다음 Eu(NO3)3·6H2O와 Dy(NO3)3·6H2O의 첨가량 변화에 따른 발광특성 및 잔광특성을 알아보기 위하여 하기 실시예2를 실시하였다.Based on the results, the calcining temperature was set at 1200 ° C., and then the light emission characteristics and the afterglow characteristics according to the addition amount of Eu (NO 3 ) 3 · 6H 2 O and Dy (NO 3 ) 3 · 6H 2 O were determined. 2 was carried out.

<실시예 2><Example 2>

하소온도를 1200℃로 하고 Eu(NO3)3·6H2O와 Dy(NO3)3·6H2O를 각각 0.04몰:0.01몰, 0.03몰:0.02몰, 0.02몰:0.03몰, 0.04몰:0.01몰로 변화시킨 것을 제외하고는 실시예1과 동일하게 실시하여 형광체를 제조하였다.The calcining temperature was 1200 ° C., and 0.04 mol: 0.01 mol, 0.03 mol: 0.02 mol, 0.02 mol: 0.03 mol, 0.04 mol of Eu (NO 3 ) 3 · 6H 2 O and Dy (NO 3 ) 3 · 6H 2 O, respectively. A phosphor was prepared in the same manner as in Example 1 except for changing to 0.01 mole.

상기 제조된 형광체를 이용하여 발광스펙트럼을 조사하기 위하여 형광분광광도계(Luminescence spectrometer, AMINCO·Bowman Series2, USA)를 사용하여 조사하였다. 미세한 분말 0.2mg을 셀에 도포시킨 후 할로겐 방전램프로 여기시킨 후 3nm/sec의 주사속도로 270nm에서 400nm까지의 여기스펙트럼을 측정하였고, 여기스펙트럼을 360nm로 고정시킨 후 발광스펙트럼을 3nm/sec의 주사속도로 400nm에서 700nm까지 측정하여 그 결과를 도2에 나타내었다.In order to investigate the emission spectrum using the prepared phosphor, a fluorescence spectrophotometer (Luminescence spectrometer, AMINCO · Bowman Series 2, USA) was used to investigate. 0.2mg of the fine powder was applied to the cell, excited with a halogen discharge lamp, and the excitation spectrum was measured from 270nm to 400nm at a scanning speed of 3nm / sec, and the emission spectrum was fixed at 360nm after the excitation spectrum was fixed at 360nm. The scanning speed was measured from 400 nm to 700 nm and the results are shown in FIG. 2.

또한 제조된 형광체를 이용하여 잔광특성을 조사하기 위하여 형광분광광도계(Luminescence spectrometer, AMINCO·Bowman Series2, USA)를 사용하여 조사하였다. 할로겐 방전램프로 10분간 조사시킨 후 여기를 중지시키고, 15분간의 잔광시간을 조사하였다. 이때 여기스펙트럼은 360nm로, 발광스펙트럼은 520nm로 고정하여 측정하고 그 결과를 도3에 나타내었다.In addition, in order to investigate the afterglow property using the prepared phosphor, a luminescence spectrometer (Luminescence spectrometer, AMINCO · Bowman Series 2, USA) was used to investigate. After irradiating with a halogen discharge lamp for 10 minutes, excitation was stopped and the afterglow time of 15 minutes was investigated. At this time, the excitation spectrum was measured at 360 nm and the emission spectrum was fixed at 520 nm, and the results are shown in FIG. 3.

상기 도2에서 보는 바와 같이 시료를 360nm의 파장의 할로겐 램프로 여기시켜 측정한 발광스펙트럼은 종래의 축광재료인 ZnS:Cu의 발광파장과 거의 유사한 황록색의 발광영역인 520nm를 최대 발광파장으로 하는 450nm 내지 650nm의 폭넓은 발광스펙트럼을 보였는데, 이는 SrAl2O4결정에 부가된 Eu2+의 최외각전자가 가전자대로의 천이에 의한 발광이라고 생각된다. 특히, Eu2+의 함량이 증가할 수록 발광의 세기가 증가하는 것을 알 수 있다.As shown in FIG. 2, the emission spectrum measured by exciting a sample with a halogen lamp having a wavelength of 360 nm is 450 nm having a maximum emission wavelength of 520 nm, which is a yellowish green emission region that is almost similar to that of a conventional photoluminescent material, ZnS: Cu. It showed a broad emission spectrum of 650 nm, which is considered that the outermost electron of Eu 2+ added to the SrAl 2 O 4 crystal is light emission due to transition to the valence band. In particular, it can be seen that the intensity of luminescence increases as the content of Eu 2+ increases.

또한 도3에서 보는 바와 같이 할로겐 방전램프로 10분간 여기시킨 후 Eu2+와 Dy3+의 첨가량에 따른 잔광특성은 조성에 관계없이 시간에 따라 지수함수적으로 감소하는 경향을 보이는 것을 알 수 있다. 특히, 육안으로 관측 가능한 휘도가 0.32mcd/㎡임을 감안하면 1200초 후에도 그 이상의 휘도를 나타냄으로서 제조된 형광체를 1200초 후 어두운 상태에서 시료를 보았을 경우 육안으로도 측정시료를 구별할 수 있을 정도의 장잔광특성을 나타내었다. 상기 도면에서 보는 바와 같이 Dy3+의 양이 증가됨에 따라 잔광특성이 오랜시간 동안 유지됨을 알 수 있다.Also, as shown in FIG. 3, after 10 minutes of excitation with a halogen discharge lamp, the afterglow property according to the amount of Eu 2+ and Dy 3+ added tends to decrease exponentially with time regardless of the composition. . In particular, considering that the visually observable luminance is 0.32 mcd / m2, the luminance is greater than 1200 seconds, so that when the sample is viewed in the dark state after 1200 seconds, the sample can be distinguished by the naked eye. It shows long afterglow characteristics. As shown in the figure, it can be seen that afterglow characteristics are maintained for a long time as the amount of Dy 3+ is increased.

상기 도2 및 도3을 토대로 하여 볼 때 Eu(NO3)3·6H2O와 Dy(NO3)3·6H2O의 첨가량은 각각 0.02몰 내지 0.03몰이 가장 바람직한 것을 알 수 있다.2 and 3 , the addition amount of Eu (NO 3 ) 3 .6H 2 O and Dy (NO 3 ) 3 .6H 2 O is 0.02 mol to 0.03 mol, respectively.

상기 실시예1 및 실시예2를 토대로 하소온도를 1200℃로 하고, 발광 및 장광특성을 고려하여 Eu(NO3)3·6H2O와 Dy(NO3)3·6H2O의 첨가량을 0.02몰:0.03몰로 한다음 하기 실시예3을 실시하였다.Based on Examples 1 and 2, the calcination temperature was 1200 ° C, and the addition amount of Eu (NO 3 ) 3 .6H 2 O and Dy (NO 3 ) 3 .6H 2 O was 0.02 in consideration of the luminescence and long light characteristics. Mole: 0.03 mole and the following Example 3 was carried out.

<실시예 3><Example 3>

하소온도를 1200℃로 하고 Eu(NO3)3·6H2O와 Dy(NO3)3·6H2O를 0.02몰:0.03몰로한 다음, 분쇄물의 입도를 20㎛ 미만, 20㎛ 내지 45㎛ 및 45㎛이상으로 분급한 것을 제외하고는 실시예1과 동일하게 실시하여 형광체를 제조하였다.The calcining temperature was 1200 ° C., and Eu (NO 3 ) 3 · 6H 2 O and Dy (NO 3 ) 3 · 6H 2 O were 0.02 mol: 0.03 mol, and the particle size of the pulverized product was less than 20 µm and 20 µm to 45 µm. And a phosphor was prepared in the same manner as in Example 1 except that the classification was performed at 45 μm or more.

상기 제조된 형광체 및 분쇄하지 않은 형광체를 이용하여 발광스펙트럼을 조사하기 위하여 형광분광광도계(Luminescence spectrometer, AMINCO·Bowman Series2, USA)를 사용하여 조사하였다. 미세한 분말 0.2mg을 셀에 도포시킨 후 할로겐 방전램프로 여기시킨 후 3nm/sec의 주사속도로 270nm에서 400nm까지의 여기스펙트럼을 측정하였고, 여기스펙트럼을 360nm로 고정시킨 후 발광스펙트럼을 3nm/sec의 주사속도로 400nm에서 700nm까지 측정하여 그 결과를 도4에 나타내었다.In order to investigate the emission spectrum using the prepared phosphor and the pulverized phosphor, a luminescence spectrometer (Luminescence spectrometer, AMINCO · Bowman Series 2, USA) was used. 0.2mg of the fine powder was applied to the cell, excited with a halogen discharge lamp, and the excitation spectrum was measured from 270nm to 400nm at a scanning speed of 3nm / sec, and the emission spectrum was fixed at 360nm after the excitation spectrum was fixed at 360nm. The scanning speed was measured from 400 nm to 700 nm and the results are shown in FIG. 4.

또한 제조된 형광체와 분쇄하지 않은 형광체를 이용하여 잔광특성을 조사하기 위하여 형광분광광도계(Luminescence spectrometer, AMINCO·Bowman Series2, USA)를 사용하여 조사하였다. 할로겐 방전램프로 10분간 조사시킨 후 여기를 중지시키고, 15분간의 잔광시간을 조사하였다. 이때 여기스펙트럼은 360nm로, 발광스펙트럼은 520nm로 고정하여 측정하고 그 결과를 도5에 나타내었다.In addition, in order to investigate the afterglow property using the prepared phosphor and the pulverized phosphor, a fluorescence spectrophotometer (Luminescence spectrometer, AMINCO · Bowman Series 2, USA) was used. After irradiating with a halogen discharge lamp for 10 minutes, excitation was stopped and the afterglow time of 15 minutes was investigated. In this case, the excitation spectrum was measured at 360 nm and the emission spectrum was fixed at 520 nm, and the results are shown in FIG. 5.

상기 도4에서 보는 바와 같이 20㎛미만, 20㎛ 내지 45㎛, 45㎛이상으로 분급한 후 360nm의 파장의 할로겐 램프로 여기시켜 측정한 발광스펙트럼을 살펴보면 분쇄한 후의 발광강도가 45㎛ 이상에서는 분쇄하지 않은 것에 대비하여 약 80%, 20㎛ 내지 45㎛에서는 63%, 그리고 20㎛미만에서는 50%정도로 감소함을 알 수 있다.As shown in FIG. 4, when the emission spectrum measured by pulverization was measured at less than 20 μm, 20 μm to 45 μm, and 45 μm or more, and excited by a halogen lamp having a wavelength of 360 nm, the light emission intensity after pulverization was pulverized at 45 μm or more. It can be seen that the reduction to about 80%, 63% at 20㎛ to 45㎛, and 50% at less than 20㎛.

또한 도5에서 보는 바와 같이 형광체를 20㎛미만, 20㎛ 내지 45㎛, 45㎛ 이상으로 분급하여 잔광특성을 측정한 결과 입자크기가 감소함에 따라 잔광특성도 저하됨을 알 수 있다.In addition, as shown in FIG. 5, after classifying the phosphor to less than 20 μm, 20 μm to 45 μm, and 45 μm or more, the afterglow property is measured. As a result, the afterglow property is also decreased.

상기에서 설명한 바와 같이 본 발명은 형광특성이 우수한 SrAl2O4:EU2+,Dy3+형광체를 제조하기 위하여 입자의 형상 및 크기 조절이 용이한 졸-겔법을 이용함으로서 비교적 낮은 온도에서 소성이 가능할 뿐만 아니라 발광 및 잔광특성이 우수한 형광체의 제조가 가능하도록 한 졸겔법을 이용한 형광체의 제조방법을 제공하는 유용한 발명이다.As described above, the present invention uses the sol-gel method, which is easy to control the shape and size of particles, to prepare SrAl 2 O 4 : EU 2+ and Dy 3+ phosphors having excellent fluorescence characteristics. It is a useful invention to provide a method for producing a phosphor using the sol-gel method that enables not only possible but also a phosphor having excellent light emission and afterglow characteristics.

Claims (2)

Al(O-nC3H7)31몰에 대하여 증류수(H2O) 200몰 내지 220몰과 이소프로판올(iso-C3H7OH) 4몰 내지 5몰 및 촉매로 염산(HCl) 0.1몰 내지 0.3몰로 혼합하고 약 80℃의 온도에서 pH의 변화가 없을 때까지 교반하고, 이와는 별도로 Sr(NO3)20.95몰에 증류수를 55몰 내지 65몰로 첨가한 후 Eu(NO3)3·6H2O와 Dy(NO3)3·6H2O를 각각 0.02몰 내지 0.03몰 첨가한 다음 촉매로 HNO3를 0.1 내지 0.3몰 첨가하여 pH의 변화가 없을 때까지 교반하고, 상기에서 제조한 각각의 용액을 혼합한 후 80℃에서 pH의 변화가 없을 때까지 교반하여 얻어진 졸을 100℃에서 48시간 이상 건조시킨 후 분쇄한 다음, 분쇄된 분말을 1200℃ 이상의 대기 중에서 4시간 동안 하소한 후 재분쇄하고, 이를 다시 1300℃에서 질소와 수소를 9:1로 혼합한 가스의 환원분위기하에서 3시간 동안 열처리하는 것을 특징으로 하는 졸겔법을 이용한 스트론튬알루미네이트 형광체의 제조방법.200 to 220 moles of distilled water (H 2 O), 4 to 5 moles of isopropanol (iso-C 3 H 7 OH) and 0.1 hydrochloric acid (HCl) as catalyst per 1 mole of Al (O- n C 3 H 7 ) 3 Molar to 0.3 mole and stirred at a temperature of about 80 ° C. until there is no change in pH. Separately, 0.95 mole of Sr (NO 3 ) 2 is added to 55 mole to 65 moles of distilled water, followed by Eu (NO 3 ) 3. 0.02 mol to 0.03 mol of 6H 2 O and Dy (NO 3 ) 3 .6H 2 O were added, and then 0.1 to 0.3 mol of HNO 3 was added to the catalyst and stirred until there was no change in pH. After mixing the solution of and stirred at 80 ℃ until there is no change in pH, the obtained sol was dried at 100 ℃ for more than 48 hours and pulverized, and then the pulverized powder was calcined in an atmosphere of 1200 ℃ or more for 4 hours and then Pulverized and heat-treated at 1300 ° C. for 3 hours under a reducing atmosphere of a gas mixed with nitrogen and hydrogen at 9: 1. Method for producing a strontium aluminate phosphor using the sol-gel method. 제 1항에 있어서, 상기 분쇄물의 입도를 20㎛이상이 되도록 하는 것을 특징으로 하는 졸겔법을 이용한 스트론튬알루미네이트 형광체의 제조방법.The method for producing a strontium aluminate phosphor using the sol-gel method according to claim 1, wherein the particle size of the pulverized product is 20 µm or more.
KR10-2001-0010530A 2001-02-28 2001-02-28 Manufacturing method of strontium aluminate phosphor by the sol-gel method KR100387659B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0010530A KR100387659B1 (en) 2001-02-28 2001-02-28 Manufacturing method of strontium aluminate phosphor by the sol-gel method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0010530A KR100387659B1 (en) 2001-02-28 2001-02-28 Manufacturing method of strontium aluminate phosphor by the sol-gel method

Publications (2)

Publication Number Publication Date
KR20020069934A true KR20020069934A (en) 2002-09-05
KR100387659B1 KR100387659B1 (en) 2003-06-18

Family

ID=27695981

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0010530A KR100387659B1 (en) 2001-02-28 2001-02-28 Manufacturing method of strontium aluminate phosphor by the sol-gel method

Country Status (1)

Country Link
KR (1) KR100387659B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160050756A (en) 2014-10-31 2016-05-11 한국세라믹기술원 Manufacturing method of phosphorescent phosphor nanopowder and manufacturing method of fluorescent ceramics using the phosphorescent phosphor nanopowder
US10793772B1 (en) 2020-03-13 2020-10-06 Accelovant Technologies Corporation Monolithic phosphor composite for sensing systems
US11353369B2 (en) 2020-11-05 2022-06-07 Accelovant Technologies Corporation Optoelectronic transducer module for thermographic temperature measurements
US11359976B2 (en) 2020-10-23 2022-06-14 Accelovant Technologies Corporation Multipoint surface temperature measurement system and method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160050756A (en) 2014-10-31 2016-05-11 한국세라믹기술원 Manufacturing method of phosphorescent phosphor nanopowder and manufacturing method of fluorescent ceramics using the phosphorescent phosphor nanopowder
US10793772B1 (en) 2020-03-13 2020-10-06 Accelovant Technologies Corporation Monolithic phosphor composite for sensing systems
US11236267B2 (en) 2020-03-13 2022-02-01 Accelovant Technologies Corporation Fiber optic measuring device with monolithic phosphor composite
US11359976B2 (en) 2020-10-23 2022-06-14 Accelovant Technologies Corporation Multipoint surface temperature measurement system and method thereof
US11353369B2 (en) 2020-11-05 2022-06-07 Accelovant Technologies Corporation Optoelectronic transducer module for thermographic temperature measurements

Also Published As

Publication number Publication date
KR100387659B1 (en) 2003-06-18

Similar Documents

Publication Publication Date Title
Kumar et al. Understanding the photoluminescence behaviour in nano CaZrO3: Eu3+ pigments by Judd-Ofelt intensity parameters
Ekambaram et al. Synthesis of lamp phosphors: facile combustion approach
WO2009109382A1 (en) Abos:m-based phosphors and light sources containing these phosphors
CN115368893B (en) Sodium gadolinium gallium germanium garnet Dan Jiqing light fluorescent powder and preparation method thereof
JP4963077B2 (en) Stress-stimulated luminescent material that emits ultraviolet light, method for producing the same, and use thereof
Liu et al. Gel-combustion assisted synthesis of eulytite-type Sr3Y (PO4) 3 as a single host for narrow-band Eu3+ and broad-band Eu2+ emissions
US6423247B1 (en) Phosphorescent pigment and process for preparing the same
Linqin et al. Photoluminescence properties of Ca-doped BaMgAl10O17: Eu2+, Mn2+ blue phosphor using BaF2 and CaF2 as co-flux
CN111808608B (en) Phosphor compound, preparation method and composition thereof
EP2009077A1 (en) Manganese-doped metal-silicon-nitrides phosphors
JP2000212556A (en) Luminous phosphor, and luminous fluorescent powder, and their production
CN115806820B (en) Tetravalent manganese ion activated dark red luminescent material and preparation method thereof
JP2002519502A (en) Small particle blue emitting lanthanum phosphate based phosphors for displays and lamps and methods of forming the same
JP5409906B2 (en) Method for producing Eu-activated alkaline earth metal silicate phosphor
KR100387659B1 (en) Manufacturing method of strontium aluminate phosphor by the sol-gel method
KR20190114133A (en) Garnet structure oxide phosphor, preparing method of the same, and its luminescent property
CN104031644A (en) Molybdate up-conversion luminescent material, preparation method and application thereof
CN103694998B (en) A kind of oxysulfide red long afterglow luminous material and preparation method thereof
CN114058371A (en) Yellow light long afterglow luminescent material and preparation method and application thereof
CN105733576A (en) Double perovskite type titanate red fluorescence powder for warm white LED and preparing method of double perovskite type titanate red fluorescence powder
JP3599913B2 (en) Method for producing aluminate phosphor for phosphorescent material
CN116875307B (en) Tetravalent manganese ion activated titanate-based red luminescent material and preparation method thereof
Koseva et al. DYSPROSIUM DOPED CALCIUM GERMANATE (Ca2GеO4) AS A CANDIDATE FOR LED APPLICATION
CN110003910B (en) Eu (Eu)3+Activated bismuth fluorotellurate red fluorescent powder and preparation method and application thereof
CN115449370B (en) Red luminous fluorescent powder with europium ion as activator and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140320

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee