KR20020051314A - A purification method of argon gas with high purity by using activated carbon - Google Patents
A purification method of argon gas with high purity by using activated carbon Download PDFInfo
- Publication number
- KR20020051314A KR20020051314A KR1020000080085A KR20000080085A KR20020051314A KR 20020051314 A KR20020051314 A KR 20020051314A KR 1020000080085 A KR1020000080085 A KR 1020000080085A KR 20000080085 A KR20000080085 A KR 20000080085A KR 20020051314 A KR20020051314 A KR 20020051314A
- Authority
- KR
- South Korea
- Prior art keywords
- argon gas
- adsorption
- gas
- methane
- activated carbon
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
- B01D53/0476—Vacuum pressure swing adsorption
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
- F25J1/002—Argon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/18—Noble gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/102—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/104—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/58—Argon
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
본 발명은 아르곤가스 제조공정에서 아르곤가스중의 메탄가스를 활성탄을 이용하여 제거하는 방법에 관한 것으로, 보다 상세하게는 압력스윙흡착장치에서 배출되는 아르곤가스내에 존재하는 메탄가스를 흡착제의 흡착제거능을 저하시키지 않고 한 종류의 활성탄 흡착제로 장기간 효율적으로 제거할 수 있는 정제방법에 관한 것이다.The present invention relates to a method for removing methane gas in argon gas using activated carbon in an argon gas manufacturing process. More specifically, the adsorption / removing ability of the adsorbent to methane gas present in the argon gas discharged from the pressure swing adsorption device is removed. It relates to a purification method that can be efficiently removed for a long time with one kind of activated carbon adsorbent without deterioration.
종래, 높은 압력 내지 낮은 압력간 흡착 및 탈착에 대한 압력스윙을 사용한 선택적 흡착에 의해 기체 혼합물을 분리하기 위해서, 다중 베드 흡착 시스템인 PSA(압력 스윙 흡착)장치가 알려져 있다. 몇몇 경우에 있어서, 저압은 대기압이하가 될 수 있으며, 상기 공정의 변형은 진공스윙흡착(VSA)으로 정의된다.Conventionally, a PSA (pressure swing adsorption) apparatus, which is a multi-bed adsorption system, is known for separating gas mixtures by selective adsorption using pressure swings for high to low pressure adsorption and desorption. In some cases, the low pressure can be subatmospheric and a variation of the process is defined as vacuum swing adsorption (VSA).
일반적으로 흡착제를 이용한 불순물 제거시 중요한 변수로는 그 흡착제가 제거하고자 하는 불순물을 얼마나 많이 흡착할 수 있는가 하는 흡착량과, 흡착된불순물을 어떤 방법으로 쉽게 탈착시켜 흡착제를 재생할 수 있는가 하는 탈착능을 들 수 있다.In general, important variables in the removal of impurities using adsorbents include the adsorption amount of how much the adsorbent can adsorb the impurities to be removed and the desorption ability of the adsorbents to easily desorb the adsorbed impurities. Can be mentioned.
상기 흡착량은 흡착제의 평균 세공직경, 비표면적 및 흡착가스의 온도와 압력 등에 따라 달라지는데, 흡착된 물질이 화학흡착과 같이 강한 힘으로 흡착되어 있을 경우 흡착제의 재생이 어려우므로, 적당한 힘으로 흡착하고 있어서 용이하게 탈착 및 재생할 수 있어야 한다.The amount of adsorption varies depending on the average pore diameter, specific surface area of the adsorbent, temperature and pressure of the adsorbent gas, and the adsorbent is difficult to regenerate when the adsorbed material is adsorbed with a strong force such as chemical adsorption. It should be easily removable and regenerated.
이에 본 발명의 목적은 흡착제로서 활성탄을 사용함에 있어 특정 약품을 전혀 지지시키지 않고, 메탄가스 흡착/제거 공정과 탈착/재생 공정을 효과적으로 일으킴으로써 아르곤가스내에 존재하는 메탄가스를 연속적으로 제거하여, 결과적으로 고순도 아르곤가스를 정제하는 방법을 제공하려는데 있다.Accordingly, an object of the present invention is to continuously remove methane gas present in argon gas by effectively performing a methane gas adsorption / removal process and a desorption / regeneration process without using a specific chemical in using activated carbon as an adsorbent. To provide a method for purifying high purity argon gas.
본 발명에 의하면,According to the invention,
아르곤 압력스윙흡착(PSA)장치 배출구에서 배출된 아르곤가스내 산소를 제거하기 위하여 수소를 투입한 후 촉매반응기에서 산소와 수소를 반응시켜 물로 전환한 다음 냉각기에서 응축시켜 제거하고 아르곤가스를 액화시켜 배출하는 것을 포함하여 이루어지는 고순도 아르곤 가스를 제조하는 방법에 있어서,Argon pressure swing adsorption (PSA) device Hydrogen is introduced to remove oxygen in the argon gas discharged from the outlet, and then oxygen and hydrogen are reacted in the catalytic reactor to convert into water, and then condensed in the cooler to remove and liquefied argon gas In the method for producing a high purity argon gas comprising a,
상기 아르곤가스를 액화하기 위하여 사용하는 라인에 2이상의 활성탄 흡착제 컬럼을 병렬로 연결하고;Connecting two or more activated carbon adsorbent columns in parallel to a line used to liquefy the argon gas;
그중 일부 컬럼에서 메탄가스를 함유하는 아르곤가스를 10∼50℃ 및3.5~50kgf/cm2의 조건하에 파과시간동안 통과시키면서 메탄가스를 흡착/제거하며;Argon gas containing methane is adsorbed / removed in some of the columns while passing through the breakthrough time under conditions of 10 to 50 ° C. and 3.5 to 50 kgf / cm 2 ;
상기 조건으로 메탄가스를 흡착/제거하는 동안 상기 메탄가스가 흡착된 컬럼은 10∼150℃ 진공분위기로 하여 컬럼을 재생시키고;While the methane gas is adsorbed / removed under the above conditions, the column to which the methane gas is adsorbed is regenerated at 10 to 150 ° C. in a vacuum atmosphere;
재생된 컬럼은 흡착/제거 공정에 재투입함으로써 흡착/탈착공정을 반복함을 특징으로 하는 활성탄을 이용하여 고순도 아르곤가스를 정제하는 방법이 제공된다.The regenerated column is re-inserted into the adsorption / removal process to provide a method for purifying high purity argon gas using activated carbon, characterized in that the adsorption / desorption process is repeated.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명에서는 PSA장치를 이용하여 고순도 아르곤가스를 제조하는 데 있어서 아르곤가스내에 존재하는 미량의 메탄을 흡착제를 이용하여 연속적으로 제거함으로써 결과적으로 고순도 아르곤을 생산하는 방법을 제공한다.The present invention provides a method for producing high purity argon by continuously removing trace amounts of methane present in the argon gas using an adsorbent in the production of high purity argon gas using a PSA device.
본 발명에서는 PSA장치 후단에 2개이상의 흡착제 컬럼을 연결하여 사용한다. 이들 컬럼은 흡착/제거 및 탈착/재생공정을 반복하게 된다.In the present invention, two or more adsorbent columns are connected to the rear end of the PSA apparatus. These columns repeat the adsorption / removal and desorption / regeneration processes.
즉, 압력스윙흡착(PSA)장치 배출구에서 배출된 가스를 2개이상의 활성탄 흡착제 컬럼중 일부 컬럼에 투입하여 메탄가스를 흡착/제거한 다음, 이들이 메탄가스로 충진되면 PSA 방출 가스의 흐름을 나머지 일부의 컬럼으로 바꾸어 메탄가스를 흡착/제거하며, 그동안 상기 메탄 가스로 충진된 컬럼은 메탄을 탈착/재생시킨 다음 흡착/제거 공정에 재투입되는 공정을 반복하게 된다.That is, the gas discharged from the pressure swing adsorption (PSA) device outlet is introduced into some of the columns of two or more activated carbon adsorbents to adsorb / remove the methane gas. The methane gas is adsorbed / removed by changing to a column, and the methane gas-filled column repeats the process of desorbing / regenerating methane and then re-injecting the methane gas.
여기서 PSA장치로부터 배출된 가스로는 상기한 바와 같이, 아르곤약99부피%이상에 그 잔부로서 메탄이 불순물로 1%미만으로 함유된 것을 의미한다.Here, as the gas discharged from the PSA apparatus, as described above, it means that the amount of methane contained less than 1% as impurities in the amount of about 99% by volume or more of argon.
또한 메탄가스 제거용 흡착제로서 본 발명에서는 활성탄을 사용하며, 다른 유효성분이 부가될 수 있다. 상기 유효성분에는 예를 들면, 백금, 브롬등이 포함된다. 또한 다른 흡착제등과 조합시켜 사용할 수도 있다.In addition, activated carbon is used in the present invention as an adsorbent for removing methane gas, and other active ingredients may be added. The active ingredient includes, for example, platinum and bromine. It can also be used in combination with other adsorbents.
본 발명에서 사용하는 활성탄의 종류는 특별하게 제한하지는 않으나, 예를 들면 목탄, 코크스, 코코낫 껍질, 천연섬유, 폴리아크리로니트릴, 레이온 및 페놀수지등의 합성수지, 핏치등을 출발물질로 사용하여 통상의 방법으로 수득된 활성탄을 사용할 수 있다.The type of activated carbon used in the present invention is not particularly limited, but for example, charcoal, coke, coconut shell, natural fiber, synthetic resin such as polyacrylonitrile, rayon and phenol resin, pitch, etc. are used as starting materials. Activated carbon obtained by a conventional method can be used.
또한 상기 활성탄은 예를 들면, 분말 형태, 과립형태, 펠릿형태, 마카로니형태 또는 섬유 형태등 일 수 있으며, 펠릿형태 및 섬유 형태인 것이 보다 바람직하다.In addition, the activated carbon may be, for example, powder form, granule form, pellet form, macaroni form or fiber form, and more preferably in pellet form and fiber form.
이들 활성탄에는 각종 결합제, 예를 들면 금속류를 함유하여도 좋다.These activated carbons may contain various binders, for example, metals.
상기 활성탄을 이용하여 PSA장치로부터 방출된 아르곤가스 중의 메탄을 흡착할 때에는 10~50℃의 온도 및 3.5~50kgf/cm2의 압력조건인 것이 적당하다.When the activated carbon is used to adsorb the methane in the argon gas discharged from the PSA device, it is appropriate that the temperature is 10 to 50 ° C. and the pressure is 3.5 to 50 kgf / cm 2 .
이때 50℃이상의 온도에서는 가스가 활성화되어 흡착제로부터 쉽게 탈착되고 10℃이하에서는 흡착량이 너무 작으며, 압력은 자꾸 높여도 압력에 대비한 흡착량 증가가 크지 않으므로 비효율적이다. 상기 온도범위에서 바람직한 압력조건은3.5~50kgf/cm2인 것이 적절하다.At this time, the gas is activated and desorbed easily from the adsorbent at a temperature of 50 ° C. or higher, and the amount of adsorption is too small below 10 ° C., and the increase in the amount of adsorption against pressure is not effective even if the pressure is constantly increased. Preferred pressure conditions in the above temperature range is appropriately 3.5 ~ 50kgf / cm 2 .
처리할 가스를 상기 활성탄에 접촉시킬 경우, 처리할 가스의 선유속은 예를 들면 약1∼200cm/초, 바람직하게는 약2∼150cm/초, 보다 바람직하게는 약5∼100cm/초정도이다. 또한 처리할 가스의 공간속도는 예를들면 약20∼500,000hr-1, 바람직하게는 약50∼250,000hr-1, 보다 바람직하게는 100∼150,000hr-1정도이다.When the gas to be treated is brought into contact with the activated carbon, the line flow velocity of the gas to be treated is, for example, about 1 to 200 cm / sec, preferably about 2 to 150 cm / sec, and more preferably about 5 to 100 cm / sec. The space velocity of the gas to be treated is, for example, about 20 to 500,000 hr −1 , preferably about 50 to 250,000 hr −1 , and more preferably about 100 to 150,000 hr −1 .
한편, 기흡착된 메탄은 10~150℃의 온도에서 진공탈착시키고 활성탄을 재생시키게 된다. 진공탈착은 상온에서도 효과적이었으며, 온도를 올릴수록 흡착된 메탄이 활성화되어 탈착이 용이하다.Meanwhile, the gas adsorbed methane is vacuum desorbed at a temperature of 10 ~ 150 ℃ to regenerate activated carbon. Vacuum desorption was effective at room temperature, and as the temperature increased, the adsorbed methane was activated to facilitate desorption.
본 발명의 방법에서 사용되는 활성탄은 흡착/제거 공정과 탈착/재생 공정을 계속 반복하여 수행하게 되므로 1회 충진만으로 장기간동안 활성탄을 효율적으로 사용할 수 있는 잇점이 있으며, 처리하려는 가스중 메탄가스 또한 그 제거율이 우수하다.Activated carbon used in the method of the present invention has the advantage that the activated carbon can be efficiently used for a long time by only one filling, since the adsorption / removal process and the desorption / regeneration process are repeatedly performed. The removal rate is excellent.
본 발명의 방법에 의하면, 아르곤가스내에 존재하는 메탄가스의 농도를 10ppm이하로 저감시킨 다음 아르곤 액화용 냉각기로 공급하게 되므로 불순물인 메탄이 냉각기내에서 응결하여 배관폐쇄등의 문제를 일으킬 염려가 없는 것이다.According to the method of the present invention, since the concentration of methane gas present in the argon gas is reduced to 10 ppm or less and then supplied to the argon liquefaction cooler, methane, which is an impurity, does not condense in the cooler and cause problems such as pipe closure. will be.
이하, 실시예를 통하여 본 발명을 상세히 설명하며, 하기 실시예는 본 발명을 예시하고자 하는 것으로 본 발명을 이에 한정하려는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, and the following Examples are intended to illustrate the present invention and are not intended to limit the present invention thereto.
실시예 1Example 1
<최적 흡착압력조건 도출 실험>Experiment for deriving optimum adsorption pressure condition
활성탄 5g을 2개의 1/2inchФx 100mm 흡착컬럼에 충전시키고, PSA시스템으로부터 방출되는 메탄 152ppm을 함유한 아르곤가스를 25℃에서 3.5~20kgf/cm2의 압력으로 70㎖/min씩 흘리면서 유출 메탄농도를 가스크로마토그래피로 분석하였다.5 g of activated carbon was charged into two 1/2 inch Фx 100 mm adsorption columns, and the effluent methane concentration was discharged by flowing argon gas containing 152 ppm of methane released from the PSA system at a temperature of 3.5-20 kgf / cm 2 at 25 ° C. in 70 ml / min. Analysis by gas chromatography.
각 압력조건에 따른 파과시간을 측정하고 그 결과를 하기표 1에 나타내었다.The breakthrough time for each pressure condition was measured and the results are shown in Table 1 below.
상기표에서 보듯이, 흡착/제거공정에서 압력 조건은 3.5∼50kgf/cm2일 때 바람직하며, 특히 10∼20kgf/cm2일 때 보다 효과적임을 확인할 수 있었다.As shown in the above Table, the pressure conditions in the adsorption / removal process was found to be 3.5~50kgf / cm 2 when the preferred, and in particular 10~20kgf / cm 2 effective than before.
실시예 2Example 2
<적정 흡착온도 도출 실험><Adequate adsorption temperature derivation experiment>
하기표에 기재된 온도별로 처리하려는 아르곤 가스를 통과시킨 것을 제외하고는 실시예 1과 동일한 방법을 반복해서 실시하고, 이때의 파과시간을 측정하고 하기표 2에 나타내었다.The same procedure as in Example 1 was repeated except that the argon gas to be treated for each temperature described in the following table was measured, and the breakthrough time at this time was measured and shown in Table 2 below.
상기표에서 보듯이, 흡착/제거공정에서 반응 온도는 10∼50℃범위내인 것이 바람직함을 확인할 수 있었다.As shown in the above table, it was confirmed that the reaction temperature in the adsorption / removal process is preferably in the range of 10 to 50 ° C.
실시예 3Example 3
<적정 탈착온도 도출 실험><Derived desorption temperature derivation experiment>
아르곤가스를 10kgf/cm2, 140㎖/min로 30분간 통과시킨 것을 제외하고는 실시예 1과 동일한 공정을 반복하고, 하기표 3에 기재된 온도별 진공탈착후의 메탄농도를 측정하여 표 3에 함께 나타내었다.The same process as in Example 1 was repeated except that argon gas was passed at 10 kgf / cm 2 and 140 ml / min for 30 minutes, and the methane concentration after vacuum desorption for each temperature shown in Table 3 was measured, and the results were summarized in Table 3. Indicated.
이 때 10℃ 및 50℃의 경우는 10분간 진공탈착시켰으며, 200℃의 경우는 가열시간을 포함하여 30분간 진공탈착시킨 결과를 나타낸 것이다.In this case, 10 ° C. and 50 ° C. were vacuum desorbed for 10 minutes, and 200 ° C. showed vacuum desorption for 30 minutes including a heating time.
상기표에서 보듯이, 탈착/재생시 반응 온도는 10∼150℃범위내인 것이 최적인 것으로 확인되었다.As shown in the above table, it was found that the reaction temperature at the time of desorption / regeneration was in the range of 10 to 150 ° C.
실시예 4Example 4
카본블랙, 활성탄(charcoal), 목탄계 활성탄(SGA-100), 석탄계 활성탄 4종류를 각각 5g씩 충전하고, 10kgf/cm2의 압력으로 70㎖/min씩 흘린 것을 제외하고는 실시예 1과 동일한 실험을 반복하고, 그 파과시간을 하기표 4에 나타내었다.5g each of carbon black, charcoal, charcoal activated carbon (SGA-100), and coal-based activated carbon, each 5g each, and the same as in Example 1 except that 70ml / min was flowed at a pressure of 10kgf / cm 2 . The experiment was repeated and the breakthrough time is shown in Table 4 below.
*SGA-100의 메탄흡착량: 약0.053㎖/g* Methane adsorption amount of SGA-100: about 0.053ml / g
상기표에서 보듯이, 활성탄의 종류에 상관없이 모두 본 발명에 적용가능한 것을 확인할 수 있었다.As shown in the above table, it was confirmed that all applicable to the present invention regardless of the type of activated carbon.
실시예 5Example 5
<1개의 컬럼을 사용한 흡착/제거 및 탈착/재생 공정을 반복함에 따른 메탄제거 효과><Methane removal effect by repeating adsorption / removal and desorption / regeneration process using one column>
1개의 컬럼을 사용하여 흡착/제거된 컬럼을 상온에서 10분간 진공탈착후 재흡착시키는 공정을 10회 반복한 것을 제외하고는 실시예 1과 동일한 방법을 반복하면서 재흡착시 배출되는 메탄농도 변화를 하기표 5에 나타내었다.Repeated adsorption / removal of the column that was adsorbed / removed using a single column at room temperature for 10 minutes and then repeated adsorption was repeated 10 times. It is shown in Table 5 below.
상기표에서 보듯이, 반복하여도 메탄배출농도는 큰 변화없이 1ppm미만으로 제거됨을 확인할 수 있었다. 이뿐만 아니라 재흡착시 컬럼내 활성탄을 육안관찰한 결과 외관상으로 전혀 변화가 없음을 확인할 수 있었다.As shown in the table, even if repeated, the methane emission concentration was confirmed to be removed to less than 1ppm without significant change. In addition, visual observation of activated carbon in the column during resorption showed no change in appearance.
실시예 6Example 6
<2개의 컬럼을 교대로 사용할 경우 메탄가스 제거 효과><Methane gas removal effect when two columns are used alternately>
활성탄 180g을 2개의 50mmФx 100mm 흡착컬럼에 채우고, 1개의 컬럼으로 152ppm의 메탄을 함유한 아르곤가스를 500㎖/min의 공간속도로 30분간 통과시켜 메탄을 제거하고, 그동안 나머지 1개의 컬럼은 흡착된 메탄을 진공으로 30분간 탈착시키는 방법으로 2개의 컬럼을 교대로 사용하면서 배출구의 메탄 함량을 가스크로마토그래피로 분석하였다. 12시간도안 연속적으로 실시한 결과 메탄을 10ppm이하로 제거할 수 있었다.180g of activated carbon was filled into two 50mmФx 100mm adsorption columns, and argon gas containing 152ppm of methane was passed through a column at 30 ml at a space velocity of 500ml / min for 30 minutes to remove methane, while the other one column was adsorbed. The methane content of the outlet was analyzed by gas chromatography using two columns alternately by desorbing methane under vacuum for 30 minutes. After 12 hours of continuous operation, it was possible to remove methane below 10 ppm.
본 발명의 방법에 의하면, 흡착제로서 활성탄을 사용함에 있어 특정 약품을 전혀 지지시키지 않고, 메탄가스 흡착/제거 공정과 탈착/재생 공정을 동시에 일으킴으로써 메탄가스를 연속적으로 그리고 효율적으로 제거하여, 결과적으로 아르곤가스의 순도를 개선시킬 수 있다.According to the method of the present invention, when using activated carbon as an adsorbent, methane gas is continuously and efficiently removed by simultaneously performing a methane gas adsorption / removal process and a desorption / regeneration process without supporting any particular chemicals. It can improve the purity of argon gas.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000080085A KR20020051314A (en) | 2000-12-22 | 2000-12-22 | A purification method of argon gas with high purity by using activated carbon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000080085A KR20020051314A (en) | 2000-12-22 | 2000-12-22 | A purification method of argon gas with high purity by using activated carbon |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20020051314A true KR20020051314A (en) | 2002-06-29 |
Family
ID=27684497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000080085A KR20020051314A (en) | 2000-12-22 | 2000-12-22 | A purification method of argon gas with high purity by using activated carbon |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20020051314A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0114911A1 (en) * | 1981-12-10 | 1984-08-08 | Calgon Carbon Corporation | Novel repressurization for pressure swing adsorption system |
US4477265A (en) * | 1982-08-05 | 1984-10-16 | Air Products And Chemicals, Inc. | Argon purification |
JPS60239309A (en) * | 1984-05-11 | 1985-11-28 | Seitetsu Kagaku Co Ltd | Process for recovering argon |
US4750925A (en) * | 1986-02-24 | 1988-06-14 | The Boc Group, Inc. | Argon recovery from hydrogen depleted ammonia plant purge gas utilizing a combination of cryogenic and non-cryogenic separating means |
JPH03164410A (en) * | 1990-07-30 | 1991-07-16 | Sumitomo Seika Chem Co Ltd | Production of concentrated argon |
JPH04280807A (en) * | 1990-08-30 | 1992-10-06 | Boc Group Inc:The | Method of recovering argon from supply mixture containing argon, carbon monoxide, methane, hydrogen and nitrogen |
-
2000
- 2000-12-22 KR KR1020000080085A patent/KR20020051314A/en not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0114911A1 (en) * | 1981-12-10 | 1984-08-08 | Calgon Carbon Corporation | Novel repressurization for pressure swing adsorption system |
US4477265A (en) * | 1982-08-05 | 1984-10-16 | Air Products And Chemicals, Inc. | Argon purification |
JPS60239309A (en) * | 1984-05-11 | 1985-11-28 | Seitetsu Kagaku Co Ltd | Process for recovering argon |
US4750925A (en) * | 1986-02-24 | 1988-06-14 | The Boc Group, Inc. | Argon recovery from hydrogen depleted ammonia plant purge gas utilizing a combination of cryogenic and non-cryogenic separating means |
JPH03164410A (en) * | 1990-07-30 | 1991-07-16 | Sumitomo Seika Chem Co Ltd | Production of concentrated argon |
JPH04280807A (en) * | 1990-08-30 | 1992-10-06 | Boc Group Inc:The | Method of recovering argon from supply mixture containing argon, carbon monoxide, methane, hydrogen and nitrogen |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960002190B1 (en) | Process for the purification of the inert gases | |
KR100966064B1 (en) | Syngas purification process | |
US4025321A (en) | Purification of natural gas streams containing oxygen | |
US4874525A (en) | Purification of fluid streams containing mercury | |
US5919286A (en) | PSA process for removel of nitrogen oxides from gas | |
US5989506A (en) | Process for the removal and recovery of mercury from hydrocarbon streams | |
JP5392745B2 (en) | Xenon concentration method, xenon concentration device, and air liquefaction separation device | |
US5354357A (en) | Removal of mercury from process streams | |
JPH10323527A (en) | Gas purity device and method | |
EP0946410B1 (en) | Process for recovering sulfur hexafluoride | |
KR20030070836A (en) | Method of purifying gaseous nitrogen trifluoride | |
US6576044B1 (en) | Process for the purification of nitric oxide | |
US3029575A (en) | Chlorine separation process | |
US5281259A (en) | Removal and recovery of mercury from fluid streams | |
JPS62119104A (en) | Method for recovering high-purity argon from exhaust gas of single crystal producing furnace | |
JPH0144368B2 (en) | ||
JPS6137970B2 (en) | ||
CN1224046A (en) | Pressure swing adsorption process for concentration and purification of carbon monooxide in blast furnace gas | |
KR20020051314A (en) | A purification method of argon gas with high purity by using activated carbon | |
JP5684898B2 (en) | Gas purification method | |
KR20000040605A (en) | Method for removing methane gas using activated carbon | |
KR20020051315A (en) | A preparing method of argon gas with high purity | |
KR20000042032A (en) | Method for removing methane gas using zeolite | |
JP3026103B2 (en) | Argon recovery method | |
JPS62117612A (en) | Regenerating method for adsorption tower |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |