KR20020052615A - Method for testing the permeability of Non-magnet austenitic stainless steel - Google Patents

Method for testing the permeability of Non-magnet austenitic stainless steel Download PDF

Info

Publication number
KR20020052615A
KR20020052615A KR1020000082013A KR20000082013A KR20020052615A KR 20020052615 A KR20020052615 A KR 20020052615A KR 1020000082013 A KR1020000082013 A KR 1020000082013A KR 20000082013 A KR20000082013 A KR 20000082013A KR 20020052615 A KR20020052615 A KR 20020052615A
Authority
KR
South Korea
Prior art keywords
permeability
ferrite
stainless steel
content
measuring
Prior art date
Application number
KR1020000082013A
Other languages
Korean (ko)
Inventor
이종석
김기돈
Original Assignee
이구택
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 주식회사 포스코 filed Critical 이구택
Priority to KR1020000082013A priority Critical patent/KR20020052615A/en
Publication of KR20020052615A publication Critical patent/KR20020052615A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals

Abstract

PURPOSE: A simple measurement method of a permeability of a nonmagnetic austenite stainless steel is provided, which reduces the number of workers by measuring the permeability within a short time without destroying a sample. CONSTITUTION: According to the method for measuring a permeability of a nonmagnetic austenite stainless steel using a content of delta-ferrite, a regression equation of the permeability(permeability=1.02581+0.05076xdelta-content of ferrite) and a graph diagram are made using a linear regression equation analysis function through an arithmetic calculation program, after measuring the delta-ferrite content and the permeability at the same time in a back plate of the austenite stainless steel. Then, the permeability of the stainless steel is predicted from a content of the delta-ferrite by referring to a correlation coefficient(R=0.93) obtained from the regression equation of the permeability.

Description

비자성 오스테나이트계 스테인레스강의 투자율 간이 측정 방법 {Method for testing the permeability of Non-magnet austenitic stainless steel}Simple method for measuring permeability of nonmagnetic austenitic stainless steels {Method for testing the permeability of Non-magnet austenitic stainless steel}

본 발명은 비자성 오스테나이트계 스테인레스강의 투자율을 측정하기 위한 간이 측정방법에 관한 것으로, 특히 오스테나이트계 스테인레스강의 투자율을 δ-페라이트량을 측정한 값으로 부터 측정할 수 있도록 된 비자성 오스테나이트계 스테인레스강의 투자율 간이 측정 방법에 관한 것이다.The present invention relates to a simple measurement method for measuring the magnetic permeability of non-magnetic austenitic stainless steel, and in particular, the magnetic permeability of austenitic stainless steel can be measured from the measured value of δ-ferrite. It relates to a simple measurement method of permeability of stainless steel.

일반적으로, 오스테나이트계 스테인레스가 특히 STS 304와 304L 및 416L 등은 내식성과 가공성이 우수하여 광범위하게 사용되는 재질로서, 특히 스테인레스 플래지(flange)에서와 같이 후판의 단면을 사용하는 제품의 경우 두께중심부에 δ-페라이트가 일정량 잔류하게 된다.In general, austenitic stainless steels, especially STS 304, 304L and 416L, are widely used because of their excellent corrosion resistance and workability. Especially, in the case of products using a thick plate cross section such as stainless steel flange, A certain amount of δ-ferrite remains in the.

여기서, 오스테나이트계 스테인레스강 예컨대, STS 304의 경우 두께중심부의 δ-페라이트량은 9.5∼11.0%를 함유하며, 열간압연이 이루어진 후판의 δ-페라이트량은 6.0∼8.0%를 함유하고, 열처리후에는 δ-페라이트량이 3.0%정도를 함유하는 것으로 알려져 있다.Here, in the case of austenitic stainless steel, for example, STS 304, the amount of δ-ferrite in the thickness center portion is 9.5 to 11.0%, and the amount of δ-ferrite in the thick plate subjected to hot rolling is 6.0 to 8.0%, and after heat treatment It is known that the amount of? -Ferrite contains about 3.0%.

그러나, 열간압연이 이루어진 후판의 경우, 열처리작업과정에서 δ-페라이트의 분해작업이 충분하게 이루어지지 않아 오스테나이트 기지(matrix)중에 페라이트 잔류량이 증대되어 최종제품 특히, 발전기용이나 전자부품 및 전자기기의 경우 잔류 페라이트에 기인하는 잔류자기가 높아 즉, 투자율이 높아 소재선택에 큰 지장을 초래하므로, 투자율의 측정과정이 선결되어야 한다.However, in the case of the hot rolled thick plate, the δ-ferrite is not sufficiently decomposed during the heat treatment, so that the residual amount of ferrite in the austenite matrix is increased, and thus the final product, especially generators, electronic parts, and electronic devices. In this case, the residual magnetism due to the residual ferrite is high, that is, the permeability is high, which greatly affects the material selection.

그런데, 오스테나이트계 스테인레스강의 투자율을 측정하는 방법들은, 투자율의 측정에 필요한 시편의 준비작업과 투자율의 측정방법이 매우 까다로울 뿐만 아니라, 투자율을 측정하기 위한 측정장비가 고가이므로 보편화되어 있지 않아 쉽게 접하기가 매우 어려우며, 측정시에도 숙련된 기술자의 도움이 필요하므로, 간이 측정방법을 통해 측정하는 방법들이 제안된 바 있다.However, the method of measuring the permeability of austenitic stainless steels is not only very difficult to prepare the specimen and the permeability measurement method for measuring the permeability, but also because the measuring equipment for measuring the permeability is expensive, it is not widely used and thus easily accessible. It is very difficult to perform, and since the need for help from a skilled technician in the measurement, methods for measuring by a simple measuring method have been proposed.

예컨대, 오스테나이트계 스테인레스강의 간이 투자율 측정방법에 관련한 특허로서는, 시료의 국부적인 투자율을 얻을 수 있는 "투자율 측정방법(일본 공개정보 JP96-36038호)"과, 고주파를 이용한 투자율 측정방법 또는 검출지그(일본 공개정보 JP 94-281724)"와, 자성재료의 국부적인 마아크로의 분포를 평가하는 "자성재료의 품질평가법(일본 공개정보 JP 94-58907)"와, 투자율 측정장치(일본 공개정보 JP 94-281723) 등이 제안된 바 있다.For example, patents related to a method for measuring a simple permeability of austenitic stainless steels include a "permeability measuring method (Japanese Laid-Open Information JP96-36038)" for obtaining a local permeability of a sample, and a permeability measuring method or detection jig using high frequency. (Japanese public information JP 94-281724) "," The magnetic material quality evaluation method (Japanese public information JP 94-58907) "which evaluates the distribution of local macro of magnetic material, and the permeability measuring apparatus (Japanese public information JP 94-281723).

그런데. 오스테나이트계 스테인레스강의 간이 투자율 측정방법들은 시편을 파괴하거나 또는 측정장소로 시편을 이송하여야만 투자율의 측정이 가능할 뿐만 아니라 생산현장에서 단시간내에 투자율을 측정하는 작업과정이 불가능하여 작업공수가 증대되는 문제점이 있었다.By the way. The simple permeability measurement methods of austenitic stainless steels are not only capable of measuring permeability when the specimen is destroyed or transferred to the measurement site, but also increase the labor time due to the impossibility of measuring the permeability within a short time at the production site. there was.

이에, 본 발명은 상기한 바와 같은 제문제점을 해결하기 위하여 안출된 것으로서, 시편을 파괴하지 않은 상태에서 단시간내에 투자율을 측정하여 작업공수를 절감시킬 수 있도록 된 비자성 오스테나이트계 스테인레스강의 투자율 간이 측정 방법을 제공하는 데에 그 목적이 있다.Accordingly, the present invention has been made to solve the problems described above, the simple measurement of the permeability of non-magnetic austenitic stainless steel that can reduce the labor labor by measuring the permeability in a short time without breaking the specimen The purpose is to provide a method.

상기한 바의 목적을 달성하기 위한 본 발명은, 오스테나이트계 스테인레스강의 투자율을 δ-페라이트의 함량을 이용한 간이 측정방법으로 예측하기 위한 비자성 오스테나이트계 스테인레스강의 투자율 간이 측정 방법을 제공함에 있어서, 오스테나이트계 스테인레스강의 후판에서 δ-페라이트함량과 투자율을 동시에 측정한 후, 연산 프로그램을 통한 선형회귀식 분석함수를 이용하여 투자율의 회귀식(투자율 = 1.02581 + 0.05076 ×δ-페라이트의 함량)과 그래프도를 작성한 다음, 이 투자율의 회귀식으로부터 얻어진 상관계수(R = 0.93)을 기준으로 δ-페라이트의 함량으로부터 스테인레스강의 투자율을 예측하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a simple measurement method of magnetic permeability of non-magnetic austenitic stainless steel for predicting the magnetic permeability of austenitic stainless steel by a simple measurement method using the content of δ-ferrite, After measuring the δ-ferrite content and permeability at the same time in the thick plate of austenitic stainless steel, regression equation of permeability (permeability = 1.02581 + 0.05076 × δ-ferrite content) and graph using linear regression analysis function After drawing the figure, the magnetic permeability of the stainless steel is predicted from the content of δ-ferrite based on the correlation coefficient (R = 0.93) obtained from the regression equation of the magnetic permeability.

도 1은 본 발명에 따른 페라이트상과 투자율의 상관관계를 개략적으로 도시한 그래프도이다.1 is a graph schematically showing the correlation between the ferrite phase and the magnetic permeability according to the present invention.

이하, 본 발명에 따른 실시예를 첨부된 예시도면을 참고로하여 상세하게 설명하면 다음과 같다.Hereinafter, an embodiment according to the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 페라이트상과 투자율의 상관관계를 개략적으로 도시한 그래프도로서, 오스테나이트계 스테인레스강의 투자율을 δ-페라이트의 함량을이용한 간이 측정방법으로 예측하기 위한 비자성 오스테나이트계 스테인레스강의 투자율 간이 측정 방법을 제공함에 있어서, 오스테나이트계 스테인레스강의 후판에서 δ-페라이트함량과 투자율을 동시에 측정한 후, 연산 프로그램을 통한 선형회귀식 분석함수를 이용하여 투자율의 회귀식(투자율 = 1.02581 + 0.05076 ×δ-페라이트의 함량)과 그래프도를 작성한 다음, 이 투자율의 회귀식으로부터 얻어진 상관계수(R = 0.93)을 기준으로 δ-페라이트의 함량으로부터 스테인레스강의 투자율을 예측하는 것을 특징으로 한다.1 is a graph schematically showing the correlation between the ferrite phase and the magnetic permeability according to the present invention, a non-magnetic austenitic stainless steel for predicting the magnetic permeability of austenitic stainless steel by a simple measurement method using the content of δ-ferrite In providing a simple method for measuring the permeability of steel, the δ-ferrite content and permeability are simultaneously measured in the thick plate of austenitic stainless steel, and then the regression equation of permeability is calculated using a linear regression analysis function through a calculation program (permeability = 1.02581 + 0.05076 x δ-ferrite content) and a graph, and then the permeability of stainless steel is predicted from the content of δ-ferrite based on the correlation coefficient (R = 0.93) obtained from the regression equation of the permeability.

먼저, 비자성 오스테나이트 스테인레스강의 후판 특히, STS 304, 304L, 316 및 316L을 통상적인 방법으로 열간압연하게 되면, 강중에 수%의 δ-페라이트가 잔존하게 되고, 이후 통상적인 열처리를 행하여도 0.5%이상의 δ-페라이트가 잔존하게 되어, 예컨대 투자율이 1.05이상을 상회하게 된다.First, when hot plates of nonmagnetic austenitic stainless steel, in particular, STS 304, 304L, 316 and 316L are hot rolled in a conventional manner, a few percent of δ-ferrite remains in the steel, and then even if the conventional heat treatment is performed 0.5 % Or more of δ-ferrite remains, and the magnetic permeability exceeds 1.05 or more, for example.

이때, 스테인레스강에서 δ-페라이트의 함량과 투자율은 비례관계가 있는 것으로 알려져 있기는 하지만, 아직까지 정확하게 비례상수나 상관식이 발표되지 않은 관계로 측정방법이 간편하고 생산현장에서 기본적으로 측정하고있는 δ-페라이트의 함량으로 투자율을 유추할 수 없었다.At this time, the content of δ-ferrite and the permeability of stainless steel are known to be proportional to each other. However, since the proportional constant or correlation has not been accurately disclosed, the measurement method is simple and the δ is basically measured at the production site. Permeability could not be inferred by the content of ferrite.

따라서, 본 발명에서는 오스테나이트계 스테인레스강 소재의 δ-페라이트의 함량과 투자율을 여러개의 시편을 상대로 측정한 다음, 상관식과 상관계수(R)를 구하였는 바, 특히 상관계수 R값은 0.93정도로 신뢰성이 매우 높았다.Therefore, in the present invention, after measuring the content and permeability of the δ-ferrite of the austenitic stainless steel material against a plurality of specimens, the correlation and the correlation coefficient (R) were obtained. In particular, the correlation coefficient R value is about 0.93, which is reliable. Very high.

[실시예 1]Example 1

먼저, 본 발명에서는, 이론적인 식이 과연 들어맞는지 검증하는 방법으로 데이터를 회귀분석하는 방법을 사용하였는데, 특히 캘리브레이션 곡선을 얻기 위해서는 물리적 의미를 측정하여 얻어진 데이터를 회귀분석함이 바람직함을 첨언한다.First, in the present invention, a method of regression analysis of the data was used as a method of verifying that the theoretical equation is indeed true. In particular, it is preferable to regress the data obtained by measuring physical meaning in order to obtain a calibration curve.

이때, 회귀분석 방법에는 선형회귀분석, 다항식 회귀분석, 비선형 회귀분석 등이 있으나, 본 발명에서는 선형 회귀분석법을 적용하였다. 특히, 컴퓨터 연산프로그램(예, 액셀프로그램)에 내장되어 있는 회귀분석 함수를 사용하여 식 1과 같은 회귀식과 도 1과 같은 그래프도를 얻을 수 있었다.At this time, the regression analysis methods include linear regression analysis, polynomial regression analysis, nonlinear regression analysis, but in the present invention, linear regression analysis was applied. In particular, a regression equation such as Equation 1 and a graph diagram as shown in FIG.

그리고, 본 발명에서는 δ-페라이트의 함량과 투자율과의 상관관계를 규명하기 위해, 비자성 오스테나이트계 스테인레스 후판재 STS 304, 304L, 316, 316L의 강중에서 20종류의 시편을 선별하여 δ-페라이트의 함량과 투자율을 동시에 측정하였으며, δ-페라이트의 함량과 투자율의 상관관계를 선형 회귀분석하여 다음과 같은 식을 얻을 수 있었다.In the present invention, in order to examine the correlation between the content of δ-ferrite and the magnetic permeability, 20 types of specimens are selected from steels of STS 304, 304L, 316, and 316L non-magnetic austenitic stainless steel plates. The content of permeability and the permeability were measured at the same time, and the following equation was obtained by linear regression analysis of the correlation between the content of permeability and the permeability.

** 투자율 = 1.02581 + 0.05076 ×δ-페라이트의 함량(%)--------식(1)** Permeability = 1.02581 + 0.05076 × δ-Ferrite content (%) -------- Equation (1)

물론, 식(1)에서 투자율과 δ-페라이트 함량과의 상관계수 R값은 0.93정도로서 상관성이 매우 우수하였고, 이를 기초로하여 δ-페라이트의 함량으로부터 투자율의 예측이 가능함을 알 수 있었다.Of course, the correlation coefficient R between the permeability and the δ-ferrite content in Equation (1) was about 0.93, and the correlation was very good. Based on this, the permeability can be predicted from the δ-ferrite content.

또한, 도 1과 같은 결과로부터 비자성용 오스테나이트계 스테인레스 후판에서 요구되는 1.05%미만의 투자율을 확보하기 위해서는 소재에 잔존하는 δ-페라이트의 함량이 0.5%미만이어야 함을 알 수 있었다.In addition, it can be seen from the results as shown in FIG. 1 that the content of δ-ferrite remaining in the material should be less than 0.5% in order to secure a magnetic permeability of less than 1.05% required for the nonmagnetic austenitic stainless steel plate.

물론, 도 1의 결과로부터 1.1%미만의 투자율을 확보하기 위해서는 소재에 잔존하는 δ-페라이트의 함량이 1.5%미만이어야하며, 1.15% 및 1.20%의 투자율을 확보하기 위해서는 각각 δ-페라이트의 함량이 1.5% 및 3.4%미만이어야 함을 알 수 있었다.Of course, the content of δ-ferrite remaining in the material should be less than 1.5% in order to secure a magnetic permeability of less than 1.1% from the results of FIG. 1, and the content of δ-ferrite may be increased in order to secure a magnetic permeability of 1.15% and 1.20%, respectively. It was found to be less than 1.5% and 3.4%.

이상에서 설명한 바와 같이 본 발명에 따른 비자성 오스테나이트계 스테인레스강의 투자율 간이 측정 방법에 의하면, 스테인레스강에 잔존하는 δ-페라이트의 함량으로부터 투자율의 예측이 가능해지므로, 스테인레스강의 생산공정에서 단시간내에 투자율이 측정되므로 후속처리의 기준이 명확하게 설정되어 제품품질이 향상될 뿐만 아니라, 시편을 파괴하지 않은 상태에서도 투자율의 예측이 가능해지므로 투자율을 측정하기 위한 작업공수 및 제반 부대비용이 절감되는 효과가 있는 것이다.As described above, according to the simple method for measuring the permeability of nonmagnetic austenitic stainless steel according to the present invention, the permeability can be predicted from the content of δ-ferrite remaining in the stainless steel, so that the permeability in the production process of the stainless steel is short. As a result, the criteria for subsequent processing are clearly set so that not only the product quality is improved but also the permeability can be predicted even without destroying the specimen, thus reducing the labor cost and overall costs to measure the permeability. .

Claims (1)

오스테나이트계 스테인레스강의 투자율을 δ-페라이트의 함량을 이용한 간이 측정방법으로 예측하기 위한 비자성 오스테나이트계 스테인레스강의 투자율 간이 측정 방법을 제공함에 있어서,In providing a simple method for measuring the permeability of non-magnetic austenitic stainless steels to predict the magnetic permeability of austenitic stainless steels by a simple measurement method using the content of δ-ferrite, 오스테나이트계 스테인레스강의 후판에서 δ-페라이트함량과 투자율을 동시에 측정한 후, 연산 프로그램을 통한 선형회귀식 분석함수를 이용하여 투자율의 회귀식(투자율 = 1.02581 + 0.05076 ×δ-페라이트의 함량)과 그래프도를 작성한 다음, 이러한 투자율의 회귀식으로부터 얻어진 상관계수(R = 0.93)을 기준으로 δ-페라이트의 함량으로부터 스테인레스강의 투자율을 예측하는 것을 특징으로 하는 비자성 오스테나이트계 스테인레스강의 투자율 간이 측정 방법.After measuring the δ-ferrite content and permeability at the same time in the thick plate of austenitic stainless steel, regression equation of permeability (permeability = 1.02581 + 0.05076 × δ-ferrite content) and graph using linear regression analysis function A method for measuring the magnetic permeability of a non-magnetic austenitic stainless steel, wherein the magnetic permeability of the stainless steel is predicted from the content of δ-ferrite based on the correlation coefficient (R = 0.93) obtained from the regression equation of the magnetic permeability.
KR1020000082013A 2000-12-26 2000-12-26 Method for testing the permeability of Non-magnet austenitic stainless steel KR20020052615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000082013A KR20020052615A (en) 2000-12-26 2000-12-26 Method for testing the permeability of Non-magnet austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000082013A KR20020052615A (en) 2000-12-26 2000-12-26 Method for testing the permeability of Non-magnet austenitic stainless steel

Publications (1)

Publication Number Publication Date
KR20020052615A true KR20020052615A (en) 2002-07-04

Family

ID=27685998

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000082013A KR20020052615A (en) 2000-12-26 2000-12-26 Method for testing the permeability of Non-magnet austenitic stainless steel

Country Status (1)

Country Link
KR (1) KR20020052615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305063A (en) * 2020-10-26 2021-02-02 西安热工研究院有限公司 Method for judging magnetism of austenitic stainless steel matrix
CN114112736A (en) * 2020-08-28 2022-03-01 宝山钢铁股份有限公司 Online measuring device and method for determining fracture elongation of low-carbon steel cold-rolled sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658907A (en) * 1992-08-10 1994-03-04 Nippon Steel Corp Method for evaluating quality of magnetic material
JPH07229955A (en) * 1994-02-22 1995-08-29 Nkk Corp Increment magnetic permeability measuring apparatus for magnetic steel plate
JPH0836038A (en) * 1994-07-25 1996-02-06 Kobe Steel Ltd Method for measuring magnetic permeability
JPH1010217A (en) * 1996-06-21 1998-01-16 Murata Mfg Co Ltd Method and device for measuring metal permeability in high frequency

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658907A (en) * 1992-08-10 1994-03-04 Nippon Steel Corp Method for evaluating quality of magnetic material
JPH07229955A (en) * 1994-02-22 1995-08-29 Nkk Corp Increment magnetic permeability measuring apparatus for magnetic steel plate
JPH0836038A (en) * 1994-07-25 1996-02-06 Kobe Steel Ltd Method for measuring magnetic permeability
JPH1010217A (en) * 1996-06-21 1998-01-16 Murata Mfg Co Ltd Method and device for measuring metal permeability in high frequency

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112736A (en) * 2020-08-28 2022-03-01 宝山钢铁股份有限公司 Online measuring device and method for determining fracture elongation of low-carbon steel cold-rolled sheet
CN114112736B (en) * 2020-08-28 2023-11-14 宝山钢铁股份有限公司 Online measuring device and method for determining fracture elongation of low-carbon steel cold-rolled sheet
CN112305063A (en) * 2020-10-26 2021-02-02 西安热工研究院有限公司 Method for judging magnetism of austenitic stainless steel matrix

Similar Documents

Publication Publication Date Title
Shi et al. Metal magnetic memory effect caused by static tension load in a case-hardened steel
CN103635798B (en) Electromagnetic sensor and calibration therefor
JP2720389B2 (en) Method and apparatus for detecting intrinsic stress of component
JP5892341B2 (en) Hardening depth measuring method and quenching depth measuring device
Takahashi et al. Comparison of magnetic nondestructive methods applied for inspection of steel degradation
US7241349B2 (en) Nondestructive evaluating method for aged deterioration in austenitic stainless steel
Altpeter et al. Electromagnetic techniques for materials characterization
Li et al. Characterizations of damage-induced magnetization for X80 pipeline steel by metal magnetic memory testing
Vincent et al. Magnetic Barkhausen noise from strain-induced martensite during low cycle fatigue of 304L austenitic stainless steel
Perevertov et al. Detection of spring steel surface decarburization by magnetic hysteresis measurements
Tomáš et al. Nondestructive Magnetic Adaptive Testing of nuclear reactor pressure vessel steel degradation
Artetxe et al. Analysis of the voltage drop across the excitation coil for magnetic characterization of skin passed steel samples
Yang et al. EM sensor array system and performance evaluation for in-line measurement of phase transformation in steel
KR20020052615A (en) Method for testing the permeability of Non-magnet austenitic stainless steel
Tomáš et al. Comparison of four NDT methods for indication of reactor steel degradation by high fluences of neutron irradiation
Jolfaei et al. EM sensor system for characterisation of advanced high strength strip steels
Burzic et al. Non-destructive evaluation of decarburization of spring steel using electromagnetic measurement
Kovač et al. Detection and characterisation of intergranular stress‐corrosion cracking on austenitic stainless steel
Dobmann et al. Development and qualification of the Eddy-Current testing techniques “EC” and “EC+” in combination with Leeb-Hardness-Measurements for detection and verification of hardness spots on heavy steel plates
Liu et al. Study on the inherent magnetism and its relationship with mechanical properties of structural round steel
Sengupta et al. Nondestructive evaluation of stresses in welds by micromagnetic method
Rigmant et al. Instruments for magnetic phase analysis of articles made of austenitic corrosion-resistant steels
Artetxe et al. Improvement in the Equivalent Indirect Hysteresis Cycles Obtained from the Distortion of the Voltage Measured in the Excitation Coil
JPS6153561A (en) Evaluator for low magnetic-permeability material
Han et al. Development of the alternating current stress measurement model for magnetostriction behaviour of mild steel under orthogonal magnetic fields for stress measurement

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application