KR20020061134A - Process for producing l-threonine - Google Patents

Process for producing l-threonine Download PDF

Info

Publication number
KR20020061134A
KR20020061134A KR1020010002372A KR20010002372A KR20020061134A KR 20020061134 A KR20020061134 A KR 20020061134A KR 1020010002372 A KR1020010002372 A KR 1020010002372A KR 20010002372 A KR20010002372 A KR 20010002372A KR 20020061134 A KR20020061134 A KR 20020061134A
Authority
KR
South Korea
Prior art keywords
threonine
operon
microorganism
chromosomal dna
analogue
Prior art date
Application number
KR1020010002372A
Other languages
Korean (ko)
Other versions
KR100427479B1 (en
Inventor
노갑수
김영철
김대철
박재용
이진호
옥승한
Original Assignee
제일제당주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일제당주식회사 filed Critical 제일제당주식회사
Priority to KR10-2001-0002372A priority Critical patent/KR100427479B1/en
Publication of KR20020061134A publication Critical patent/KR20020061134A/en
Application granted granted Critical
Publication of KR100427479B1 publication Critical patent/KR100427479B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE: Provided is a manufacturing method for L-threonine by using a microorganism having its original threonine operon on its chromosomal DNA as well as at least one copy of threonine operon inserted into a specific site of the chromosomal DNA, thereby increasing the expression of threonine synthase and consequently improving the production of L-threonine dramatically. CONSTITUTION: The manufacturing method of L-threonine is characterized by inserting at least one copy of threonine operon into a specific site, lacZ site, of a chromosomal DNA in a microorganism to increase the expression of threonine synthase including thrA(aspartokinase I-hormoserine dehydrogenase), thrB(homoserine kinase), and thrC(threonine synthase) and consequently to improve L-threonine production. Wherein, the used microorganism is characteristically E. coli and the inserted operon shows resistance to threonine analogue, isoleucine analogue, and methionine analogue.

Description

L-쓰레오닌의 제조방법{Process for producing L-threonine}Process for producing L-threonine

본 발명은 미생물을 이용하여 L-쓰레오닌을 생산함에 관한 것으로, 더욱 상세하게는 이용되는 미생물의 염색체 DNA 중에 존재하는 원래의 쓰레오닌 오페론 외에 추가로 1 카피 이상의 쓰레오닌 오페론을 염색체 DNA 중의 특정부위에 삽입시킴으로써 쓰레오닌 생합성 관련 효소들의 발현량을 증가시켜 L-쓰레오닌의 생산량을 향상시키는 것을 특징으로하는 L-쓰레오닌의 제조방법에 관한 것이다.The present invention relates to the production of L-threonine by using a microorganism, and more particularly, in addition to the original threonine operon present in the chromosomal DNA of the microorganism used, at least one copy of the threonine operon is added to the chromosomal DNA. The present invention relates to a method for producing L-threonine, which is characterized by improving the production of L-threonine by increasing the expression level of threonine biosynthesis-related enzymes by inserting in a specific site.

L-쓰레오닌은 필수 아미노산의 일종으로 사료 및 식품 첨가제로 널리 사용되며 의약용으로 수액제, 의약품의 합성 원료로도 사용된다. L-쓰레오닌은 발효법으로 제조하는데 대장균, 코리네형 세균, 세라티아속 세균, 프로덴시아속 균주의 야생주로부터 유도된 인공변이주를 사용하고 있다. 이러한 변이 균주들로는 아미노산 유사체 및 약제 내성 변이주 또는 이들 내성주에 디아미노피메릭산, 메티오닌, 라이신, 이소루이신 영양요구성을 부여한 인공변이주가 공지되어 있다 (일본국 공개특허출원 제평2-219582호, Appl. Microbiol. Biotechnol., 29. 550-553 (1988), 한국특허공고 제92-8365호).L-Threonine is an essential amino acid, widely used in feed and food additives, and as a synthetic raw material for fluids and pharmaceuticals. L-threonine is produced by fermentation method using artificial mutants derived from wild strains of E. coli, Coryneform bacteria, Serratia bacteria, Prodencia strains. Such mutant strains are known as amino acid analogs and drug-resistant strains or artificial strains in which diaminopimeric acid, methionine, lysine and isoleucine nutrient composition are given to these resistant strains (Japanese Patent Application Laid-Open No. 2-219582, Appl.Microbiol.Biotechnol., 29.550-553 (1988), Korean Patent Publication No. 92-8365).

일반적으로 특정 유전자의 발현량을 높이기 위한 방법으로는, 1개의 미생물이 가지는 유전자의 수를 높여주는 방법이 있는데, 이러한 목적을 위해서는 통상 1개의 미생물당 카피 수가 높게 유지되는 플라스미드(plasmid)를 사용한다(Sambrook et al, Molecular cloning, 2판, 1989, 1.3~1.5). 즉 플라스미드에 원하는 유전자를 삽입하고 이러한 재조합 플라스미드를 다시 미생물에 형질전환시킴으로써 1개의 미생물당 그 플라스미드의 카피 수 만큼 유전자를 늘려주는 효과를 기대할 수 있다. 이러한 방법으로 쓰레오닌의 생산성 향상을 시도하여 부분적인 성공이 보고된 바 있다 (미국특허: 5,538,873). 그러나 이러한 플라스미드를 이용한 기술은 대부분의 경우에 있어서 특정 유전자만을 지나치게 발현시킴으로써 숙주 미생물에 큰 부담으로 작용하며 재조합 균주의 배양 중에 플라스미드를 소실하게되는 플라스미드 안정성 등의 문제를 야기시킨다.In general, as a method for increasing the expression level of a specific gene, there is a method for increasing the number of genes of one microorganism. For this purpose, a plasmid in which the number of copies per microorganism is maintained is usually used. (Sambrook et al, Molecular cloning, 2nd edition, 1989, 1.3-1.5). In other words, by inserting the desired gene in the plasmid and transforming the recombinant plasmid back to the microorganism can be expected to increase the gene by the number of copies of the plasmid per microorganism. Partial success has been reported by attempting to improve the productivity of threonine in this way (US Pat. No. 5,538,873). However, the technique using such plasmids causes a large burden on the host microorganism by overexpressing only a specific gene in most cases, and causes problems such as plasmid stability such that plasmids are lost during cultivation of recombinant strains.

따라서 이러한 문제를 해결하고자 배양액 중에 항생제를 첨가해 주거나 발현의 조절이 가능한 플라스미드를 사용하는 방법들이 개발되었다(Sambrook et al, Molecular cloning, 2판, 1989, 1.5~1.6, 1.9~1.11). 발현조절이 가능한 플라스미드를 사용하는 경우는 생장기에는 유전자의 발현이 일어나지 않는 조건에서 배양하여 숙주 미생물에 부담을 덜어주다가 미생물이 충분히 자란 후에 일시적으로 발현을 유도함으로써 목적물을 얻는 방법이다. 그러나 이러한 플라스미드들 대부분은 최종 목적물이 단백질인 경우에만 해당된다. 목적물이 1차 대사산물인 경우는 미생물의 생장과 밀접한 관련이 있기 때문에 생장기에 목적 유전자의 발현의 효과를 보지 못하면 유전자 발현에 의한 1차 대사산물의 증가 효과를 기대하기 힘들다. 1차 대사산물의 일종인 쓰레오닌도 동일한 경우에 해당한다고 할 수 있다.Therefore, in order to solve this problem, methods using plasmids capable of adding antibiotics or controlling expression of cultures have been developed (Sambrook et al., Molecular cloning, 2nd edition, 1989, 1.5 ~ 1.6, 1.9 ~ 1.11). In the case of using a plasmid capable of expression control, it is a method of obtaining a target product by culturing in a condition where gene expression does not occur in the growing season to relieve the burden on the host microorganism, and then inducing expression temporarily after the microorganism is fully grown. However, most of these plasmids are only relevant if the end object is a protein. If the target product is a primary metabolite, since it is closely related to the growth of microorganisms, it is difficult to expect an increase in the primary metabolite by gene expression unless the effect of expression of the target gene is seen in the growing season. The same applies to threonine, a type of primary metabolite.

따라서 이러한 단점을 보완하기 위한 노력으로 쓰레오닌 생산을 위하여 쓰레오닌 생합성 관련 특정유전자를 염색체 DNA중에 삽입 방법이 이용된 사례가 있었다(미국특허: 5,939,307). 그러나, 이 경우는 프로모터를 인듀서블(inducible) 프로모터로 교환해 준 유전자를 염색체 중에 존재하는 동일한 유전자와 치환하는 방법을 이용하기 때문에 쓰레오닌 오페론 유전자들의 획기적인 발현 증가를 기대하기 어려웠다.Therefore, in an effort to compensate for these shortcomings, there has been a case where a method of inserting a specific gene related to threonine biosynthesis into chromosomal DNA was used for threonine production (US Pat. No. 5,939,307). However, in this case, it was difficult to expect a dramatic increase in the expression of threonine operon genes because the method of replacing a promoter exchanged with an inducible promoter was replaced with the same gene present in the chromosome.

이에 본 발명자들은 종래의 치환 방법과는 달리 숙주 미생물의 염색체 중에 존재하던 원래의 유전자는 그대로 두고 추가로 쓰레오닌 오페론을 염색체 DNA 중의 특정 부위(lacZ 유전자 부위)에 삽입함으로써 원래 숙주 미생물이 가지고 있는 유전자의 효능을 그대로 활용하면서 염색체에 삽입된 쓰레오닌 오페론의 유전자의 효능을 추가로 활용할 수 있다는 장점을 발견하고 본 발명을 완성하기에 이르렀다. 또한 본 발명은 원하는 경우 2 카피 이상의 유전자의 삽입도 가능하다는 특징을 가지고 있다.Therefore, the present inventors, unlike the conventional substitution method, leaving the original gene existing in the chromosome of the host microorganism as it is and additionally inserting a threonine operon into a specific site (lacZ gene region) of the chromosome DNA, which the original host microorganism has While utilizing the efficacy of the gene as it is found that the advantage of the gene of the gene of the threonine operon inserted into the chromosome can be further utilized to complete the present invention. In addition, the present invention has the feature that it is also possible to insert two or more genes if desired.

따라서, 본 발명의 목적은 플라스미드를 사용한 유전자 재조합 균주의 단점으로 지적되고 있는 플라스미드의 불안정성과 생육저해 등을 해결함과 동시에 쓰레오닌 오페론 수를 2개 이상으로 증가시킴으로써 쓰레오닌 오페론 유전자들의 발현증가를 통해 획기적인 쓰레오닌 생산성 향상을 달성할 수 있는 L-쓰레오닌이 제조방법을 제공하는 데 있다.Accordingly, an object of the present invention is to solve the instability and growth inhibition of the plasmid, which is pointed out as a disadvantage of the recombinant strain using the plasmid, and simultaneously increase the number of threonine operon by expression of threonine operon genes by increasing the number of threonine operon. L-Threonine provides a manufacturing method that can achieve dramatic threonine productivity increase through increase.

도 1은 쓰레오닌 오페론의 염색체 삽입을 위한 재조합 플라스미드의 제작 과정을 도시한 것이다.Figure 1 illustrates the construction of a recombinant plasmid for chromosomal insertion of threonine operon.

상기 목적을 달성하기 위해, 본 발명은 미생물을 이용하여 L-쓰레오닌을 생산함에 있어서, 이용되는 미생물의 염색체 DNA 중에 존재하는 원래의 쓰레오닌 오페론 외에 추가로 1 카피 이상의 쓰레오닌 오페론이 염색체 DNA 중의 특정부위에 삽입된 것을 특징으로 하는 L-쓰레오닌의 제조방법을 제공한다.In order to achieve the above object, the present invention, in the production of L-threonine by using a microorganism, in addition to the original threonine operon present in the chromosomal DNA of the microorganism used, at least one copy of the threonine operon It provides a method for producing L-threonine, characterized in that inserted in a specific region in the chromosomal DNA.

본 발명에서는, 염색체 DNA 중에 쓰레오닌 오페론의 수를 2개 이상으로 늘림으로써 쓰레오닌 생합성 관련 효소들의 (thrA: aspartokinaseI-homoserine dehydrogenase, thrB:homoserine kinase, thrC: threonine synthase) 발현량을 증가시켜 L-쓰레오닌의 생산량을 향상시킬 수가 있다.In the present invention, by increasing the number of threonine operon in the chromosomal DNA to two or more to increase the expression of threonine biosynthesis related enzymes (thrA: aspartokinase I-homoserine dehydrogenase, thrB: homoserine kinase, thrC: threonine synthase) It can improve the production of L-threonine.

본 발명에 이용될 수 있는 미생물은 대장균, 코리네형 세균, 세라티아속 세균, 프로덴시아속 균주 등과 같이 L-쓰레오닌을 생산할 수 있는 어떤 균주도 가능하나, 특히 상기 미생물이 대장균인 것이 바람직하다.Microorganisms that can be used in the present invention may be any strain capable of producing L-threonine, such as E. coli, Coryneform bacteria, Serratia bacteria, Prodencia strain, etc., but it is particularly preferable that the microorganism is E. coli Do.

본 발명의 미생물에 추가로 삽입되는 쓰레오닌 오페론은 특히 쓰레오닌 유사체, 라이신 유사체, 이소루이신 유사체와 메티오닌 유사체에 대해 내성을 보이는 미생물(인공 변이주)로부터 획득하는 것이 바람직하다.The threonine operon further inserted into the microorganism of the present invention is particularly preferably obtained from microorganisms (artificial mutant strains) that are resistant to threonine analogues, lysine analogues, isoleucine analogues and methionine analogues.

본 발명에서 추가로 삽입되는 쓰레오닌 오페론은 염색체 DNA 중의 원래 쓰레오닌 오페론외에 어떤 부위에도 삽입될 수 있으나, 특히 삽입 부위가 lacZ 부위인 것이 바람직하다.The threonine operon to be inserted in the present invention may be inserted at any site other than the original threonine operon in the chromosomal DNA, but it is particularly preferable that the insertion site is the lacZ site.

바람직하게는, 본 발명은 L-쓰레오닌의 생산 균주인 대장균 TF4076(KFCC10718, 대한민국 특허출원 제90-22965)의 염색체로부터 클로닝된 쓰레오닌 오페론(operon)을 다시 모균주인 TF4076의 염색체에 삽입시키는 것을 특징으로 하는 L-쓰레오닌의 제조방법을 제공한다.Preferably, the present invention is a threonine operon cloned from the chromosome of Escherichia coli TF4076 (KFCC10718, Korean Patent Application No. 90-22965), which is a production strain of L-threonine, on the chromosome of the parent strain TF4076. It provides a method for producing L-threonine, characterized in that the insertion.

본 발명을 좀더 상세하게 살펴보면 다음과 같다.Looking at the present invention in more detail as follows.

1. 쓰레오닌 오페론1.Threonine Operon

쓰레오닌 오페론은 TF4076(KFCC10718, 대한민국 특허출원 제90-22965)의 염색체로부터 클로닝된 것을 사용하였는데 이 균주는 메티오닌 요구성, 쓰레오닌 유사체(AHV: α-아미노-β-하이드록시 발레릭산)에 대한 내성, 라이신 유사체(AEC: S-(2-아미노에틸)-L-시스테인)에 대한 내성, 이소루이신 유사체(α-아미노부티릭에시드) 대한 내성, 메티오닌의 유사체(에티오닌)에 대한 내성 등의 특성을 가지고 있다.The threonine operon was cloned from the chromosome of TF4076 (KFCC10718, Korean Patent Application No. 90-22965), which is a methionine-required, threonine analogue (AHV: α-amino-β-hydroxy valeric acid). Resistance to lysine analogues (AEC: S- (2-aminoethyl) -L-cysteine), resistance to isoleucine analogues (α-aminobutyric acid), analogues of methionine (ethionine) It has characteristics such as resistance to.

2. 삽입용 벡터2. Insertion vector

염색체 삽입을 위한 벡터로는 이러한 용도로 개발된 벡터인 pBRINT-Ts 계열의 플라스미드들(참고문헌: Sylvie Le Beatriz 등 (1998), pBRINT-Ts: a plasmid family with a temperature-sensitive replicon, designed for chromosomal integration into the lacZ gene of Escherichia coli. Gene. 223, 213-219.)을 이용하였다. 이들 벡터는 37℃에서 배양하면 플라스미드에 클로닝된 유전자가 염색체 DNA의 lacZ 유전자 부위로 삽입되는 특성을 가지고 있으며 다시 온도를 44℃로 올려서 배양하면 세포질 내에 존재하는 남은 플라스미드들이 소실되어버리는 온도감수성의 특성을 가지고 있다.Vectors for chromosomal insertion include plasmids of the pBRINT-Ts family, a vector developed for this purpose (Ref .: Sylvie Le Beatriz et al. (1998), pBRINT-Ts: a plasmid family with a temperature-sensitive replicon, designed for chromosomal) integration into the lacZ gene of Escherichia coli.Gen. 223, 213-219. These vectors have the characteristic that when cloned at 37 ℃, the gene cloned into the plasmid is inserted into the lacZ gene region of chromosomal DNA, and when the temperature is raised to 44 ℃, the remaining plasmids in the cytoplasm are lost. Have

3. 재조합 벡터3. Recombinant Vector

먼저 TF4076의 염색체로부터 획득한 쓰레오닌 오페론을 각각 pBRINT-TsGm, pBRINT-TsKm, pBRINT-TsCm 의 Hind III와 BamH I 부위에 클로닝하여 pGmTN, pKmTN, pCmTN을 제작하고 이 벡터를 다시 TF4076에 형질전환시킨 후 37℃에서 배양하여 클로닝된 쓰레오닌 오페론의 염색체 DNA의 lacZ 유전자 부위에 삽입을 유도한 후 다시 44℃에서 배양함으로써 숙주 모균주의 세포질 중에 남아있는 플라스미드들의 소실을 유도하였다.First, the threonine operon obtained from the chromosome of TF4076 was cloned into Hind III and BamH I sites of pBRINT-TsGm, pBRINT-TsKm, and pBRINT-TsCm, respectively, to prepare pGmTN, pKmTN, and pCmTN, and transform the vector into TF4076. After incubation at 37 ° C. to induce insertion into the lacZ gene region of the chromosomal DNA of the cloned threonine operon, and further culture at 44 ° C. to induce loss of plasmids remaining in the cytoplasm of the host mother strain.

4. 선별 방법4. Screening method

재조합 균주들의 외형상의 선별 방법은 클로닝에 사용된 벡터 종류에 따라 젠타마이신, 또는 카나마이신, 또는 클로람페니콜에 대한 내성과 카베니실린에 대한 감수성, 그리고 X-gal과 IPTG가 첨가된 고체배지에서 푸른색이 아닌 흰색을 보이는 콜로니들을 선별하였다. 이것은 염색체 DNA중의 lacZ 유전자에 쓰레오닌 오페론이 삽입됨으로써 lacZ 활성이 소실되어 발색제인 X-gal을 분해할 수 있는 능력이 소실되는 원리를 이용한 것이다.Appearance selection methods of recombinant strains are resistant to gentamicin or kanamycin, or chloramphenicol and susceptibility to carbenicillin, depending on the type of vector used for cloning, and blue color in X-gal and IPTG added solid medium. Colonies showing non-white color were selected. This is based on the principle that the insertion of threonine operon into the lacZ gene in the chromosomal DNA results in the loss of lacZ activity and the ability to degrade X-gal, a colorant.

이렇게 해서 선별된 재조합주를 역가배지가 함유된 삼각 플라스크에서 쓰레오닌의 생산성을 모균주와 비교해 본 결과 모균주는 48시간에 20 g/L을 생산한 반면 염색체 DNA에 쓰레오닌 오페론이 삽입된 재조합 균주중 최고의 성적을 보인 균주 pGmTN14(KFCC-11228)은 25 g/L의 쓰레오닌을 생산함으로써 약 25% 에 이르는 수율 향상을 달성하였다(실시예 3 참조). 또한 이 균주의 경우 5-리터 발효조에서는모균주 (75.3 g/L)에 비해 수율이 약 26% 향상된 95.0 g/L의 쓰레오닌을 생산하였다(실시예 4 참조).In this way, the selected recombinant strains were compared with the parent strain in the Erlenmeyer flask containing the titer medium. As a result, the mother strain produced 20 g / L at 48 hours, while the threonine operon was inserted into the chromosomal DNA. The best-performing strain, pGmTN14 (KFCC-11228), achieved a yield improvement of about 25% by producing 25 g / L of threonine (see Example 3). In addition, the 5-liter fermenter produced 95.0 g / L of threonine with about 26% improvement in yield compared to the parent strain (75.3 g / L) for this strain (see Example 4).

이하, 실시예를 들어서 본 발명을 더욱 구체적으로 설명하지만, 본 발명은 이들 실시예에 한정되는 것은 아니다.Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to these Examples.

실시예 1 : 쓰레오닌 오페론을 함유한 염색체 DNA 삽입용 벡터의 제작Example 1 Preparation of Chromosome DNA Insertion Vector Containing Threonine Operon

쓰레오닌 생산 모균주로는 TF4076을 사용하였으며 DNA 조작을 위한 숙주 균주로는 DH5α를 사용하였다. 쓰레오닌 오페론은 TF4076의 염색체 DNA로부터 클로닝하여 제작한 재조합 플라스미트 벡터인 pAT94(한국특허 출원번호: 92-24732)을 사용하였다. 염색체 DNA 삽입용 벡터로는 멕시코 국립대학으로부터 획득한 pBRINT-Ts 계열의 벡터인 pBRINT-TsCm, pBRINT-TsKm, pBRINT-TsGm을 사용하였다 (참고문헌: Sylvie Le Beatriz 등 (1998), pBRINT-Ts: a plasmid family with a temperature-sensitive replicon, designed for chromosomal integration into the lacZ gene of Escherichia coli. Gene. 223, 213-219.). pBRINT-Ts 계열의 플라스미드를 포함한 대장균의 배양을 위한 마커 항생제 농도는 배지 1리터 당 카베니실린(carbenicillin)은 50 ㎎, 카나마이신(kanamycin)은 30 ㎎, 클로람페니콜(chlorampenicol)은 30 ㎎, 젠타마이신(gentamycin)은 5 ㎎ 되게 첨가하였다. 배양 배지는 LB(효모엑기스 5 g/L, 박토트립톤 10g/L, 염화나튜륨 10 g/L, pH 7.0)를 사용하였다. 재조합 프라스미드의 제작과정을 제 1도에 나타내었다. 먼저 pAT94를 제한효소 Hind III와 BamH I 으로 이중절단한 후 전기영동을 통하여 6.4 kb 크기의 쓰레오닌 오페론 DNA 절편을 회수하였다. pBRINT-Ts 시리즈 플라스미드 벡터들도 Hind III와 BamH I으로 이중절단하여 동일한 방법으로 완전히 절단된 DNA 절편들만을 회수하였다. 절단된 플라스미드 벡터와 회수된 쓰레오닌 오페론 DNA 절편을 T4 DNA ligase를 사용하여 접합하여 대장균 DH5α에 전기장충격법을 통하여 형질전환하여 항생제가 포함된 LB 고체배지 (효모엑기스 5 g/L, 박토트립톤 10g/L, 염화나튜륨 10 g/L, 박토아가 1.7%, pH 7.0)에서 자란 단일 콜로니들을 회수하였다. 회수된 콜로니들을 배양하여 회수하여 플라스미드를 분리하고 포함된 플라스미드의 크기를 일차로 확인하고 2차로 다시 BamH I과 Hind III로 2중 절단하여 6.4 kb 크기의 DNA 절편이 나오는지를 확인함으로써 쓰레오닌 오페론이 포함된 재조합 플라스미드 pCmTN(14.5 kb), pGmTN(13.3 kb), pKmTN(14.7 kb)를 제작하였다.TF4076 was used as a threonine producing parent strain and DH5α was used as a host strain for DNA manipulation. The threonine operon used pAT94 (Korean Patent Application No. 92-24732), a recombinant plasmid vector prepared by cloning from chromosomal DNA of TF4076. As a vector for chromosomal DNA insertion, pBRINT-TsCm, pBRINT-TsKm, and pBRINT-TsGm, which are vectors of the pBRINT-Ts family obtained from the National University of Mexico, were used (Reference: Sylvie Le Beatriz et al. (1998), pBRINT-Ts: a plasmid family with a temperature-sensitive replicon, designed for chromosomal integration into the lacZ gene of Escherichia coli.Gen. 223, 213-219.). The concentration of marker antibiotics for the culture of Escherichia coli containing the pBRINT-Ts family of plasmids was 50 mg of carbenicillin, 30 mg of kanamycin, 30 mg of chlorampenicol, and gentamicin per liter of medium. gentamycin) was added to 5 mg. As culture medium, LB (5 g / L of yeast extract, 10 g / L of bactotriptone, 10 g / L of sodium chloride, pH 7.0) was used. The construction of the recombinant plasmid is shown in FIG. First, pAT94 was double-cut with restriction enzymes Hind III and BamH I, and electrophoresis was performed to recover 6.4 kb of threonine operon DNA fragments. pBRINT-Ts series plasmid vectors were also double-cleaved with Hind III and BamH I to recover only DNA fragments that were completely cut in the same manner. The cleaved plasmid vector and the recovered threonine operon DNA fragment were conjugated using T4 DNA ligase and transformed into Escherichia coli DH5α by electric field shock method. LB solid medium containing antibiotics (5 g / L of yeast extract, Bactot Single colonies grown at 10 g / L of lipton, 10 g / L of sodium chloride, 1.7% of bactoa, pH 7.0) were recovered. The recovered colonies were cultured and recovered to isolate plasmids, and the size of the contained plasmids was checked first, and the second was again double-cut with BamH I and Hind III to determine whether a 6.4 kb DNA fragment was produced. The recombinant plasmid pCmTN (14.5 kb), pGmTN (13.3 kb) and pKmTN (14.7 kb) were prepared.

실시예 2: 재조합 플라스미드의 염색체 삽입 균주의 선별Example 2: Screening for Chromosome Insertion Strains of Recombinant Plasmids

먼저 DH5α로부터 분리한 재조합 플라스미드 pCmTN, pGmTN, pKmTN를 사용하여 쓰레오닌 생산균주인 TF4076에 형질전환하여 적절한 항생제가 첨가된 LB 고체배지 (효모엑기스 5 g/L, 박토트립톤 10g/L, 염화나튜륨 10 g/L, 박토아가 1.7%, pH 7.0)에 도말하여 30℃에서 60시간 배양하였다. 단일 콜로니들을 따서 0.5 ㎖의 LB에 접종하여 30℃에서 4시간 동안 배양한 후 배양액의 일부를 다시 10 ㎖의 LB에 옮겨서 30℃에서 6시간 배양한 후 다시 37℃에서 밤새 배양했다. 배양액을 10-3 ∼10-6로 희석하여 적정 항생제가 첨가된 LB 고체배지에 도말하였다. 이때 0.1 M IPTG 12 ㎕ 와 2% X-gal 60 ㎕를 같이 도말했다. 염색체에 플라스미드가 삽입된 균주의 선별을 위한 항생제 마커의 농도는 배지 1ℓ당 카나마이신은 15 ㎎, 클로람페니콜은 15 ㎎, 젠타마이신은 5 ㎎ 되게 첨가하여 사용하였다. 도말한 플레이트는44℃에서 24시간 동안 배양하여 흰색 콜로니들 중 카베니실린에 민감한 콜로니들을 선별하였다.First, the recombinant plasmids pCmTN, pGmTN, and pKmTN isolated from DH5α were transformed into TF4076, a threonine producing strain, and an LB solid medium (5 g / L yeast extract, 10 g / L bactotryptone, chloride) was added. Naturium 10 g / L, bactoa was 1.7%, pH 7.0) and incubated at 30 ℃ 60 hours. Single colonies were inoculated in 0.5 ml of LB and incubated for 4 hours at 30 ° C., and then a part of the culture was transferred to 10 ml of LB, incubated for 6 hours at 30 ° C., and then incubated overnight at 37 ° C. The culture was diluted to 10-3 to 10-6 and plated in LB solid medium to which the appropriate antibiotic was added. At this time, 12 μl of 0.1 M IPTG and 60 μl of 2% X-gal were plated together. The concentration of the antibiotic marker for the selection of the plasmid-inserted strain on the chromosome was 15 mg of kanamycin, 15 mg of chloramphenicol and 5 mg of gentamicin per 1 liter of medium. The plated plates were incubated at 44 ° C. for 24 hours to select carbenicillin-sensitive colonies among white colonies.

실시예 3: 재조합 균주들의 삼각 플라스크에서 쓰레오닌 생산 역가 비교 시험Example 3: Comparison of Threonine Production Titers in Erlenmeyer Flasks of Recombinant Strains

3종의 재조합 플라스미드가 염색체에 삽입된 재조합 균주들의 단일 콜로니들을 각 종류별로 20개씩 선별하여 표 1에 나타낸 쓰레오닌 역가배지를 사용하여 삼각 플라스크에서 쓰레오닌 생산성을 비교하였다. 32℃의 인큐베이터에서 LB 고체배지중에 밤새 배양한 단일 콜로니들을 20 ml의 역가배지에 1루프씩 접종하여 32℃에서 250 rpm으로 48시간 동안 배양하였다. 분석 결과를 표2에 나타내었는데 모균주인 TF4076은 20 g/L인 반면 재조합 균주들은 전반적으로 모균주에 비해 우수한 성적을 보였으며 특히 pGmTN을 사용하여 제작한 재조합 균주들이 가장 우수한 성적을 보였다. 이 균주의 경우 최고 25 g/L 의 쓰레오닌을 생산함으로써 수율이 모균주 대비 약 25% 정도 향상되었음을 관찰하고 pGmTN-14 로 명명하고, 이 변이주를 2000년 11월 20일자로 사단법인 한국종균협회에 기탁하고, 기탁번호 제 KFCC-11228 호를 부여받았다.Twenty single colonies of recombinant strains in which three recombinant plasmids were inserted into the chromosome were selected for each type, and threonine productivity was compared in an Erlenmeyer flask using a threonine titer shown in Table 1. Single colonies cultured overnight in LB solid medium in a 32 ° C. incubator were inoculated in a loop in 20 ml titer medium and incubated at 32 ° C. at 250 rpm for 48 hours. The results of the analysis are shown in Table 2. The parent strain TF4076 was 20 g / L, whereas the recombinant strains generally showed better results than the parent strain, especially the recombinant strains prepared using pGmTN showed the best results. For this strain, the yield was improved by about 25% compared to the parent strain by producing up to 25 g / L of threonine, and named as mutant pGmTN-14. It was deposited with the association and was assigned accession number KFCC-11228.

쓰레오닌 역가배지Threonine titer 조성물Composition 농도 (리터당)Concentration (per liter) 포도당glucose 70 g70 g 황산암모늄Ammonium Sulfate 28 g28 g KH2PO4 KH 2 PO 4 1.0 g1.0 g MgSO4.7H2OMgSO 4 .7H 2 O 0.5 g0.5 g FeSO4.7H2OFeSO 4 .7H 2 O 5 mg5 mg MnSO4.8H2OMnSO 4 .8H 2 O 5 mg5 mg 탄산칼슘Calcium carbonate 30 g30 g L-메티오닌L-methionine 0.15 g0.15 g 효모엑기스Yeast Extract 2 g2 g pH (7.0)pH (7.0)

재조합 균주들의 플라스크 역가 시험 결과Flask titer test results of recombinant strains 20 g/L 이하20 g / L or less 20-22 g/L20-22 g / L 22-24 g/L22-24 g / L 24 g/L 이상24 g / L or more pCmTNpCmTN 44 66 55 55 pGmTNpGmTN 22 22 66 1010 pKmTNpKmTN 66 55 66 33

실시예4: 발효조를 이용한 쓰레오닌 비교시험Example 4: Comparison of threonine using a fermenter

3종의 재조합 균주 중 삼각 플라스크에서 시험하여 선별된 우수 균주 각 1개씩과 모균주 TF4076을 사용하여 5-L 발효조에서 쓰레오닌 생산성을 비교하여보았다. 초기 배지 조성은 표 3에 나타내었다. 종균배양은 LB배지에 포도당 10 g/L와 L-메티오닌을 0.1 g/L 되게 첨가해 준 배지를 사용하였고 발효조의 초기 접종 부피는 초기 배양 부피의 3 -5%에서 조정하였다. 추가당은 6회에 걸쳐 첨가하였으며 추가한 후의 포도당 농도가 5% 되게하였으며 추가시점은 포도당이 고갈된 시점이다. 또한 포도당을 추가할 때 제일인산칼륨(KH2PO4)을 중량기준으로 1%되게 같이 첨가해주었다. 초기 배양 부피는 1.5 L이고 최종 부피는 3.0 L이며 발효종료 후 투입된 총 포도당의 농도는 250 g/L이다. 교반속도는 700 -1000 rpm으로 해주고 pH와 온도는 각각 7.0과 32℃로 맞추어주었다. 배양중 pH의 조절은 25 -28%의 암모니아수를 사용하였다. 또한 통기량은 0.5 vvm으로 조정하였다. 실험 결과를 표 4에 나타내었는데 3종의 재조합 균주 모두 생산된 쓰레오닌 농도와 수율에서 모균주 TF4076에 비해서 우수한 성적을 보였으며 그 중에서도 pGmTN-14 균주(KFCC-11228)가 가장 우수하였으며 모균주에 비해서 농도와 수율면에서 약 26%의 월등한 향상을 보여주었다. 또한 재조합 균주에 흔히 나타나는 생육저해 현상에 따른 발효시간 당소모 속도 지연 현상도 전혀 나타나지 않고, 오히려 발효시간이 모균주에 비해 3시간 빨라졌다.Among the three recombinant strains, threonine productivity was compared in a 5-L fermenter using one strain of each selected strain and the parent strain TF4076. Initial medium compositions are shown in Table 3. As for the spawn culture, a medium in which 10 g / L of glucose and 0.1 g / L of L-methionine was added to the LB medium was used, and the initial inoculation volume of the fermenter was adjusted at 3-5% of the initial culture volume. Additional sugars were added six times and the concentration of glucose after addition was 5% and the additional time point was when the glucose was depleted. In addition, when adding glucose, potassium phosphate (KH 2 PO 4) was added together by 1% by weight. The initial culture volume is 1.5 L, the final volume is 3.0 L and the concentration of total glucose added after fermentation is 250 g / L. Stirring speed was 700 -1000 rpm and pH and temperature were set at 7.0 and 32 ℃ respectively. The pH of the culture was adjusted to 25-28% ammonia water. In addition, the air flow rate was adjusted to 0.5 vvm. The experimental results are shown in Table 4, and all three recombinant strains showed superior performances in the produced threonine concentration and yield compared to the parent strain TF4076. Among them, the pGmTN-14 strain (KFCC-11228) was the most excellent. Compared to the above, it showed a significant improvement of about 26% in concentration and yield. In addition, there is no delay in the fermentation time sugar consumption due to the growth inhibition phenomenon commonly seen in recombinant strains, but the fermentation time is 3 hours faster than the parent strain.

5리터 발효조의 초기 배지 조성Initial medium composition of 5 liter fermenter 조성물Composition 농도 (리터당)Concentration (per liter) 포도당glucose 50 g50 g KH2PO4 KH 2 PO 4 4 g4 g (NH4)2SO4 (NH 4 ) 2 SO 4 6 g6 g 효모엑기스Yeast Extract 3 g3 g MgSO4.7H2OMgSO 4 .7H 2 O 2 g2 g L-메티오닌L-methionine 1 g1 g FeSO4.7H2OFeSO 4 .7H 2 O 40 mg40 mg MnSO4.8H2OMnSO 4 .8H 2 O 10 mg10 mg CaCl2.2H2OCaCl 2 .2H 2 O 40 mg40 mg CoCl2.6H2OCoCl 2 .6H 2 O 4 mg4 mg H3BO3 H 3 BO 3 5 mg5 mg Na2MoO4.2H2ONa 2 MoO 4 .2H 2 O 2 mg2 mg ZnSO4.7H2OZnSO 4 .7H 2 O 2 mg2 mg pH 7.0pH 7.0

재조합 균주의 5리터 발효조에서의 발효 성적Fermentation results in 5 liter fermenters of recombinant strains 균주명Strain name 쓰레오닌 (g/L)Threonine (g / L) 발효시간(시간)Fermentation time (hours) 수율(%)yield(%) TF4076TF4076 75.375.3 7878 30.130.1 pGmTN-14pGmTN-14 95.095.0 7575 38.038.0 pCmTN-3pCmTN-3 92.592.5 7474 37.037.0 pKmTN-8pKmTN-8 87.887.8 8080 35.135.1

이상 살펴본 바와 같이, 본 발명에 따르면 염색체 DNA 중에 쓰레오닌 오페론의 수를 2개 이상으로 늘림으로써 쓰레오닌 생합성 관련 효소들의 (thrA: aspartokinaseI-homoserine dehydrogenase, thrB:homoserine kinase, thrC: threonine synthase) 발현량을 증가시켜 L-쓰레오닌의 생산량을 모균주에 비해 25% 이상 획기적으로 향상시킬 수가 있다.As described above, according to the present invention, by increasing the number of threonine operons in the chromosomal DNA to two or more, threonine biosynthesis related enzymes (thrA: aspartokinase I-homoserine dehydrogenase, thrB: homoserine kinase, thrC: threonine synthase) Increasing the amount of expression can significantly improve the production of L-threonine by more than 25% compared to the parent strain.

Claims (9)

미생물을 이용하여 L-쓰레오닌을 생산함에 있어서, 이용되는 미생물의 염색체 DNA 중에 존재하는 원래의 쓰레오닌 오페론 외에 추가로 1 카피 이상의 쓰레오닌 오페론이 염색체 DNA 중의 특정부위에 삽입된 것을 특징으로 하는 L-쓰레오닌의 제조방법.In producing L-threonine using microorganisms, in addition to the original threonine operon present in the chromosomal DNA of the microorganism used, at least one copy of threonine operon is inserted into a specific portion of the chromosomal DNA. Method for producing L-threonine 제 1 항에 있어서, 상기 미생물이 대장균인 것을 특징으로 하는 L-쓰레오닌의 제조방법.The method of claim 1, wherein the microorganism is Escherichia coli. 제 1 항에 있어서, 추가로 삽입된 쓰레오닌 오페론이 쓰레오닌 유사체, 라이신 유사체, 이소루이신 유사체와 메티오닌 유사체에 대해 내성을 보이는 미생물로부터 획득한 것을 특징으로 하는 L-쓰레오닌의 제조방법.The preparation of L-threonine according to claim 1, wherein the inserted threonine operon is obtained from a microorganism that is resistant to threonine analogue, lysine analogue, isoleucine analogue and methionine analogue. Way. 제 1 항에 있어서, 추가로 삽입된 쓰레오닌 오페론의 염색체 DNA 중의 삽입 부위가 lacZ 부위인 것을 특징으로 하는 L-쓰레오닌의 제조방법.The method for producing L-threonine according to claim 1, wherein the insertion site in the chromosomal DNA of the inserted threonine operon is a lacZ site. 제 1 항에 있어서, L-쓰레오닌의 생산 균주인 대장균 TF4076 (KFCC 10718)의 염색체로부터 클로닝된 쓰레오닌 오페론(operon)을 다시 모균주인 TF4076의 염색체에 삽입시키는 것을 특징으로 하는 L-쓰레오닌의 제조방법.The method of claim 1, L- threonine production strain E. coli TF4076 (KFCC 10718) cloned from the chromosome of threonine operon (operon) cloned from the chromosome of the parent strain TF4076 characterized in that the insertion Method for preparing threonine. 제 1 항에 있어서, 상기 미생물이 도1에 도시된 재조합 플라스미드 pGmTN을 사용하여 제작된 것을 특징으로 하는 L-쓰레오닌의 제조방법.The method of claim 1, wherein the microorganism is prepared using the recombinant plasmid pGmTN shown in FIG. 제 1 항에 있어서, 상기 미생물이 도1에 도시된 재조합 플라스미드 pCmTN을 사용하여 제작된 것을 특징으로 하는 L-쓰레오닌의 제조방법.The method of claim 1, wherein the microorganism is prepared using the recombinant plasmid pCmTN shown in FIG. 제 1 항에 있어서, 상기 미생물이 도1에 도시된 재조합 플라스미드 pKmTN을 사용하여 제작된 것을 특징으로 하는 L-쓰레오닌의 제조방법.The method of claim 1, wherein the microorganism is produced using the recombinant plasmid pKmTN shown in FIG. L-쓰레오닌을 생산하는 에스케리키아 콜리(Escherichia. coli) pGmTN14 (KFCC-11228).Escherichia coli pGmTN14 to produce L-threonine (KFCC-11228).
KR10-2001-0002372A 2001-01-16 2001-01-16 Process for producing L-threonine KR100427479B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0002372A KR100427479B1 (en) 2001-01-16 2001-01-16 Process for producing L-threonine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0002372A KR100427479B1 (en) 2001-01-16 2001-01-16 Process for producing L-threonine

Publications (2)

Publication Number Publication Date
KR20020061134A true KR20020061134A (en) 2002-07-23
KR100427479B1 KR100427479B1 (en) 2004-04-27

Family

ID=27691818

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0002372A KR100427479B1 (en) 2001-01-16 2001-01-16 Process for producing L-threonine

Country Status (1)

Country Link
KR (1) KR100427479B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100850854B1 (en) * 2006-12-13 2008-08-06 씨제이제일제당 (주) - - a microorganism whose expression level of yebq is enhanced and the process for producing l-threonine using the microorganism
KR100850855B1 (en) * 2006-12-13 2008-08-06 씨제이제일제당 (주) - - a microorganism whose expression level of ydje is enhanced and the process for producing l-threonine using the microorganism
KR100851745B1 (en) * 2006-12-13 2008-08-11 씨제이제일제당 (주) - - a microorganism whose expression level of ydjk is enhanced and the process for producing l-threonine using the microorganism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100850854B1 (en) * 2006-12-13 2008-08-06 씨제이제일제당 (주) - - a microorganism whose expression level of yebq is enhanced and the process for producing l-threonine using the microorganism
KR100850855B1 (en) * 2006-12-13 2008-08-06 씨제이제일제당 (주) - - a microorganism whose expression level of ydje is enhanced and the process for producing l-threonine using the microorganism
KR100851745B1 (en) * 2006-12-13 2008-08-11 씨제이제일제당 (주) - - a microorganism whose expression level of ydjk is enhanced and the process for producing l-threonine using the microorganism

Also Published As

Publication number Publication date
KR100427479B1 (en) 2004-04-27

Similar Documents

Publication Publication Date Title
KR100397423B1 (en) Process for producing L-threonine
EP2102337B1 (en) A microorganism of corynebacterium genus having enhanced l-lysine productivity and a method of producing l-lysine using the same
US8058036B2 (en) Microorganism of Corynebacterium genus having enhanced L-lysine productivity and a method of producing L-lysine using the same
CN100529057C (en) Method for producing L-amino acid by colibacillus bacteria
EP1792976B1 (en) Microorganism of corynebacterium genus having enhanced L-lysine production ability and method of producing L-lysine using the same
JP2012070752A (en) Novel strain of escherichia coli, method of preparing the same and use thereof in fermentation process for l-threonine production
KR100576342B1 (en) A microorganism producing L-threonine having an inactivated galR gene, method for producing the same and method for producing L-threonine using the microorganism
KR100505797B1 (en) A Mutated Microorganism Having A Knockout fadR Gene On Chromosome And A Process For Producing L-Threonine Using Said Mutant
KR100451299B1 (en) Process for producing L-threonine
KR100427479B1 (en) Process for producing L-threonine
JP2000270888A (en) Preparation of l-amino acid
KR100427480B1 (en) Process for producing L-threonine
KR100478468B1 (en) A method for producing L-threonine
MXPA00010779A (en) Production of l-amino acids, useful in medicine and animal nutrition, by culturing bacteria in which the csp1 gene is suppressed.
CN101072865A (en) A microorganism producing l-threonine having an inactivated lysr gene, method for producing the same and method for producing l-threonine using the microorganism
KR100608084B1 (en) A microorganism having an inactivated iclR gene and capable of producing a L-threonine, method for manufacturing the same strain and method for producing L-threonine using the same strain
US7368266B2 (en) Method for L-threonine production
KR100426807B1 (en) L-threonine producing microorganism and method for producing L-threonine using the same microorganism
WO2002031172A2 (en) L-threonine producing e. coli strain
KR100338373B1 (en) L-threonine producing microorganism and methods for preparing L-threonine using the same
KR100426808B1 (en) L-threonine producing microorganism and method for producing L-threonine using the same microorganism

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130315

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140228

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150227

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180226

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190225

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20200225

Year of fee payment: 17