KR20020068223A - Method for Preparing Core-shell Nanosize Composite Particles - Google Patents

Method for Preparing Core-shell Nanosize Composite Particles Download PDF

Info

Publication number
KR20020068223A
KR20020068223A KR1020010008521A KR20010008521A KR20020068223A KR 20020068223 A KR20020068223 A KR 20020068223A KR 1020010008521 A KR1020010008521 A KR 1020010008521A KR 20010008521 A KR20010008521 A KR 20010008521A KR 20020068223 A KR20020068223 A KR 20020068223A
Authority
KR
South Korea
Prior art keywords
fine powder
core
cell structure
transition metal
structure according
Prior art date
Application number
KR1020010008521A
Other languages
Korean (ko)
Other versions
KR100375000B1 (en
Inventor
배동식
한경섭
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2001-0008521A priority Critical patent/KR100375000B1/en
Publication of KR20020068223A publication Critical patent/KR20020068223A/en
Application granted granted Critical
Publication of KR100375000B1 publication Critical patent/KR100375000B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles

Abstract

PURPOSE: A method for manufacturing fine powder of core shell structure is provided to manufacture spherical nano powder of core shell structure that a functional metal element is located at the center thereof by virtue of a micro emulsion method using reverse micelle. CONSTITUTION: The method for manufacturing fine powder of core shell structure is comprised of steps; preparing a transition metal solution; attaining a transition metal organic solution by mixing the transition metal solution with surfactant and a certain organic solvent; adding a deoxidation agent to the organic solution; and causing a hydrosis reaction and a condensation reaction by adding TEOS(tetraethoxysilane) to the organic solution.

Description

코어-셀 구조를 갖는 미분말의 제조방법{Method for Preparing Core-shell Nanosize Composite Particles}Method for preparing fine powder having core-cell structure {Method for Preparing Core-shell Nanosize Composite Particles}

본 발명은 코어-셀(Core-shell) 구조를 갖는 미분말의 제조방법에 관한 것으로, 보다 구체적으로는 미세한 역 마이셀을 이용한 마이크로 역 에멀젼법으로 기능성 금속원소 또는 금속화합물들을 고정하여 코어-셀 구조(Core-shell/SiO2)를 갖는 나노단위의 초 미분말을 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing fine powder having a core-shell structure, and more specifically, to a core-cell structure by fixing a functional metal element or metal compounds by a micro inverse emulsion method using a fine reverse micelle. The present invention relates to a method for preparing ultrafine powders in nano units having Core-shell / SiO 2 ).

콜로이드 형태의 금속분말 및 금속분말이 중심에 위치된 입자의 연구는 그들의 전자 광학적 및 전자 화학적인 특이한 성질 때문에 많은 연구가 수행되고 있다.The study of colloidal metal powders and particles in which metal powders are centered has been conducted because of their electron optical and electrochemical specific properties.

나노크기 구조와 그들의 모양을 제어하는 것은 새로운 전자적, 광학적, 자기적, 광학화적, 전자화학적 그리고 기계적인 물성을 창출하는 것으로 무한한 잠재력을 가지고 있기 때문에 나노크기 세라믹 합성에 관한 연구와 그 응용에 관한 관심이 최근에 크게 증가하고 있다. 나노크기 분말을 합성하고 그들의 물성을 제어하는 것은 촉매, 세라믹 공정, 태양에너지 전환, 의약품 그리고 사진 등의 분야에서 핵심적인 기술이다. 반도체 입자를 포함한 나노 크기 입자들에 의하여 과다한 전자 및 전공의 저장, 표면 개질에 의한 전자적 성질의 변화, 광전자 방출 등과 같은 현상이 발견되기 때문에 많은 연구자들이 입자의 크기 및 형상을 제어하기 위한 연구를 활발히 수행하고 있는 실정이다.Controlling nanoscale structures and their shapes creates new electronic, optical, magnetic, photochemical, electrochemical, and mechanical properties, and the potential for nanoscale ceramic synthesis and its application is of great interest. This has increased significantly in recent years. Synthesizing nanoscale powders and controlling their properties are key technologies in the fields of catalysts, ceramic processing, solar conversion, pharmaceuticals and photography. Many researchers are actively working to control the size and shape of particles because nano-sized particles including semiconductor particles are found to have phenomena such as excessive storage of electrons and holes, changes in electronic properties due to surface modification, and photoelectron emission. I'm doing it.

최근에 선진국을 중심으로 나노 크기 분말합성에 관한 연구와 그 상업적 응용에 관한 관심이 크게 증가하고 있다. 현재까지 일반적으로 사용하고 있는 분쇄나 고상반응을 이용한 분말제조법으로는 초 미분말(0.1 ㎛ 이하)를 제조하는 것이 불가능하였다.Recently, researches on nano-size powder synthesis and commercial applications of the developed countries have been greatly increased. It has been impossible to produce ultra fine powder (0.1 μm or less) by a powder manufacturing method using a pulverization or a solid phase reaction generally used up to now.

이를 해결하기 위해서 습식화학법의 일종인 공침법, 수열합성법, 졸-겔법, 에멀젼법 등을 도입하여 초 미분말의 제조가 가능하였지만, 금속 원소를 함유한 코어-셀 구조를 가지는 초 미분말을 제조할 수는 없어, 이에 관한 기술개발의 필요성은 여전히 요구되고 있다.In order to solve this problem, ultrafine powders were prepared by introducing co-precipitation method, hydrothermal synthesis method, sol-gel method, and emulsion method, which is a kind of wet chemistry method, but ultrafine powder having a core-cell structure containing metal elements could be prepared. There is no way, and the need for technological development is still required.

따라서, 본 발명의 목적은 상기와 같은 종래 기술의 한계를 극복함으로써 기능성 금속원소 등을 포함하는 코어-셀 구조를 갖는 초 미분말의 제조방법을 제공하고자 하는 것이다.Accordingly, an object of the present invention is to provide a method for producing an ultra fine powder having a core-cell structure including a functional metal element by overcoming the above limitations of the prior art.

도 1 은 본 발명에 따른 나노 크기 Core-shell/SiO2구조 분말의 합성 공정도.1 is a synthetic process diagram of the nano-sized Core-shell / SiO 2 structure powder according to the present invention.

도 2 내지 도 4는 투과 전자 현미경으로 관찰한 본 발명에 따라 합성된 Ag 원소가 중심에 있고 실리카(SiO2)가 피복된 입자의 미세구조를 나타내는 확대도.2 to 4 are enlarged views showing the microstructure of particles coated with silica (SiO 2 ) at the center of the Ag element synthesized according to the present invention observed with a transmission electron microscope.

도 5는 투과 전자 현미경으로 관찰한 본 발명에 따라 합성된 CdS 화합물이 중심에 있고 실리카(SiO2)가 피복된 입자의 미세구조를 나타내는 확대도.FIG. 5 is an enlarged view showing the microstructure of particles coated with silica (SiO 2 ) at the center of a CdS compound synthesized according to the present invention observed with a transmission electron microscope. FIG.

도 6은 투과 전자 현미경으로 관찰한 본 발명에 따라 합성된 Cu 원소가 중심에 있고 실리카(SiO2)가 피복된 입자의 미세구조를 나타내는 확대도.FIG. 6 is an enlarged view showing the microstructure of particles coated with silica (SiO 2 ) centered on a Cu element synthesized according to the present invention observed with a transmission electron microscope. FIG.

이와 같은 목적을 달성하기 위하여, 본 발명에 따르면, 전이금속의 수용액을 준비하는 단계, 상기 수용액을 계면활성제와 함께 유기용매에 혼합하여 전이금속 유기용액을 얻는 단계, 상기 유기용액에 상기 전이금속을 환원시키기 위한 환원제를 첨가하는 단계, 및 상기 유기용액에 테트라에톡시실란(TEOS)를 첨가하여 가수분해 및 응축반응을 시키는 단계를 포함하는 것을 특징으로 하는 코어-셀 구조를 갖는 미분말의 제조방법이 제공된다.In order to achieve the above object, according to the present invention, preparing an aqueous solution of the transition metal, mixing the aqueous solution with an organic solvent with a surfactant to obtain a transition metal organic solution, the transition metal to the organic solution The method for preparing a fine powder having a core-cell structure comprising the steps of adding a reducing agent for reducing and adding tetraethoxysilane (TEOS) to the organic solution to perform hydrolysis and condensation. Is provided.

본 발명에 따르면, 기존의 분말 합성법과는 달리, 유기용매와 물을 이용하여 부피비를 조절함으로써 에멀젼을 만들고 테트라에톡시실란(Tetraethoxysilane ,TEOS), 전이금속원소 등을 적절한 양으로 첨가하여 분말의 입자 크기를 조절하는 방법에 의해 Core-shell/SiO2구조의 미분말을 얻는다.According to the present invention, unlike the conventional powder synthesis method, by using an organic solvent and water to adjust the volume ratio to make an emulsion, tetraethoxysilane (Tetraethoxysilane (TEOS), a transition metal element, etc. in an appropriate amount to add the particles of the powder The fine powder of the core-shell / SiO 2 structure is obtained by controlling the size.

이에 관하여 보다 구체적으로 설명하면, 본 발명에서 계면활성제는 폴리옥시에틸렌(5) 노닐페닐 에테르(Polyoxyethylene(5) nonylphenyl ether), 소디움비스(2-에틸헥실) 술포네이트(Sodium bis(2-ethylhexyl) sulfonate) 중에서 선택되는 적어도 1종이다. 계면활성제의 첨가량은 물/계면활성제의 몰비가 2-20 인 것이 바람직한데, 그 이유는 물 액적(water droplet)을 계면 활성제가 충분히 감싸야 하기 때문이다.More specifically, in the present invention, the surfactant is polyoxyethylene (5) nonylphenyl ether (Polyoxyethylene (5) nonylphenyl ether), sodium bis (2-ethylhexyl) sulfonate (Sodium bis (2-ethylhexyl)) sulfonate). The amount of the surfactant added is preferably a molar ratio of water / surfactant of 2-20, since the surfactant must be sufficiently wrapped in the water droplets.

용매로는 시클로헥산(Cyclohexane)과 이소옥탄(Isooctane) 및 증류수를 사용하고, 기타 TEOS, AgNO3, Cu(NO3)2·2.5H2O, Cd(NO3)2, Na2S, NH4OH 등을 이용하여 마이셀을 만들어 적절한 조건에서 전이원소를 중심에 고정하고 SiO2가 피복된 나노크기를 가지는 구형의 초 미분말을 합성하는 것이다.In solvent using cyclohexane (Cyclohexane) and isooctane (Isooctane) and distilled water, and other TEOS, AgNO 3, Cu (NO 3) 2 · 2.5H 2 O, Cd (NO 3) 2, Na 2 S, NH 4 It is to synthesize the spherical ultrafine powder having nano size coated with SiO 2 by fixing the transition element at the center under appropriate conditions by using micelles using OH or the like.

본 발명에 있어 역 마이셀(reverse micelle)을 이용한 마이크로 에멀젼법에 의한 분말합성공정은 오일 상(유기용매), 물, 계면활성제를 주로 사용하였다. 본 발명에서는 원하는 전이금속 원소가 함유된 수용액을 제조하고, 이를 적절한 오일 상에 분산시킨 다음 계면활성제를 첨가하여 이들이 안정하게 유지되도록 하였다.In the present invention, the powder synthesis process by the microemulsion method using reverse micelle mainly used an oil phase (organic solvent), water, and a surfactant. In the present invention, an aqueous solution containing a desired transition metal element was prepared, dispersed in an appropriate oil phase, and then a surfactant was added to keep them stable.

본 발명에서, 오일 상의 유기용매는 사이클로헥산(Cyclohexane), 이소옥탄(Iso-Octane) 중에서 선택되는 적어도 1 종이다.In the present invention, the organic solvent on the oil is at least one selected from cyclohexane, iso-octane.

또한, 전이금속 원소는 Ag, Cu, Mo, Co, Ni, Fe, Pd, Pt, Ru, Ce, Cr를 예로 들 수 있고, 반도성 금속화합물은 CdS, CdSe, ZnS 에서 선택된 1 종 혹은 2 종이상의 복합물의 형태인 것을 사용할 수 있다. 본 발명에서 수용액 중의 전이금속의 농도는 0.005-1 mol/l 인 것이 바람직한데, 그 이유는 중심에 위치하는 원소들이 반응하는 동안 응집되어 침전되지 않고 안정하게 졸 상태를 유지하여야 하기 때문이다.Examples of the transition metal element include Ag, Cu, Mo, Co, Ni, Fe, Pd, Pt, Ru, Ce, Cr, and the semiconducting metal compound is one or two species selected from CdS, CdSe, and ZnS. It may be used in the form of a complex of phases. In the present invention, it is preferable that the concentration of the transition metal in the aqueous solution is 0.005-1 mol / l, because the elements located in the center should remain stable in the sol state without aggregation and precipitation during the reaction.

또한 금속원소의 환원을 위하여 하이드라진(hydrazine)을 환원제로 첨가한 다음, SiO2를 형성하기 위한 Si전구체의 일종인 TEOS를 첨가함으로써 자발적인 가수분해 및 응축반응에 의하여 금속원소가 함유된 나노크기의 미세한 Core-shell/SiO2구조의 분말이 형성되도록 하였다. 본 발명에서, TEOS의 첨가량은 물/TEOS의 몰비가 5-400 인 것이 바람직한데, 그 이유는 가수분해 및 응축반응에 소요되는 물이 너무 적으면 반응이 되지 않고, 과다하면 구형 입자의 형태를 형성하지 못하기 때문이다.In addition, hydrazine is added as a reducing agent for the reduction of metal elements, followed by the spontaneous hydrolysis and condensation reaction of nano-sized microparticles by adding TEOS, a kind of Si precursor for forming SiO 2 . Core-shell / SiO 2 structure powder was formed. In the present invention, the addition amount of TEOS is preferably a molar ratio of water / TEOS 5-400, because the reason is that if the amount of water required for hydrolysis and condensation reaction is too small, the reaction does not occur. Because it does not form.

이때 가수 분해 및 응축반응을 촉진하기 위하여 NH4OH를 촉매로 첨가하였으며, 그 첨가량은 NH4OH/TEOS의 몰비가 0.1-5 가 되도록 하는 것이 바람직한데, 그 이유는 촉매의 양이 너무 많으면 반응이 급격히 일어나기 때문에 core-shell 구조를 형성할 시간적 여유를 주지 않으며, 너무 적으면 반응이 되지 않기 때문이다.At this time, NH 4 OH was added as a catalyst in order to promote hydrolysis and condensation reaction, and the amount of addition is preferably such that the molar ratio of NH 4 OH / TEOS is 0.1-5. Because this happens rapidly, it does not give time to form the core-shell structure and if it is too small, it does not react.

본 발명에 의하면, 입자크기가 10∼70 nm인 미분말을 얻는 것이 가능하며 입자모양 역시 구형 또는 다각형 형태로 다양하게 제조할 수 있다.According to the present invention, it is possible to obtain a fine powder having a particle size of 10 ~ 70 nm, and the particle shape can also be produced in a variety of spheres or polygons.

형성된 나노크기 분말을 회수하기 위하여 적절한 화학용매를 사용하여 추출 및 원심분리법을 사용하였다. 또한 형성된 입자의 모양, 크기 및 분포를 분석하기 위하여 고 분해능 투과전자현미경을 주로 사용하였다.Extraction and centrifugation were used using an appropriate chemical solvent to recover the formed nanosize powder. In addition, the high resolution transmission electron microscope was mainly used to analyze the shape, size and distribution of the formed particles.

[실시예 1]Example 1

0.02 mol AgNO3수용액 0.98 ml에 계면 활성제로 폴리옥시에틸렌(5) 노닐페닐 에테르 4 ml, 오일상(유기용매)으로 시클로헥산 10 ml를 30 분간 교반하고 여기에 하이드라진을 1 방울 첨가하여 Ag+를 환원시킨 다음, TEOS 0.04 ml, NH4OH 0.024 ml를 첨가하여 24 시간 가수분해 및 응축반응을 시켰다.In 0.98 ml of 0.02 mol AgNO 3 aqueous solution, 4 ml of polyoxyethylene (5) nonylphenyl ether as a surfactant and 10 ml of cyclohexane in an oil phase (organic solvent) were stirred for 30 minutes, and 1 drop of hydrazine was added to Ag + After reduction, 0.04 ml of TEOS and 0.024 ml of NH 4 OH were added to perform hydrolysis and condensation for 24 hours.

반응시킨 후 이소프로필 알콜로 5번, 증류수로 5번 세척한 후 고 분해능 투과 전자현미경으로 관찰한 결과는 도 2와 같이 입자 크기는 25-30 nm이고, Ag 금속입자의 크기는 약 5-10 nm이였다.After the reaction, the resultant was washed 5 times with isopropyl alcohol and 5 times with distilled water, and then observed with a high-resolution transmission electron microscope. As shown in FIG. 2, the particle size is 25-30 nm, and the size of Ag metal particles is about 5-10. nm.

[실시예 2]Example 2

0.01 mol AgNO3수용액 1.3 ml에 계면 활성제로 폴리옥시에틸렌(5) 노닐페닐 에테르 4 ml, 오일상으로 시클로헥산 10 ml를 30 분간 교반하고 여기에 하이드라진을 1 방울 첨가하여 Ag+를 환원 시킨 다음, TEOS 0.16 ml, NH4OH 0.1 ml를 첨가하여 24 시간 가수분해 및 응축반응을 시켰다.In 1.3 ml of 0.01 mol AgNO 3 aqueous solution, 4 ml of polyoxyethylene (5) nonylphenyl ether as a surfactant and 10 ml of cyclohexane in an oil phase were stirred for 30 minutes, and 1 drop of hydrazine was added thereto to reduce Ag + . 0.16 ml of TEOS and 0.1 ml of NH 4 OH were added to perform hydrolysis and condensation for 24 hours.

반응시킨 후 이소프로필 알콜로 2번, 메탄올로 2번 세척한 후 고 분해능 투과 전자현미경으로 관찰한 결과는 도 3와 같이 입자 크기는 20-25 nm이고, Ag 금속입자의 크기는 약 2-5 nm이였다.After the reaction, the resultant was washed twice with isopropyl alcohol and twice with methanol, and then observed with a high-resolution transmission electron microscope. As shown in FIG. 3, the particle size was 20-25 nm and the size of Ag metal particles was about 2-5. nm.

[실시예 3]Example 3

0.09 mol AgNO3수용액 0.65 ml에 계면 활성제로 소디움 비스(2-에틸헥실) 술포네이트 4 ml, 오일 상으로 이소옥탄 10 ml를 30 분간 교반하고 여기에 하이드라진을 1 방울 첨가하여 Ag+를 환원시킨 다음, TEOS 0.025 ml, NH4OH 0.015 ml를 첨가하여 24 시간 가수분해 및 응축반응을 시켰다.In 0.65 ml of 0.09 mol AgNO 3 aqueous solution, 4 ml of sodium bis (2-ethylhexyl) sulfonate as a surfactant and 10 ml of isooctane in oil phase were stirred for 30 minutes, and 1 drop of hydrazine was added thereto to reduce Ag + . 0.025 ml of TEOS and 0.015 ml of NH 4 OH were added to perform hydrolysis and condensation for 24 hours.

반응시킨 후 이소프로필 알콜로 5번, 증류수로 5번 세척한 후 고 분해능 투과 전자현미경으로 관찰한 결과는 도 4과 같이 입자 크기는 30-40 nm이고, Ag 금속입자의 크기는 약 5-15 nm이였다.After the reaction, the resultant was washed 5 times with isopropyl alcohol and 5 times with distilled water, and then observed with a high-resolution transmission electron microscope. As shown in FIG. 4, the particle size is 30-40 nm, and the size of Ag metal particles is about 5-15. nm.

[실시예 4]Example 4

0.02 mol Cd(NO3)2수용액 0.65 ml와 0.02 mol Na2S 수용액 0.65 ml 에 계면 활성제로 폴리옥시에틸렌(5) 노닐페닐 에테르 4 ml, 오일 상으로 시클로헥산 10 ml를 30 분간 교반하고 TEOS 0.32 ml, NH4OH 0.19 ml를 첨가하여 24시간 가수분해 및 응축반응 시켰다.In 0.65 ml of 0.02 mol Cd (NO 3 ) 2 aqueous solution and 0.65 ml of 0.02 mol Na 2 S aqueous solution, 4 ml of polyoxyethylene (5) nonylphenyl ether as a surfactant and 10 ml of cyclohexane in oil phase were stirred for 30 minutes and TEOS 0.32 ml, NH 4 OH 0.19 ml was added to perform hydrolysis and condensation reaction for 24 hours.

반응시킨 후 이소프로필 알콜로 5번, 증류 수로 5번 세척한 후 고 분해능 투과 전자현미경으로 관찰한 결과는 도 5과 같이 입자 크기는 40-45 nm이고, 형성된 CdS 금속입자의 크기는 약 2-4 nm이였다.After the reaction, the resultant was washed five times with isopropyl alcohol and five times with distilled water, and then observed with a high-resolution transmission electron microscope. As shown in FIG. 4 nm.

[실시예 5]Example 5

0.02 mol Cu(NO3)2수용액 1.3 ml에 계면 활성제로 폴리옥시에틸렌(5) 노닐페닐 에테르 4 ml, 오일상으로 시클로헥산 10 ml를 30 분간 교반하고 여기에 하이드라진을 1 방울 첨가하여 Cu+를 환원시킨 다음, TEOS 0.08 ml, NH4OH 0.048 ml를 첨가하여 24 시간 가수분해 및 응축반응을 시켰다.In 1.3 ml of 0.02 mol Cu (NO 3 ) 2 aqueous solution, 4 ml of polyoxyethylene (5) nonylphenyl ether as a surfactant and 10 ml of cyclohexane were stirred for 30 minutes in an oil phase, and 1 drop of hydrazine was added thereto to add Cu + . After reduction, 0.08 ml of TEOS and 0.048 ml of NH 4 OH were added to perform hydrolysis and condensation for 24 hours.

반응시킨 후 이소프로필 알콜로 5번, 증류수로 5번 세척한 후 고 분해능 투과 전자현미경으로 관찰한 결과는 도 6과 같이 입자 크기는 20-25 nm이고, Cu 금속입자의 크기는 약 1-3 nm이였다.After the reaction, the resultant was washed five times with isopropyl alcohol and five times with distilled water, and then observed with a high-resolution transmission electron microscope. As shown in FIG. 6, the particle size was 20-25 nm and the size of the Cu metal particles was about 1-3. nm.

역 마이셀(reverse micelle)을 이용한 마이크로 에멀젼법으로 기능성 금속원소 또는 금속원소의 화합물이 중심에 위치하는 Core-shell/SiO2구조인 구형의 나노분말을 제조함으로써 여러 가지 다른 Core-shell/MxOy(M:Metal) 구조 형태의 분말 합성에 적용할 수 있는 가능성을 제시하였다.Reverse micelles Core-shell / SiO 2 structure, by making the spherical nano-powders of many different Core-shell / M x O positioned (reverse micelle) a microemulsion process are compounds of the functional metal element or a metal element mainly using The possibility of application to powder synthesis in the form of y (M: Metal) structure is presented.

Claims (12)

전이금속의 수용액을 준비하는 단계;Preparing an aqueous solution of a transition metal; 상기 수용액을 계면활성제와 함께 유기용매에 혼합하여 전이금속 유기용액을 얻는 단계;Mixing the aqueous solution with an surfactant in an organic solvent to obtain a transition metal organic solution; 상기 유기용액에 상기 전이금속을 환원시키기 위한 환원제를 첨가하는 단계; 및Adding a reducing agent for reducing the transition metal to the organic solution; And 상기 유기용액에 TEOS를 첨가하여 가수분해 및 응축반응을 시키는 단계를 포함하는 것을 특징으로 하는 코어-셀 구조를 갖는 미분말의 제조방법.The method for preparing a fine powder having a core-cell structure, comprising the step of adding TEOS to the organic solution for hydrolysis and condensation reaction. 제 1 항에 있어서, 상기 유기용매는 시클로헥산(Cyclohexane), 이소옥탄(Isooctane) 중에서 선택되는 적어도 1 종인 것을 특징으로 하는 코어-셀 구조를 갖는 미분말의 제조방법.The method of claim 1, wherein the organic solvent is at least one selected from cyclohexane and isooctane. 제 1 항에 있어서, 상기 전이금속 원소는 Ag, Cu, Mo, Co, Ni, Fe, Pd, Pt, Ru, Ce, Cr, CdS, CdSe, ZnS에서 선택된 1 종 혹은 2 종이상의 복합물의 형태인 것을 특징으로 하는 코어-셀 구조를 갖는 미분말의 제조방법.The method of claim 1, wherein the transition metal element is in the form of a composite of one or two species selected from Ag, Cu, Mo, Co, Ni, Fe, Pd, Pt, Ru, Ce, Cr, CdS, CdSe, ZnS A method for producing a fine powder having a core-cell structure, characterized in that. 제 1 항에 있어서, 상기 계면 활성제는 폴리옥시에틸렌(5) 노닐페닐 에테르, 에어로 씰 오티[AOT(Sodium bis(2-ethylhexyl) sulfonate)] 중에서 선택되는 적어도 1종인 것을 특징으로 하는 코어-셀 구조를 갖는 미분말의 제조방법.The core-cell structure according to claim 1, wherein the surfactant is at least one selected from polyoxyethylene (5) nonylphenyl ether and aero seal OT [Sodium bis (2-ethylhexyl) sulfonate]] Method for producing a fine powder having a. 제 1 항에 있어서, 상기 환원제는 하이드라진(hydrazine)인 것을 특징으로 하는 코어-셀 구조를 갖는 미분말의 제조방법.The method of claim 1, wherein the reducing agent is a hydrazine (hydrazine) of the fine powder having a core-cell structure. 제 1 항에 있어서, 상기 가수분해 및 응축반응을 촉진하기 위하여 촉매로 NH4OH를 더 첨가하는 것을 특징으로 하는 코어-셀 구조를 갖는 미분말의 제조방법.The method of producing a fine powder having a core-cell structure according to claim 1, further comprising NH 4 OH as a catalyst to promote the hydrolysis and condensation reaction. 제 1 항에 있어서, 상기 전이금속의 농도는 0.005-1 mol/l 인 것을 특징으로 하는 코어-셀 구조를 갖는 미분말의 제조방법.The method of claim 1, wherein the concentration of the transition metal is 0.005-1 mol / l. 제 1 항에 있어서, 물/계면활성제의 몰비가 2-20 인 것을 특징으로 하는 코어-셀 구조를 갖는 미분말의 제조방법.The method for producing a fine powder having a core-cell structure according to claim 1, wherein the molar ratio of water / surfactant is 2-20. 제 1 항에 있어서, 물/TEOS(Tetraethoxysilane)의 몰비가 5-400 인 것을 특징으로 하는 코어-셀 구조를 갖는 미분말의 제조방법.The method of preparing a fine powder having a core-cell structure according to claim 1, wherein the molar ratio of water / TEOS (Tetraethoxysilane) is 5-400. 제 6 항에 있어서, NH4OH/TEOS(Tetraethoxysilane)의 몰비가 0.1-5 인 것을 특징으로 하는 코어-셀 구조를 갖는 미분말의 제조방법.The method for preparing fine powder having a core-cell structure according to claim 6, wherein the molar ratio of NH 4 OH / TEOS (Tetraethoxysilane) is 0.1-5. 제 1 항에 있어서, 상기 미분말의 입자크기는 10∼70 nm인 것을 특징으로 하는 코어-셀 구조를 갖는 미분말의 제조방법.The method for producing fine powder having a core-cell structure according to claim 1, wherein the fine powder has a particle size of 10 to 70 nm. 제 1 항에 있어서, 상기 미분말의 입자모양은 구형 또는 다각형인 것을 특징으로 하는 코어-셀 구조를 갖는 미분말의 제조방법.The method of manufacturing a fine powder having a core-cell structure according to claim 1, wherein the fine powder has a spherical or polygonal shape.
KR10-2001-0008521A 2001-02-20 2001-02-20 Method for Preparing Core-shell Nanosize Composite Particles KR100375000B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0008521A KR100375000B1 (en) 2001-02-20 2001-02-20 Method for Preparing Core-shell Nanosize Composite Particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0008521A KR100375000B1 (en) 2001-02-20 2001-02-20 Method for Preparing Core-shell Nanosize Composite Particles

Publications (2)

Publication Number Publication Date
KR20020068223A true KR20020068223A (en) 2002-08-27
KR100375000B1 KR100375000B1 (en) 2003-03-06

Family

ID=27694987

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0008521A KR100375000B1 (en) 2001-02-20 2001-02-20 Method for Preparing Core-shell Nanosize Composite Particles

Country Status (1)

Country Link
KR (1) KR100375000B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466545B1 (en) * 2002-02-19 2005-01-15 한국전자통신연구원 Method for manufacturing polymer nano particle
KR100886084B1 (en) * 2005-12-06 2009-02-26 주식회사 엘지화학 Core-shell type nanoparticles and method for preparing the same
KR101469455B1 (en) * 2013-05-29 2014-12-22 한국화학연구원 Nanocomposite catalyst for the synthesis of syngas, preparation thereof and method for the preparation of the syngas using the same
CN106694900A (en) * 2016-12-20 2017-05-24 浙江大学 Preparation method for multi-metal-core-shell nanosheet
CN114082943A (en) * 2021-11-23 2022-02-25 成都佳驰电子科技股份有限公司 Method for coating carbonyl iron powder with silicon dioxide in ethanol-free system
CN115283691A (en) * 2022-09-28 2022-11-04 长春黄金研究院有限公司 Preparation method of silver powder for printing paste

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837046B1 (en) 2007-02-08 2008-06-11 광주과학기술원 Method of forming metal-block copolymer nanocomposites and method of controlling the same
KR101308889B1 (en) 2011-12-21 2013-09-23 한국세라믹기술원 Manufacturing method of inorganic oxide support using reduction of copper oxide
KR102164022B1 (en) * 2018-11-23 2020-10-12 경희대학교 산학협력단 Method for Synthesizing Nanoparticles Using Mircrodroplet-based Microfluidic Device Integrated with In-situ Quenching Zone

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150201A (en) * 1993-11-29 1995-06-13 Toagosei Co Ltd Coating type metallic powder
DE19716882A1 (en) * 1997-04-22 1998-10-29 Basf Ag Silicon-containing iron powder
ATE242187T1 (en) * 2000-03-07 2003-06-15 Svlaamse Instelling Voor Techn SOL-GEL MODIFIED GEL CASTING OF CERAMIC POWDERS

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466545B1 (en) * 2002-02-19 2005-01-15 한국전자통신연구원 Method for manufacturing polymer nano particle
KR100886084B1 (en) * 2005-12-06 2009-02-26 주식회사 엘지화학 Core-shell type nanoparticles and method for preparing the same
US7820291B2 (en) 2005-12-06 2010-10-26 Lg Chem, Ltd. Core-shell type nanoparticles comprising metal cores and crystalline shells of metal oxide or metalloid oxide
US8343577B2 (en) 2005-12-06 2013-01-01 Lg Chem, Ltd. Core-shell type nanoparticles comprising crystalline metal-oxide shell and method for preparing the same
KR101469455B1 (en) * 2013-05-29 2014-12-22 한국화학연구원 Nanocomposite catalyst for the synthesis of syngas, preparation thereof and method for the preparation of the syngas using the same
CN106694900A (en) * 2016-12-20 2017-05-24 浙江大学 Preparation method for multi-metal-core-shell nanosheet
CN114082943A (en) * 2021-11-23 2022-02-25 成都佳驰电子科技股份有限公司 Method for coating carbonyl iron powder with silicon dioxide in ethanol-free system
CN114082943B (en) * 2021-11-23 2024-01-05 成都佳驰电子科技股份有限公司 Method for coating carbonyl iron powder with silicon dioxide in ethanol-free system
CN115283691A (en) * 2022-09-28 2022-11-04 长春黄金研究院有限公司 Preparation method of silver powder for printing paste

Also Published As

Publication number Publication date
KR100375000B1 (en) 2003-03-06

Similar Documents

Publication Publication Date Title
Feng et al. Self‐templating approaches to hollow nanostructures
Li et al. Architecture and preparation of hollow catalytic devices
US8415267B2 (en) Nanoparticles including metal oxide having catalytic activity
Liu et al. Noble metal-based composite nanomaterials fabricated via solution-based approaches
JP5480801B2 (en) Manufacturing method of metal composite ultrafine particles
US9446953B2 (en) Fabrication of metallic hollow nanoparticles
KR100375000B1 (en) Method for Preparing Core-shell Nanosize Composite Particles
US8075664B1 (en) Synthesis of metallic nanoshells on porphyrin-stabilized emulsions
Qiu et al. Synthesis of CeF3 nanoparticles from water-in-oil microemulsions
Zhang et al. Preparation of silica and TiO2–SiO2 core–shell nanoparticles in water-in-oil microemulsion using compressed CO2 as reactant and antisolvent
Gedanken et al. Power ultrasound for the production of nanomaterials
KR101890463B1 (en) Method for fabricating hollow metal nano particles and hollow metal nano particles fabricated by the method
CN103447547B (en) Method for preparing ferroferric oxide/gold nano-composite particles of star-like structure in micro-emulsion
Wang et al. Synthesis of α-Fe ultrafine particles in a saturated salt solution/isopropanol/PVP microemulsion and their structural characterization
KR100400355B1 (en) Synthesis of Silica Nanosize Particles by a Reverse Micelle and Sol―Gel Process
Zhan Synthetic architecture of integrated nanocatalysts with controlled spatial distribution of metal nanoparticles
CN109158062B (en) Silicon dioxide colloid composite rare earth core-shell microsphere and preparation method thereof
KR100575213B1 (en) SYNTHESIS METHOD OF Ag NANOSIZE PARTICLES BY MICRO-EMULSION PROCESS
KR101918927B1 (en) Gold multipod nanoparticle core - titania shell nanoparticles and synthetic method thereof
KR100629112B1 (en) Manufacturing method of silver superfine nanoparticles
CN114394622A (en) Three-dimensional hollow molybdenum disulfide @ gold nanoparticle and preparation method thereof
CN108452811B (en) Method for preparing mesoporous silica hollow sphere structure with nano material embedded in inner wall
KR100987935B1 (en) Process of preparing heterodimer and alloy nanocrystals
CN114247389B (en) Method for preparing structure-controllable nanoparticle colloid cluster based on emulsion method
CN1318298C (en) Synthesis process of nanometer mesoporous gold complex

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080131

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee